roadmap2 = prep.pca(roadmap2, num_principals).T road2 = prep.pca(roadmap2, num_principals).flatten() roadmap3 = prep.pca(roadmap3, num_principals).T road3 = prep.pca(roadmap3, num_principals).flatten() dataset = np.vstack(( np.hstack((elev0, land0, road0)), np.hstack((elev1, land1, road1)), np.hstack((elev2, land2, road2)), np.hstack((elev3, land3, road3)), )) targetset = np.vstack((target0, target1, target2, target3)) # print dataset.shape net = MemeFFNN(len(dataset[0]), len(target0), 100, 300) print "initial set mean square error: %f" % (net.set_meansq(dataset, targetset)) net.train_set_N(dataset, targetset, trust, N, True, 400) fhandle = file('net.pkl', 'wb') pickle.dump(net, fhandle) fhandle.close() output = np.zeros((200,200,3)) output[0:100, 0:100, :] = net.feedforward(dataset[0]).reshape(rgb_shape) output[100:200, 0:100, :] = net.feedforward(dataset[1]).reshape(rgb_shape) output[0:100, 100:200, :] = net.feedforward(dataset[2]).reshape(rgb_shape) output[100:200, 100:200, :] = net.feedforward(dataset[3]).reshape(rgb_shape) output = np.rint(output)