Ejemplo n.º 1
0
    def solve(self):

        # the result object to be finally returned
        res = Result()

        # set the timer in the beginning of the call
        res.start_time = time.time()

        # call the algorithm to solve the problem
        self._solve(self.problem)

        # store the time when the algorithm as finished
        res.end_time = time.time()
        res.exec_time = res.end_time - res.start_time

        # store the resulting population
        res.pop = self.pop

        # get the optimal solution found
        opt = self.opt

        # if optimum is not set
        if len(opt) == 0:
            opt = None

        # if no feasible solution has been found
        elif not np.any(opt.get("feasible")):
            if self.return_least_infeasible:
                opt = filter_optimum(opt, least_infeasible=True)
            else:
                opt = None

        # set the optimum to the result object
        res.opt = opt

        # if optimum is set to none to not report anything
        if opt is None:
            X, F, CV, G = None, None, None, None

        # otherwise get the values from the population
        else:
            X, F, CV, G = self.opt.get("X", "F", "CV", "G")

            # if single-objective problem and only one solution was found - create a 1d array
            if self.problem.n_obj == 1 and len(X) == 1:
                X, F, CV, G = X[0], F[0], CV[0], G[0]

        # set all the individual values
        res.X, res.F, res.CV, res.G = X, F, CV, G

        # create the result object
        res.problem, res.pf = self.problem, self.pf
        res.history = self.history

        return res
Ejemplo n.º 2
0
    def solve(self):

        # the result object to be finally returned
        res = Result()

        # set the timer in the beginning of the call
        res.start_time = time.time()

        # call the algorithm to solve the problem
        self._solve()

        # create the result object based on the current iteration
        res = self.result()

        return res
Ejemplo n.º 3
0
    def solve(self):

        # the result object to be finally returned
        res = Result()

        # call the algorithm to solve the problem
        self._solve(self.problem)

        # store the resulting population
        res.pop = self.pop

        # if the algorithm already set the optimum just return it, else filter it by default
        if self.opt is None:
            opt = filter_optimum(res.pop.copy(), least_infeasible=self.return_least_infeasible)
        else:
            opt = self.opt

        # get the vectors and matrices
        res.opt = opt

        if isinstance(opt, Population):
            X, F, CV, G = opt.get("X", "F", "CV", "G")
        elif isinstance(opt, Individual):
            X, F, CV, G = opt.X, opt.F, opt.CV, opt.G
        else:
            X, F, CV, G = None, None, None, None

        # set all the individual values
        res.X, res.F, res.CV, res.G = X, F, CV, G

        # create the result object
        res.problem, res.pf = self.problem, self.pf
        res.history = self.history

        return res
Ejemplo n.º 4
0
    def solve(self,
              problem,
              termination,
              seed=None,
              disp=False,
              callback=None,
              save_history=False,
              pf=None,
              **kwargs):
        """

        Solve a given problem by a given evaluator. The evaluator determines the termination condition and
        can either have a maximum budget, hypervolume or whatever. The problem can be any problem the algorithm
        is able to solve.

        Parameters
        ----------

        problem: class
            Problem to be solved by the algorithm

        termination: class
            object that evaluates and saves the number of evaluations and determines the stopping condition

        seed: int
            Random seed for this run. Before the algorithm starts this seed is set.

        disp : bool
            If it is true than information during the algorithm execution are displayed

        callback : func
            A callback function can be passed that is executed every generation. The parameters for the function
            are the algorithm itself, the number of evaluations so far and the current population.

                def callback(algorithm):
                    pass

        save_history : bool
            If true, a current snapshot of each generation is saved.

        pf : np.array
            The Pareto-front for the given problem. If provided performance metrics are printed during execution.

        Returns
        -------
        res : dict
            A dictionary that saves all the results of the algorithm. Also, the history if save_history is true.

        """

        # set the random seed for generator
        if seed is not None:
            random.seed(seed)

        # the evaluator object which is counting the evaluations
        self.evaluator = Evaluator()
        self.problem = problem
        self.termination = termination
        self.pf = pf

        self.disp = disp
        self.callback = callback
        self.save_history = save_history

        # call the algorithm to solve the problem
        pop = self._solve(problem, termination)

        # get the optimal result by filtering feasible and non-dominated
        opt = pop.copy()
        opt = opt[opt.collect(lambda ind: ind.feasible)[:, 0]]

        # if at least one feasible solution was found
        if len(opt) > 0:

            if problem.n_obj > 1:
                I = NonDominatedSorting().do(opt.get("F"),
                                             only_non_dominated_front=True)
                opt = opt[I]
                X, F, CV, G = opt.get("X", "F", "CV", "G")

            else:
                opt = opt[np.argmin(opt.get("F"))]
                X, F, CV, G = opt.X, opt.F, opt.CV, opt.G
        else:
            opt = None

        res = Result(opt, opt is None, "")
        res.algorithm, res.problem, res.pf = self, problem, pf
        res.pop = pop

        if opt is not None:
            res.X, res.F, res.CV, res.G = X, F, CV, G

        res.history = self.history

        return res