Ejemplo n.º 1
0
    def setUp(self):
        """ Setup test.
        """
        data = fetch_cifar(datasetdir="/tmp/cifar")
        self.manager = DataManager(input_path=data.input_path,
                                   labels=["label"],
                                   metadata_path=data.metadata_path,
                                   number_of_folds=10,
                                   batch_size=10,
                                   stratify_label="category",
                                   test_size=0.1,
                                   sample_size=0.01)

        class Net(nn.Module):
            def __init__(self):
                super(Net, self).__init__()
                self.conv1 = nn.Conv2d(3, 6, 5)
                self.pool = nn.MaxPool2d(2, 2)
                self.conv2 = nn.Conv2d(6, 16, 5)
                self.fc1 = nn.Linear(16 * 5 * 5, 120)
                self.fc2 = nn.Linear(120, 84)
                self.fc3 = nn.Linear(84, 10)

            def forward(self, x):
                x = self.pool(func.relu(self.conv1(x)))
                x = self.pool(func.relu(self.conv2(x)))
                x = x.view(-1, 16 * 5 * 5)
                x = func.relu(self.fc1(x))
                x = func.relu(self.fc2(x))
                x = self.fc3(x)
                return x

        self.cl = DeepLearningInterface(model=Net(),
                                        optimizer_name="SGD",
                                        momentum=0.9,
                                        learning_rate=0.001,
                                        loss_name="CrossEntropyLoss",
                                        metrics=["accuracy"])
Ejemplo n.º 2
0
import pynet.configure
print(pynet.configure.info())

#############################################################################
# Optimisation
# ------------
#
# First load a dataset (the CIFAR10) and a network.
# You may need to change the 'datasetdir' parameter.

import torch.nn as nn
import torch.nn.functional as func
from pynet.datasets import DataManager, fetch_cifar

data = fetch_cifar(datasetdir="/tmp/cifar")
manager = DataManager(input_path=data.input_path,
                      labels=["label"],
                      metadata_path=data.metadata_path,
                      number_of_folds=10,
                      batch_size=10,
                      stratify_label="category",
                      test_size=0.1)


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)