def collect_testcases(self, module_path: Union[str, os.PathLike]) -> None:
        """Collect all test cases from a module.

        Args:
            module_path: Path to the module to collect the test cases from
        """
        tree = self.get_ast_tree(module_path)
        if tree is None:
            config.configuration.initial_population_seeding = False
            self._logger.info("Provided testcases are not used.")
            return
        transformer = _TestTransformer(self._test_cluster)
        transformer.visit(tree)
        self._testcases = transformer.testcases
        if not self._testcases:
            config.configuration.initial_population_seeding = False
            self._logger.info("None of the provided test cases can be parsed.")
        else:
            self._logger.info(
                "Number successfully collected test cases: %s", len(self._testcases)
            )
        stat.track_output_variable(
            RuntimeVariable.CollectedTestCases, len(self._testcases)
        )
        self._mutate_testcases_initially()
Ejemplo n.º 2
0
    def generate_tests(self) -> chrom.Chromosome:
        self._logger.info("Start generating tests")
        self._archive = Archive(set(self._fitness_functions))
        self._number_of_goals = len(self._fitness_functions)
        stat.set_output_variable_for_runtime_variable(RuntimeVariable.Goals,
                                                      self._number_of_goals)

        self._current_iteration = 0
        self._population = self._get_random_population()
        self._archive.update(self._population)

        # Calculate dominance ranks and crowding distance
        fronts = self._ranking_function.compute_ranking_assignment(
            self._population, self._archive.uncovered_goals)
        for i in range(fronts.get_number_of_sub_fronts()):
            fast_epsilon_dominance_assignment(fronts.get_sub_front(i),
                                              self._archive.uncovered_goals)

        while (not self._stopping_condition.is_fulfilled() and
               self._number_of_goals - len(self._archive.covered_goals) != 0):
            self.evolve()
            self._notify_iteration()
            self._current_iteration += 1

        stat.track_output_variable(RuntimeVariable.AlgorithmIterations,
                                   self._current_iteration)
        return self.create_test_suite(self._archive.solutions if len(
            self._archive.solutions) > 0 else self._get_best_individuals())
Ejemplo n.º 3
0
def test_variables_generator():
    value_1 = MagicMock(Timer)
    value_2 = MagicMock(Timer)
    stat.track_output_variable(RuntimeVariable.TotalTime, value_1)
    stat.track_output_variable(RuntimeVariable.TotalTime, value_2)
    result = [v for _, v in stat.variables_generator]
    assert result in ([], [value_1, value_2])
Ejemplo n.º 4
0
def _collect_statistics() -> None:
    stat.track_output_variable(RuntimeVariable.TargetModule,
                               config.configuration.module_name)
    stat.track_output_variable(RuntimeVariable.RandomSeed,
                               randomness.RNG.get_seed())
    stat.track_output_variable(RuntimeVariable.ConfigurationId,
                               config.configuration.configuration_id)
    stat.track_output_variable(RuntimeVariable.ProjectName,
                               config.configuration.project_name)
    for runtime_variable, value in stat.variables_generator:
        stat.set_output_variable_for_runtime_variable(runtime_variable, value)
Ejemplo n.º 5
0
    def generate_tests(self, ) -> tsc.TestSuiteChromosome:
        test_chromosome: tsc.TestSuiteChromosome = tsc.TestSuiteChromosome()
        failing_test_chromosome: tsc.TestSuiteChromosome = tsc.TestSuiteChromosome(
        )
        generation: int = 0
        for fitness_function in self._fitness_functions:
            test_chromosome.add_fitness_function(fitness_function)
            failing_test_chromosome.add_fitness_function(fitness_function)

        combined_chromosome = self._combine_current_individual(
            test_chromosome, failing_test_chromosome)

        while (not self._stopping_condition.is_fulfilled()
               and combined_chromosome.get_fitness() != 0.0):
            try:
                generation += 1
                self._stopping_condition.iterate()
                self.generate_sequence(
                    test_chromosome,
                    failing_test_chromosome,
                    generation,
                )
                combined_chromosome = self._combine_current_individual(
                    test_chromosome, failing_test_chromosome)
                stat.current_individual(combined_chromosome)
                self._logger.info(
                    "Generation: %5i. Best fitness: %5f, Best coverage %5f",
                    generation,
                    combined_chromosome.get_fitness(),
                    combined_chromosome.get_coverage(),
                )
            except (ConstructionFailedException,
                    GenerationException) as exception:
                self._logger.debug(
                    "Generate test case failed with exception %s", exception)

        self._logger.debug("Number of algorithm iterations: %d", generation)
        stat.track_output_variable(RuntimeVariable.AlgorithmIterations,
                                   generation)

        combined_chromosome = self._combine_current_individual(
            test_chromosome, failing_test_chromosome)
        return combined_chromosome
Ejemplo n.º 6
0
 def generate_tests(self, ) -> tsc.TestSuiteChromosome:
     solution = self._get_random_solution()
     stat.current_individual(solution)
     generation = 0
     while (not self._stopping_condition.is_fulfilled()
            and solution.get_fitness() != 0.0):
         candidate = self._get_random_solution()
         if candidate.get_fitness() < solution.get_fitness():
             solution = candidate
             self._logger.info(
                 "Generation: %5i. Best fitness: %5f, Best coverage %5f",
                 generation,
                 solution.get_fitness(),
                 solution.get_coverage(),
             )
         stat.current_individual(solution)
         generation += 1
     stat.track_output_variable(RuntimeVariable.AlgorithmIterations,
                                generation)
     return solution
    def get_ast_tree(
        self, module_path: Union[str, os.PathLike]
    ) -> Optional[ast.Module]:
        """Returns the ast tree from a module

        Args:
            module_path: The path to the project's root

        Returns:
            The ast tree of the given module.
        """
        module_name = config.configuration.module_name.split(".")[-1]
        self._logger.debug("Module name: %s", module_name)
        result: List[str] = []
        for root, _, files in os.walk(module_path):
            for name in files:
                if module_name in name and "test_" in name:
                    result.append(os.path.join(root, name))
                    break
        try:
            if len(result) > 0:
                self._logger.debug("Module name found: %s", result[0])
                stat.track_output_variable(RuntimeVariable.SuitableTestModule, True)
                with open(result[0]) as module_file:
                    return ast.parse(module_file.read())
            else:
                self._logger.debug("No suitable test module found.")
                stat.track_output_variable(RuntimeVariable.SuitableTestModule, False)
                return None
        except BaseException as exception:  # pylint: disable=broad-except
            self._logger.exception("Cannot read module: %s", exception)
            stat.track_output_variable(RuntimeVariable.SuitableTestModule, False)
            return None
Ejemplo n.º 8
0
 def generate_tests(self, ) -> tsc.TestSuiteChromosome:
     self._population = self._get_random_population()
     self._sort_population()
     stat.current_individual(self._get_best_individual())
     generation = 0
     while (not self._stopping_condition.is_fulfilled()
            and self._get_best_individual().get_fitness() != 0.0):
         self.evolve()
         stat.current_individual(self._get_best_individual())
         self._logger.info(
             "Generation: %5i. Best fitness: %5f, Best coverage %5f",
             generation,
             self._get_best_individual().get_fitness(),
             self._get_best_individual().get_coverage(),
         )
         generation += 1
     stat.track_output_variable(RuntimeVariable.AlgorithmIterations,
                                generation)
     best = self._get_best_individual()
     # Make sure all test cases have a cached result.
     best.get_fitness()
     return best
Ejemplo n.º 9
0
def _track_sut_data(tracer: ExecutionTracer,
                    test_cluster: TestCluster) -> None:
    """Track data from the SUT.

    Args:
        tracer: the execution tracer
        test_cluster: the test cluster
    """
    stat.track_output_variable(
        RuntimeVariable.CodeObjects,
        len(tracer.get_known_data().existing_code_objects),
    )
    stat.track_output_variable(
        RuntimeVariable.Predicates,
        len(tracer.get_known_data().existing_predicates),
    )
    stat.track_output_variable(
        RuntimeVariable.AccessibleObjectsUnderTest,
        test_cluster.num_accessible_objects_under_test(),
    )
    stat.track_output_variable(
        RuntimeVariable.GeneratableTypes,
        len(test_cluster.get_all_generatable_types()),
    )
Ejemplo n.º 10
0
def _track_statistics(
    passing: chrom.Chromosome,
    failing: chrom.Chromosome,
    result: chrom.Chromosome,
) -> None:
    stat.current_individual(result)
    stat.track_output_variable(RuntimeVariable.Size, result.size())
    stat.track_output_variable(RuntimeVariable.Length, result.length())
    stat.track_output_variable(RuntimeVariable.FailingSize, failing.size())
    stat.track_output_variable(
        RuntimeVariable.FailingLength,
        failing.length(),
    )
    stat.track_output_variable(RuntimeVariable.PassingSize, passing.size())
    stat.track_output_variable(RuntimeVariable.PassingLength, passing.length())
Ejemplo n.º 11
0
        return ReturnCode.SETUP_FAILED
    executor, test_cluster = setup_result

    with Timer(name="Test generation time", logger=None):
        algorithm: TestGenerationStrategy = _instantiate_test_generation_strategy(
            executor, test_cluster)
        _LOGGER.info("Start generating sequences using %s",
                     config.configuration.algorithm)
        stat.set_sequence_start_time(time.time_ns())
        generation_result = algorithm.generate_tests()
        _LOGGER.info("Stop generating sequences using %s",
                     config.configuration.algorithm)
        algorithm.send_statistics()

        with Timer(name="Re-execution time", logger=None):
            stat.track_output_variable(RuntimeVariable.Coverage,
                                       generation_result.get_coverage())

        if config.configuration.post_process:
            postprocessor = pp.ExceptionTruncation()
            generation_result.accept(postprocessor)
            # TODO(fk) add more postprocessing stuff.

        if config.configuration.generate_assertions:
            generator = ag.AssertionGenerator(executor)
            generation_result.accept(generator)

        with Timer(name="Export time", logger=None):
            converter = cc.ChromosomeConverter()
            generation_result.accept(converter)
            failing = converter.failing_test_suite
            passing = converter.passing_test_suite
Ejemplo n.º 12
0
 def send_statistics(self) -> None:
     super().send_statistics()
     stat.track_output_variable(RuntimeVariable.ExecutionResults,
                                self._execution_results)
Ejemplo n.º 13
0
 def visit_Module(self, node: ast.Module) -> Any:
     self.generic_visit(node)
     stat.track_output_variable(
         RuntimeVariable.FoundTestCases, self._number_found_testcases
     )