Ejemplo n.º 1
0
    def setUp(self):
        self.n_train = 6000
        self.n_test = 1000
        self.n_features = 300
        self.contamination = 0.1
        self.roc_floor = 0.5
        self.X_train, self.X_test, self.y_train, self.y_test = generate_data(
            n_train=self.n_train,
            n_test=self.n_test,
            n_features=self.n_features,
            contamination=self.contamination,
            random_state=42)

        self.clf = DeepSVDD(epochs=10,
                            hidden_neurons=[64, 32],
                            contamination=self.contamination,
                            random_state=2021)
        self.clf_ae = DeepSVDD(epochs=5,
                               use_ae=True,
                               output_activation='relu',
                               hidden_neurons=[16, 8, 4],
                               contamination=self.contamination,
                               preprocessing=False)
        self.clf.fit(self.X_train)
        self.clf_ae.fit(self.X_train)
Ejemplo n.º 2
0
    n_test = 2000  # number of testing points
    n_features = 300  # number of features
    use_ae = False  # hyperparameter for use ae architecture instead of simple NN
    random_state = 10  # if C is set to None use random_state

    # Generate sample data
    X_train, X_test, y_train, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=n_features,
                      contamination=contamination,
                      random_state=42)

    # train DeepSVDD detector (Without-AE)
    clf_name = 'DeepSVDD'
    clf = DeepSVDD(use_ae=use_ae, epochs=5, contamination=contamination,
                   random_state=random_state)
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
    y_test_scores = clf.decision_function(X_test)  # outlier scores

    # evaluate and print the results
    print("\nOn Training Data:")
    evaluate_print(clf_name, y_train, y_train_scores)
    print("\nOn Test Data:")
    evaluate_print(clf_name, y_test, y_test_scores)
Ejemplo n.º 3
0
class TestDeepSVDD(unittest.TestCase):
    def setUp(self):
        self.n_train = 6000
        self.n_test = 1000
        self.n_features = 300
        self.contamination = 0.1
        self.roc_floor = 0.5
        self.X_train, self.X_test, self.y_train, self.y_test = generate_data(
            n_train=self.n_train,
            n_test=self.n_test,
            n_features=self.n_features,
            contamination=self.contamination,
            random_state=42)

        self.clf = DeepSVDD(epochs=10,
                            hidden_neurons=[64, 32],
                            contamination=self.contamination,
                            random_state=2021)
        self.clf_ae = DeepSVDD(epochs=5,
                               use_ae=True,
                               output_activation='relu',
                               hidden_neurons=[16, 8, 4],
                               contamination=self.contamination,
                               preprocessing=False)
        self.clf.fit(self.X_train)
        self.clf_ae.fit(self.X_train)

    def test_parameters(self):
        assert (hasattr(self.clf, 'decision_scores_')
                and self.clf.decision_scores_ is not None)
        assert (hasattr(self.clf, 'labels_') and self.clf.labels_ is not None)
        assert (hasattr(self.clf, 'threshold_')
                and self.clf.threshold_ is not None)
        assert (hasattr(self.clf, '_mu') and self.clf._mu is not None)
        assert (hasattr(self.clf, '_sigma') and self.clf._sigma is not None)
        assert (hasattr(self.clf, 'model_') and self.clf.model_ is not None)

    def test_train_scores(self):
        assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0])

    def test_prediction_scores(self):
        pred_scores = self.clf.decision_function(self.X_test)

        # check score shapes
        assert_equal(pred_scores.shape[0], self.X_test.shape[0])

        # check performance
        assert (roc_auc_score(self.y_test, pred_scores) >= self.roc_floor)

    def test_prediction_labels(self):
        pred_labels = self.clf.predict(self.X_test)
        assert_equal(pred_labels.shape, self.y_test.shape)

    def test_prediction_proba(self):
        pred_proba = self.clf.predict_proba(self.X_test)
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_linear(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='linear')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_unify(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='unify')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_parameter(self):
        with assert_raises(ValueError):
            self.clf.predict_proba(self.X_test, method='something')

    def test_prediction_labels_confidence(self):
        pred_labels, confidence = self.clf.predict(self.X_test,
                                                   return_confidence=True)
        assert_equal(pred_labels.shape, self.y_test.shape)
        assert_equal(confidence.shape, self.y_test.shape)
        assert (confidence.min() >= 0)
        assert (confidence.max() <= 1)

    def test_prediction_proba_linear_confidence(self):
        pred_proba, confidence = self.clf.predict_proba(self.X_test,
                                                        method='linear',
                                                        return_confidence=True)
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

        assert_equal(confidence.shape, self.y_test.shape)
        assert (confidence.min() >= 0)
        assert (confidence.max() <= 1)

    def test_fit_predict(self):
        pred_labels = self.clf.fit_predict(self.X_train)
        assert_equal(pred_labels.shape, self.y_train.shape)

    def test_fit_predict_score(self):
        self.clf.fit_predict_score(self.X_test, self.y_test)
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='roc_auc_score')
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='prc_n_score')
        with assert_raises(NotImplementedError):
            self.clf.fit_predict_score(self.X_test,
                                       self.y_test,
                                       scoring='something')

    def test_model_clone(self):
        clone_clf = clone(self.clf)
        clone_clf = clone(self.clf_ae)

    def tearDown(self):
        pass