Ejemplo n.º 1
0
    def section2_3_6_singular_annotations(self):
        """Example of how to create singular annotations"""
        # Create a combine archive called MichaelisMenten1.omex that contains a MichaelisMenten1.sbml file
        combine_archive_filename = create_combine_archive(
            SBML_STRING, name="SingularAnnotations")

        # we extract the sbml from the combine archive
        sbml = extract_sbml_from_combine_archive(combine_archive_filename)

        # sbml is a list of all sbml files in archive. We know there is only 1, so get the string
        if len(sbml) != 1:
            raise ValueError(
                "Something is wrong - you should only have 1 sbml file in the combine archive"
            )

        sbml = sbml[0]

        # create an RDF object. Its empty.
        rdf = RDF()
        rdf.set_model_uri("SingularAnnotations")

        # here we turn off semantic extraction to make output clearer
        editor = rdf.to_editor(sbml,
                               generate_new_metaids=False,
                               sbml_semantic_extraction=False)

        with editor.new_singular_annotation(
        ) as example_using_bqbiol_pred_and_uri_resource:
            example_using_bqbiol_pred_and_uri_resource.about("S") \
                .predicate("bqbiol", "is") \
                .resource_uri("uniprot/Q15796")

        with editor.new_singular_annotation(
        ) as example_using_bqmodel_pred_and_literal_resource:
            example_using_bqmodel_pred_and_literal_resource.about("MichaelisMenten") \
                .predicate("bqmodel", "isDescribedBy") \
                .resource_literal("Anything can go here. It is a string literal.")

        # recreate the combine archive
        fname = create_combine_archive(sbml, "SingularAnnotations", str(rdf))

        return fname
Ejemplo n.º 2
0
    def section2_3_4_personal_information(self):
        """Example of how to use the PersonalInformation class"""
        # Create a combine archive called MichaelisMenten1.omex that contains a MichaelisMenten1.sbml file
        combine_archive_filename = create_combine_archive(
            SBML_STRING, name="PersonalInformation")

        # we extract the sbml from the combine archive
        sbml = extract_sbml_from_combine_archive(combine_archive_filename)

        # sbml is a list of all sbml files in archive. We know there is only 1, so get the string
        if len(sbml) != 1:
            raise ValueError(
                "Something is wrong - you should only have 1 sbml file in the combine archive"
            )

        sbml = sbml[0]

        # create an RDF object. Its empty.
        rdf = RDF()
        rdf.set_model_uri("PersonalInformation")

        # create an editor. Note these are the default arguments - but shown here for completeness
        editor = rdf.to_editor(sbml,
                               generate_new_metaids=False,
                               sbml_semantic_extraction=True)

        # Here we use a "with" block.
        # internally, the "with" block will always execute a piece of code before
        # exiting the with block. In this case, it calls "Editor.add_personal_information()"
        # so that the user cannot forget to do it.
        # Note that in C or C++, the user must remember to add a newly created annotation to the editor.
        with editor.new_personal_information() as information:
            information.add_creator("orcid:0000-0001-8254-4957") \
                .add_name("Robin hood") \
                .add_mbox("*****@*****.**") \
                .add_account_name("stolen_goods") \
                .add_account_service_homepage("https://get-your-free-stuff-here.com")

        fname = create_combine_archive(sbml, "PersonalInformation", str(rdf))

        return fname
Ejemplo n.º 3
0
    def section2_3_7_3_energy_diff(self):
        """Example of how to create EnergyDiff type composite annotations"""

        # Create a combine archive called MichaelisMenten1.omex that contains a MichaelisMenten1.sbml file
        combine_archive_filename = create_combine_archive(SBML_STRING,
                                                          name="EnergyDiff")

        # we extract the sbml from the combine archive
        sbml = extract_sbml_from_combine_archive(combine_archive_filename)

        # sbml is a list of all sbml files in archive. We know there is only 1, so get the string
        if len(sbml) != 1:
            raise ValueError(
                "Something is wrong - you should only have 1 sbml file in the combine archive"
            )

        sbml = sbml[0]

        # create an RDF object. Its empty.
        rdf = RDF()
        rdf.set_model_uri("EnergyDiff")

        # sbml semantic extraction will automatically create these physical entities for us.
        # here, we turn it off so we can create them manually
        editor = rdf.to_editor(sbml,
                               generate_new_metaids=False,
                               sbml_semantic_extraction=False)

        # OPB:OPB_00378 = chemical potential
        with editor.new_energy_diff() as physcial_force:
            physcial_force.about("S") \
                .has_property("OPB:OPB_00378") \
                .add_source(1.0, "EntityProperty0002") \
                .add_sink(1.0, "EntityProperty0001")

        fname = create_combine_archive(sbml, "EnergyDiff", str(rdf))

        return fname
Ejemplo n.º 4
0
    def section2_3_4_model_level_annotations(self):
        """Example of how to create model level annotations"""
        # Create a combine archive called MichaelisMenten1.omex that contains a MichaelisMenten1.sbml file
        combine_archive_filename = create_combine_archive(
            SBML_STRING, name="ModelLevelAnnotations")

        # we extract the sbml from the combine archive
        sbml = extract_sbml_from_combine_archive(combine_archive_filename)

        # sbml is a list of all sbml files in archive. We know there is only 1, so get the string
        if len(sbml) != 1:
            raise ValueError(
                "Something is wrong - you should only have 1 sbml file in the combine archive"
            )

        sbml = sbml[0]

        # create an RDF object. Its empty.
        rdf = RDF()
        rdf.set_model_uri("ModelLevelAnnotations")

        # create an editor. Note these are the default arguments - but shown here for completeness
        editor = rdf.to_editor(sbml,
                               generate_new_metaids=False,
                               sbml_semantic_extraction=True)

        editor.add_creator("orcid:0000-0001-8254-4957")\
            .add_curator("orcid:0000-0001-8254-4958")\
            .add_taxon("taxon/9895")\
            .add_pubmed("pubmed/12334")\
            .add_description("My supercool model")\
            .add_date_created("18-09-2020")\
            .add_parent_model("pubmed/123456")

        fname = create_combine_archive(sbml, "ModelLevelAnnotations", str(rdf))

        return fname
Ejemplo n.º 5
0
    def section2_3_7_2_physical_process(self):
        """Example of how to create PhysicalProcess type composite annotations"""

        # Create a combine archive called MichaelisMenten1.omex that contains a MichaelisMenten1.sbml file
        combine_archive_filename = create_combine_archive(
            SBML_STRING, name="PhysicalProcess")

        # we extract the sbml from the combine archive
        sbml = extract_sbml_from_combine_archive(combine_archive_filename)

        # sbml is a list of all sbml files in archive. We know there is only 1, so get the string
        if len(sbml) != 1:
            raise ValueError(
                "Something is wrong - you should only have 1 sbml file in the combine archive"
            )

        sbml = sbml[0]

        # create an RDF object. Its empty.
        rdf = RDF()
        rdf.set_model_uri("PhysicalProcess")

        # sbml semantic extraction will automatically create these physical entities for us.
        # here, we turn it off so we can create them manually
        editor = rdf.to_editor(sbml,
                               generate_new_metaids=False,
                               sbml_semantic_extraction=False)

        # physical process composite annotations use references to physical entities.
        # therefore we build on the content from OmexMetaSpec1_1.section2_3_7_1_physical_entity()

        with editor.new_physical_entity() as substrate_entity:
            substrate_entity.about("S") \
                .has_property("OPB:OPB_00340") \
                .identity("uniprot/Q15796") \
                .is_part_of("FMA:66836") \
                .is_part_of("FMA:63877")

        with editor.new_physical_entity() as product_entity:
            product_entity.about("P") \
                .has_property("OPB:OPB_00340") \
                .identity("uniprot/smad2-p") \
                .is_part_of("FMA:66836") \
                .is_part_of("FMA:63877")

        with editor.new_physical_entity() as enzyme_entity:
            enzyme_entity.about("E") \
                .has_property("OPB:OPB_00340") \
                .identity("uniprot/P37173") \
                .is_part_of("FMA:66836") \
                .is_part_of("FMA:63877")

        with editor.new_physical_entity() as complex_entity:
            complex_entity.about("ES") \
                .has_property("OPB:OPB_00340") \
                .identity("uniprot/SmadReceptorComplex") \
                .is_part_of("FMA:66836") \
                .is_part_of("FMA:63877")

        ## optionally print out xml to look at the metaids
        # print(editor.get_xml())
        # print(editor.get_metaids())

        # We now create annotations for three reactions (physical processes)
        #  that are simulated in the sbml model
        with editor.new_physical_process() as substrate_bind_enzyme:
            substrate_bind_enzyme.about("R1") \
                .has_property("OPB:OPB_00593") \
                .add_source(1.0, "EntityProperty0000") \
                .add_source(1.0, "EntityProperty0003") \
                .add_sink(1.0, "EntityProperty0000") \
                .is_version_of()

        with editor.new_physical_process() as substrate_unbind_enzyme:
            substrate_unbind_enzyme.about("R2") \
                .has_property("OPB:OPB_00593") \
                .add_sink(1.0, "EntityProperty0000") \
                .add_sink(1.0, "EntityProperty0003") \
                .add_source(1.0, "EntityProperty0000")

        with editor.new_physical_process() as product_formation:
            product_formation.about("R3") \
                .has_property("OPB:OPB_00593") \
                .add_sink(1.0, "EntityProperty0002") \
                .add_sink(1.0, "EntityProperty0001") \
                .add_source(1.0, "EntityProperty0003")

        fname = create_combine_archive(sbml, "PhysicalProcess", str(rdf))

        return fname
Ejemplo n.º 6
0
    def section2_3_7_1_physical_entity(self):
        """Example of how to create physical entity type composite annotations"""
        # Create a combine archive called MichaelisMenten1.omex that contains a MichaelisMenten1.sbml file
        combine_archive_filename = create_combine_archive(
            SBML_STRING, name="PhysicalEntity")

        # we extract the sbml from the combine archive
        sbml = extract_sbml_from_combine_archive(combine_archive_filename)

        # sbml is a list of all sbml files in archive. We know there is only 1, so get the string
        if len(sbml) != 1:
            raise ValueError(
                "Something is wrong - you should only have 1 sbml file in the combine archive"
            )

        sbml = sbml[0]

        # create an RDF object. Its empty.
        rdf = RDF()
        rdf.set_model_uri("PhysicalEntity")

        # sbml semantic extraction will automatically create these physical entities for us.
        # here, we turn it off so we can create them manually
        editor = rdf.to_editor(sbml,
                               generate_new_metaids=False,
                               sbml_semantic_extraction=False)

        # note: the syntax "fma:fma_12345" == "fma/fma_12345"
        # OPB:OPB_00340 = concentration of chemical
        # FMA:66836 = part of cytosol
        # FMA:63877 = fibroblast
        with editor.new_physical_entity() as substrate_entity:
            substrate_entity.about("S") \
                .has_property("OPB:OPB_00340") \
                .identity("uniprot/Q15796") \
                .is_part_of("FMA:66836") \
                .is_part_of("FMA:63877")

        with editor.new_physical_entity() as product_entity:
            product_entity.about("P") \
                .has_property("OPB:OPB_00340") \
                .identity("uniprot/smad2-p") \
                .is_part_of("FMA:66836") \
                .is_part_of("FMA:63877")

        with editor.new_physical_entity() as enzyme_entity:
            enzyme_entity.about("E") \
                .has_property("OPB:OPB_00340") \
                .identity("uniprot/P37173") \
                .is_part_of("FMA:66836") \
                .is_part_of("FMA:63877")

        with editor.new_physical_entity() as complex_entity:
            complex_entity.about("ES") \
                .has_property("OPB:OPB_00340") \
                .identity("uniprot/P37173") \
                .is_part_of("FMA:66836") \
                .is_part_of("FMA:63877")

        fname = create_combine_archive(sbml, "PhysicalEntity", str(rdf))

        return fname