Ejemplo n.º 1
0
def main():
    m = create_model(4.5, 1.0)
    opt = pyo.SolverFactory('ipopt')
    results = opt.solve(m, tee=True)

    nlp = PyomoNLP(m)
    x = nlp.init_primals()
    y = compute_init_lam(nlp, x=x)
    nlp.set_primals(x)
    nlp.set_duals(y)

    J = nlp.extract_submatrix_jacobian(pyomo_variables=[m.x1, m.x2, m.x3],
                                       pyomo_constraints=[m.const1, m.const2])
    H = nlp.extract_submatrix_hessian_lag(
        pyomo_variables_rows=[m.x1, m.x2, m.x3],
        pyomo_variables_cols=[m.x1, m.x2, m.x3])

    M = BlockMatrix(2, 2)
    M.set_block(0, 0, H)
    M.set_block(1, 0, J)
    M.set_block(0, 1, J.transpose())

    Np = BlockMatrix(2, 1)
    Np.set_block(
        0, 0,
        nlp.extract_submatrix_hessian_lag(
            pyomo_variables_rows=[m.x1, m.x2, m.x3],
            pyomo_variables_cols=[m.eta1, m.eta2]))
    Np.set_block(
        1, 0,
        nlp.extract_submatrix_jacobian(pyomo_variables=[m.eta1, m.eta2],
                                       pyomo_constraints=[m.const1, m.const2]))

    ds = spsolve(M.tocsc(), -Np.tocsc())

    print("ds:\n", ds.todense())
    #################################################################

    p0 = np.array([pyo.value(m.nominal_eta1), pyo.value(m.nominal_eta2)])
    p = np.array([4.45, 1.05])
    dp = p - p0
    dx = ds.dot(dp)[0:3]
    x_indices = nlp.get_primal_indices([m.x1, m.x2, m.x3])
    x_names = np.array(nlp.primals_names())
    new_x_sens = x[x_indices] + dx
    print("dp:", dp)
    print("dx:", dx)
    print("Variable names: \n", x_names[x_indices])
    print("Sensitivity based x:\n", new_x_sens)

    #################################################################
    m = create_model(4.45, 1.05)
    opt = pyo.SolverFactory('ipopt')
    results = opt.solve(m, tee=False)
    nlp = PyomoNLP(m)
    new_x = nlp.init_primals()[nlp.get_primal_indices([m.x1, m.x2, m.x3])]
    print("NLP based x:\n", new_x)

    return new_x_sens, new_x
Ejemplo n.º 2
0
 def test_rename(self):
     m = create_pyomo_model()
     nlp = PyomoNLP(m)
     expected_names = ['x[0]', 'x[1]', 'x[2]']
     self.assertEqual(nlp.primals_names(), expected_names)
     renamed_nlp = RenamedNLP(nlp, {
         'x[0]': 'y[0]',
         'x[1]': 'y[1]',
         'x[2]': 'y[2]'
     })
     expected_names = ['y[0]', 'y[1]', 'y[2]']
Ejemplo n.º 3
0
    def test_compare_evaluations(self):
        A1 = 5
        A2 = 10
        c1 = 3
        c2 = 4
        N = 6
        dt = 1

        m = create_pyomo_model(A1, A2, c1, c2, N, dt)
        solver = pyo.SolverFactory('ipopt')
        solver.options['linear_solver'] = 'mumps'
        status = solver.solve(m, tee=False)
        m_nlp = PyomoNLP(m)

        mex = create_pyomo_external_grey_box_model(A1, A2, c1, c2, N, dt)
        # mex_nlp = PyomoGreyBoxNLP(mex)
        mex_nlp = PyomoNLPWithGreyBoxBlocks(mex)

        # get the variable and constraint order and create the maps
        # reliable order independent comparisons
        m_x_order = m_nlp.primals_names()
        m_c_order = m_nlp.constraint_names()
        mex_x_order = mex_nlp.primals_names()
        mex_c_order = mex_nlp.constraint_names()

        x1list = [
            'h1[0]', 'h1[1]', 'h1[2]', 'h1[3]', 'h1[4]', 'h1[5]', 'h2[0]',
            'h2[1]', 'h2[2]', 'h2[3]', 'h2[4]', 'h2[5]', 'F1[1]', 'F1[2]',
            'F1[3]', 'F1[4]', 'F1[5]', 'F2[1]', 'F2[2]', 'F2[3]', 'F2[4]',
            'F2[5]', 'F12[0]', 'F12[1]', 'F12[2]', 'F12[3]', 'F12[4]',
            'F12[5]', 'Fo[0]', 'Fo[1]', 'Fo[2]', 'Fo[3]', 'Fo[4]', 'Fo[5]'
        ]
        x2list = [
            'egb.inputs[h1_0]', 'egb.inputs[h1_1]', 'egb.inputs[h1_2]',
            'egb.inputs[h1_3]', 'egb.inputs[h1_4]', 'egb.inputs[h1_5]',
            'egb.inputs[h2_0]', 'egb.inputs[h2_1]', 'egb.inputs[h2_2]',
            'egb.inputs[h2_3]', 'egb.inputs[h2_4]', 'egb.inputs[h2_5]',
            'egb.inputs[F1_1]', 'egb.inputs[F1_2]', 'egb.inputs[F1_3]',
            'egb.inputs[F1_4]', 'egb.inputs[F1_5]', 'egb.inputs[F2_1]',
            'egb.inputs[F2_2]', 'egb.inputs[F2_3]', 'egb.inputs[F2_4]',
            'egb.inputs[F2_5]', 'egb.outputs[F12_0]', 'egb.outputs[F12_1]',
            'egb.outputs[F12_2]', 'egb.outputs[F12_3]', 'egb.outputs[F12_4]',
            'egb.outputs[F12_5]', 'egb.outputs[Fo_0]', 'egb.outputs[Fo_1]',
            'egb.outputs[Fo_2]', 'egb.outputs[Fo_3]', 'egb.outputs[Fo_4]',
            'egb.outputs[Fo_5]'
        ]
        x1_x2_map = dict(zip(x1list, x2list))
        x1idx_x2idx_map = {
            i: mex_x_order.index(x1_x2_map[m_x_order[i]])
            for i in range(len(m_x_order))
        }

        c1list = [
            'h1bal[1]', 'h1bal[2]', 'h1bal[3]', 'h1bal[4]', 'h1bal[5]',
            'h2bal[1]', 'h2bal[2]', 'h2bal[3]', 'h2bal[4]', 'h2bal[5]',
            'F12con[0]', 'F12con[1]', 'F12con[2]', 'F12con[3]', 'F12con[4]',
            'F12con[5]', 'Focon[0]', 'Focon[1]', 'Focon[2]', 'Focon[3]',
            'Focon[4]', 'Focon[5]', 'min_inflow[1]', 'min_inflow[2]',
            'min_inflow[3]', 'min_inflow[4]', 'min_inflow[5]',
            'max_outflow[0]', 'max_outflow[1]', 'max_outflow[2]',
            'max_outflow[3]', 'max_outflow[4]', 'max_outflow[5]', 'h10', 'h20'
        ]
        c2list = [
            'egb.h1bal_1', 'egb.h1bal_2', 'egb.h1bal_3', 'egb.h1bal_4',
            'egb.h1bal_5', 'egb.h2bal_1', 'egb.h2bal_2', 'egb.h2bal_3',
            'egb.h2bal_4', 'egb.h2bal_5', 'egb.output_constraints[F12_0]',
            'egb.output_constraints[F12_1]', 'egb.output_constraints[F12_2]',
            'egb.output_constraints[F12_3]', 'egb.output_constraints[F12_4]',
            'egb.output_constraints[F12_5]', 'egb.output_constraints[Fo_0]',
            'egb.output_constraints[Fo_1]', 'egb.output_constraints[Fo_2]',
            'egb.output_constraints[Fo_3]', 'egb.output_constraints[Fo_4]',
            'egb.output_constraints[Fo_5]', 'min_inflow[1]', 'min_inflow[2]',
            'min_inflow[3]', 'min_inflow[4]', 'min_inflow[5]',
            'max_outflow[0]', 'max_outflow[1]', 'max_outflow[2]',
            'max_outflow[3]', 'max_outflow[4]', 'max_outflow[5]', 'h10', 'h20'
        ]
        c1_c2_map = dict(zip(c1list, c2list))
        c1idx_c2idx_map = {
            i: mex_c_order.index(c1_c2_map[m_c_order[i]])
            for i in range(len(m_c_order))
        }

        # get the primals from m and put them in the correct order for mex
        m_x = m_nlp.get_primals()
        mex_x = np.zeros(len(m_x))
        for i in range(len(m_x)):
            mex_x[x1idx_x2idx_map[i]] = m_x[i]

        # get the duals from m and put them in the correct order for mex
        m_lam = m_nlp.get_duals()
        mex_lam = np.zeros(len(m_lam))
        for i in range(len(m_x)):
            mex_lam[c1idx_c2idx_map[i]] = m_lam[i]

        mex_nlp.set_primals(mex_x)
        mex_nlp.set_duals(mex_lam)

        m_obj = m_nlp.evaluate_objective()
        mex_obj = mex_nlp.evaluate_objective()
        self.assertAlmostEqual(m_obj, mex_obj, places=4)

        m_gobj = m_nlp.evaluate_grad_objective()
        mex_gobj = mex_nlp.evaluate_grad_objective()
        check_vectors_specific_order(self, m_gobj, m_x_order, mex_gobj,
                                     mex_x_order, x1_x2_map)

        m_c = m_nlp.evaluate_constraints()
        mex_c = mex_nlp.evaluate_constraints()
        check_vectors_specific_order(self, m_c, m_c_order, mex_c, mex_c_order,
                                     c1_c2_map)

        m_j = m_nlp.evaluate_jacobian()
        mex_j = mex_nlp.evaluate_jacobian().todense()
        check_sparse_matrix_specific_order(self, m_j, m_c_order, m_x_order,
                                           mex_j, mex_c_order, mex_x_order,
                                           c1_c2_map, x1_x2_map)

        m_h = m_nlp.evaluate_hessian_lag()
        mex_h = mex_nlp.evaluate_hessian_lag()
        check_sparse_matrix_specific_order(self, m_h, m_x_order, m_x_order,
                                           mex_h, mex_x_order, mex_x_order,
                                           x1_x2_map, x1_x2_map)

        mex_h = 0 * mex_h
        mex_nlp.evaluate_hessian_lag(out=mex_h)
        check_sparse_matrix_specific_order(self, m_h, m_x_order, m_x_order,
                                           mex_h, mex_x_order, mex_x_order,
                                           x1_x2_map, x1_x2_map)
Ejemplo n.º 4
0
def main():
    model = create_basic_model()
    solver = pyo.SolverFactory('ipopt')
    solver.solve(model, tee=True)

    # build nlp initialized at the solution
    nlp = PyomoNLP(model)

    # get initial point
    print(nlp.primals_names())
    x0 = nlp.get_primals()

    # vectors of lower and upper bounds
    xl = nlp.primals_lb()
    xu = nlp.primals_ub()

    # demonstrate use of compression from full set of bounds
    # to only finite bounds using masks
    xlb_mask = build_bounds_mask(xl)
    xub_mask = build_bounds_mask(xu)
    # get the compressed vector
    compressed_xl = full_to_compressed(xl, xlb_mask)
    compressed_xu = full_to_compressed(xu, xub_mask)
    # we can also build compression matrices
    Cx_xl = build_compression_matrix(xlb_mask)
    Cx_xu = build_compression_matrix(xub_mask)

    # lower and upper bounds residual
    res_xl = Cx_xl * x0 - compressed_xl
    res_xu = compressed_xu - Cx_xu * x0
    print("Residuals lower bounds x-xl:", res_xl)
    print("Residuals upper bounds xu-x:", res_xu)

    # set the value of the primals (we can skip the duals)
    # here we set them to the initial values, but we could
    # set them to anything
    nlp.set_primals(x0)

    # evaluate residual of equality constraints
    print(nlp.constraint_names())
    res_eq = nlp.evaluate_eq_constraints()
    print("Residuals of equality constraints:", res_eq)

    # evaluate residual of inequality constraints
    res_ineq = nlp.evaluate_ineq_constraints()

    # demonstrate the use of compression from full set of
    # lower and upper bounds on the inequality constraints
    # to only the finite values using masks
    ineqlb_mask = build_bounds_mask(nlp.ineq_lb())
    inequb_mask = build_bounds_mask(nlp.ineq_ub())
    # get the compressed vector
    compressed_ineq_lb = full_to_compressed(nlp.ineq_lb(), ineqlb_mask)
    compressed_ineq_ub = full_to_compressed(nlp.ineq_ub(), inequb_mask)
    # we can also build compression matrices
    Cineq_ineqlb = build_compression_matrix(ineqlb_mask)
    Cineq_inequb = build_compression_matrix(inequb_mask)

    # lower and upper inequalities residual
    res_ineq_lb = Cineq_ineqlb * res_ineq - compressed_ineq_lb
    res_ineq_ub = compressed_ineq_ub - Cineq_inequb * res_ineq
    print("Residuals of inequality constraints lower bounds:", res_ineq_lb)
    print("Residuals of inequality constraints upper bounds:", res_ineq_ub)

    feasible = False
    if np.all(res_xl >= 0) and np.all(res_xu >= 0) \
        and np.all(res_ineq_lb >= 0) and np.all(res_ineq_ub >= 0) and \
        np.allclose(res_eq, np.zeros(nlp.n_eq_constraints()), atol=1e-5):
        feasible = True

    print("Is x0 feasible:", feasible)

    return feasible