Ejemplo n.º 1
0
    def test_get_cntl(self):
        ma57 = MA57Interface()
        self.assertEqual(ma57.get_icntl(1), 6)
        self.assertEqual(ma57.get_icntl(7), 1)

        self.assertAlmostEqual(ma57.get_cntl(1),
                               1e-2)  # Numerical pivot threshold
        self.assertAlmostEqual(ma57.get_cntl(2), 1e-20)  # Null pivot threshold
Ejemplo n.º 2
0
    def test_set_icntl(self):
        ma57 = MA57Interface()
        ma57.set_icntl(5, 4)  # Set output printing to max verbosity
        ma57.set_icntl(8, 1)  # Keep factors when we run out of space
        # (so MA57ED can be used)
        icntl5 = ma57.get_icntl(5)
        icntl8 = ma57.get_icntl(8)
        self.assertEqual(icntl5, 4)
        self.assertEqual(icntl8, 1)

        with self.assertRaisesRegex(TypeError, 'must be an integer'):
            ma57.set_icntl(1.0, 0)
        with self.assertRaisesRegex(IndexError, 'is out of range'):
            ma57.set_icntl(100, 0)
        with self.assertRaises(ctypes.ArgumentError):
            ma57.set_icntl(1, 0.0)
Ejemplo n.º 3
0
    def test_do_numeric_factorization(self):
        ma57 = MA57Interface()

        n = 5
        ne = 7
        irn = np.array([1, 1, 2, 2, 3, 3, 5], dtype=np.intc)
        jcn = np.array([1, 2, 3, 5, 3, 4, 5], dtype=np.intc)
        irn = irn - 1
        jcn = jcn - 1
        ent = np.array([2., 3., 4., 6., 1., 5., 1.], dtype=np.double)
        ma57.do_symbolic_factorization(n, irn, jcn)
        ma57.fact_factor = 1.5
        ma57.ifact_factor = 1.5
        # ^ No way to check whether these are handled properly... Would have to
        # access the struct to get LFACT, LIFACT

        status = ma57.do_numeric_factorization(n, ent)
        self.assertEqual(status, 0)

        self.assertEqual(ma57.get_info(14), 12)  # 12 entries in factors
        self.assertEqual(ma57.get_info(24), 2)  # 2 negative eigenvalues
        self.assertEqual(ma57.get_info(22), 1)  # 1 2x2 pivot
        self.assertEqual(ma57.get_info(23), 0)  # 0 delayed pivots

        ent2 = np.array([1., 5., 1., 6., 4., 3., 2.], dtype=np.double)
        ma57.do_numeric_factorization(n, ent2)
        self.assertEqual(status, 0)

        bad_ent = np.array([2., 3., 4., 6., 1., 5.], dtype=np.double)
        with self.assertRaisesRegex(AssertionError, 'Wrong number of entries'):
            ma57.do_numeric_factorization(n, bad_ent)
        with self.assertRaisesRegex(AssertionError, 'Dimension mismatch'):
            ma57.do_numeric_factorization(n + 1, ent)

        n = 5
        ne = 8
        irn = np.array([1, 1, 2, 2, 3, 3, 5, 5], dtype=np.intc)
        jcn = np.array([1, 2, 3, 5, 3, 4, 5, 1], dtype=np.intc)
        irn = irn - 1
        jcn = jcn - 1
        ent = np.array([2., 3., 4., 6., 1., 5., 1., -1.3], dtype=np.double)
        status = ma57.do_symbolic_factorization(n, irn, jcn)
        self.assertEqual(status, 0)
        status = ma57.do_numeric_factorization(n, ent)
        self.assertEqual(status, 0)
        self.assertEqual(ma57.get_info(24), 2)
        self.assertEqual(ma57.get_info(23), 0)
Ejemplo n.º 4
0
    def test_do_backsolve(self):
        ma57 = MA57Interface()

        n = 5
        ne = 7
        irn = np.array([1, 1, 2, 2, 3, 3, 5], dtype=np.intc)
        jcn = np.array([1, 2, 3, 5, 3, 4, 5], dtype=np.intc)
        irn = irn - 1
        jcn = jcn - 1
        ent = np.array([2., 3., 4., 6., 1., 5., 1.], dtype=np.double)
        rhs = np.array([8., 45., 31., 15., 17.], dtype=np.double)
        status = ma57.do_symbolic_factorization(n, irn, jcn)
        status = ma57.do_numeric_factorization(n, ent)
        sol = ma57.do_backsolve(rhs)

        expected_sol = [1, 2, 3, 4, 5]
        old_rhs = np.array([8., 45., 31., 15., 17.])
        for i in range(n):
            self.assertAlmostEqual(sol[i], expected_sol[i])
            self.assertEqual(old_rhs[i], rhs[i])
Ejemplo n.º 5
0
    def test_do_symbolic_factorization(self):
        ma57 = MA57Interface()

        n = 5
        ne = 7
        irn = np.array([1, 1, 2, 2, 3, 3, 5], dtype=np.intc)
        jcn = np.array([1, 2, 3, 5, 3, 4, 5], dtype=np.intc)
        # Copied these Fortran-style indices from HSL docs.
        # Interface expects C-style indices, as is typical in Python.
        irn = irn - 1
        jcn = jcn - 1

        bad_jcn = np.array([1, 2, 3, 5, 3, 4], dtype=np.intc)

        ma57.do_symbolic_factorization(n, irn, jcn)

        self.assertEqual(ma57.get_info(1), 0)
        self.assertEqual(ma57.get_info(4), 0)
        self.assertEqual(ma57.get_info(9), 48)  # Min required length of FACT
        self.assertEqual(ma57.get_info(10), 53)  # Min required length of IFACT
        self.assertEqual(ma57.get_info(14), 0)  # Should not yet be set

        with self.assertRaisesRegex(AssertionError, 'Dimension mismatch'):
            ma57.do_symbolic_factorization(n, irn, bad_jcn)
Ejemplo n.º 6
0
class TestLinearSolvers(unittest.TestCase):
    def create_blocks(self, m: np.ndarray, x: np.ndarray):
        m = coo_matrix(m)
        r = m * x
        bm = BlockMatrix(2, 2)
        bm.set_block(0, 0, m.copy())
        bm.set_block(1, 1, m.copy())
        br = BlockVector(2)
        br.set_block(0, r.copy())
        br.set_block(1, r.copy())
        bx = BlockVector(2)
        bx.set_block(0, x.copy())
        bx.set_block(1, x.copy())
        return bm, bx, br

    def solve_helper(self, m: np.ndarray, x: np.ndarray, solver: LinearSolverInterface):
        bm, bx, br = self.create_blocks(m, x)
        bx2, res = solver.solve(bm, br)
        self.assertEqual(res.status, LinearSolverStatus.successful)
        err = np.max(np.abs(bx - bx2))
        self.assertAlmostEqual(err, 0)

    def symmetric_helper(self, solver: LinearSolverInterface):
        m = np.array([[1, 2], [2, -1]], dtype=np.double)
        x = np.array([4, 7], dtype=np.double)
        self.solve_helper(m, x, solver)

    def unsymmetric_helper(self, solver: LinearSolverInterface):
        m = np.array([[1, 2], [0, -1]], dtype=np.double)
        x = np.array([4, 7], dtype=np.double)
        self.solve_helper(m, x, solver)

    def singular_helper(self, solver: LinearSolverInterface):
        m = np.array([[1, 1], [1, 1]], dtype=np.double)
        x = np.array([4, 7], dtype=np.double)
        bm, bx, br = self.create_blocks(m, x)
        br.get_block(0)[1] += 1
        br.get_block(1)[1] += 1
        bx2, res = solver.solve(bm, br, raise_on_error=False)
        self.assertNotEqual(res.status, LinearSolverStatus.successful)

    @unittest.skipIf(not MA27Interface.available(), reason="MA27 not available")
    def test_ma27(self):
        solver = MA27()
        self.symmetric_helper(solver)
        self.singular_helper(solver)

    @unittest.skipIf(not MA57Interface.available(), reason="MA57 not available")
    def test_ma57(self):
        solver = MA57()
        self.symmetric_helper(solver)
        self.singular_helper(solver)

    def test_scipy_direct(self):
        solver = ScipyLU()
        self.symmetric_helper(solver)
        self.unsymmetric_helper(solver)
        self.singular_helper(solver)

    def test_scipy_iterative(self):
        solver = ScipyIterative(gmres)
        solver.options["atol"] = 1e-8
        self.symmetric_helper(solver)
        self.unsymmetric_helper(solver)
        self.singular_helper(solver)

    @unittest.skipIf(not mumps_available, reason="mumps not available")
    def test_mumps(self):
        solver = MumpsCentralizedAssembledLinearSolver(sym=2)
        self.symmetric_helper(solver)
        self.singular_helper(solver)
        solver = MumpsCentralizedAssembledLinearSolver(sym=0)
        self.unsymmetric_helper(solver)
Ejemplo n.º 7
0
 def test_set_cntl(self):
     ma57 = MA57Interface()
     ma57.set_cntl(1, 1e-8)
     ma57.set_cntl(2, 1e-12)
     self.assertAlmostEqual(ma57.get_cntl(1), 1e-8)
     self.assertAlmostEqual(ma57.get_cntl(2), 1e-12)
Ejemplo n.º 8
0
#  Copyright (c) 2008-2022
#  National Technology and Engineering Solutions of Sandia, LLC
#  Under the terms of Contract DE-NA0003525 with National Technology and
#  Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
#  rights in this software.
#  This software is distributed under the 3-clause BSD License.
#  ___________________________________________________________________________
import ctypes
import pyomo.common.unittest as unittest
from pyomo.contrib.pynumero.dependencies import numpy as np, numpy_available
if not numpy_available:
    raise unittest.SkipTest('pynumero MA27 tests require numpy')
from pyomo.contrib.pynumero.linalg.ma57 import MA57Interface


@unittest.skipIf(not MA57Interface.available(), reason='MA57 not available')
class TestMA57Interface(unittest.TestCase):
    def test_get_cntl(self):
        ma57 = MA57Interface()
        self.assertEqual(ma57.get_icntl(1), 6)
        self.assertEqual(ma57.get_icntl(7), 1)

        self.assertAlmostEqual(ma57.get_cntl(1),
                               1e-2)  # Numerical pivot threshold
        self.assertAlmostEqual(ma57.get_cntl(2), 1e-20)  # Null pivot threshold

    def test_set_icntl(self):
        ma57 = MA57Interface()
        ma57.set_icntl(5, 4)  # Set output printing to max verbosity
        ma57.set_icntl(8, 1)  # Keep factors when we run out of space
        # (so MA57ED can be used)