Ejemplo n.º 1
0
    def _print_model_LP(self,
                        model,
                        output_file,
                        solver_capability,
                        labeler,
                        output_fixed_variable_bounds=False,
                        file_determinism=1,
                        row_order=None,
                        column_order=None,
                        skip_trivial_constraints=False,
                        force_objective_constant=False,
                        include_all_variable_bounds=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        # populate the symbol map in a single pass.
        #objective_list, constraint_list, sosconstraint_list, variable_list \
        #    = self._populate_symbol_map(model,
        #                                symbol_map,
        #                                labeler,
        #                                variable_symbol_map,
        #                                file_determinism=file_determinism)
        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True, sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(Var,
                                                        active=True,
                                                        sort=sortOrder,
                                                        descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata, create_symbol_func(symbol_map, vardata,
                                                 labeler)))
        #
        # WEH - TODO:  See if this is faster
        #
        #all_blocks = list( model.block_data_objects(
        #        active=True, sort=sortOrder) )
        #variable_list = list( model.component_data_objects(
        #        Var, sort=sortOrder) )
        #variable_label_pairs = list(
        #    (vardata, create_symbol_func(symbol_map, vardata, labeler))
        #    for vardata in variable_list )

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # cache - these are called all the time.
        print_expr_canonical = self._print_expr_canonical

        # print the model name and the source, so we know roughly where
        # it came from.
        #
        # NOTE: this *must* use the "\* ... *\" comment format: the GLPK
        # LP parser does not correctly handle other formats (notably, "%").
        output_file.write("\\* Source Pyomo model name=%s *\\\n\n" %
                          (model.name, ))

        #
        # Objective
        #

        supports_quadratic_objective = solver_capability('quadratic_objective')

        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_repn = getattr(block, "_gen_obj_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block, '_repn'):
                block._repn = ComponentMap()
            block_repn = block._repn

            for objective_data in block.component_data_objects(
                    Objective, active=True, sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.name)
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal LP file\n"
                        "Objectives: %s" % (model.name, ' '.join(onames)))

                create_symbol_func(symbol_map, objective_data, labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if objective_data.is_minimizing():
                    output_file.write("min \n")
                else:
                    output_file.write("max \n")

                if gen_obj_repn:
                    repn = generate_standard_repn(objective_data.expr)
                    block_repn[objective_data] = repn
                else:
                    repn = block_repn[objective_data]

                degree = repn.polynomial_degree()

                if degree == 0:
                    logger.warning(
                        "Constant objective detected, replacing "
                        "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif degree == 2:
                    if not supports_quadratic_objective:
                        raise RuntimeError(
                            "Selected solver is unable to handle "
                            "objective functions with quadratic terms. "
                            "Objective at issue: %s." % objective_data.name)
                elif degree is None:
                    raise RuntimeError(
                        "Cannot write legal LP file.  Objective '%s' "
                        "has nonlinear terms that are not quadratic." %
                        objective_data.name)

                output_file.write(
                    object_symbol_dictionary[id(objective_data)] + ':\n')

                offset = print_expr_canonical(
                    repn,
                    output_file,
                    object_symbol_dictionary,
                    variable_symbol_dictionary,
                    True,
                    column_order,
                    force_objective_constant=force_objective_constant)

        if numObj == 0:
            raise ValueError("ERROR: No objectives defined for input model. "
                             "Cannot write legal LP file.")

        # Constraints
        #
        # If there are no non-trivial constraints, you'll end up with an empty
        # constraint block. CPLEX is OK with this, but GLPK isn't. And
        # eliminating the constraint block (i.e., the "s.t." line) causes GLPK
        # to whine elsewhere. Output a warning if the constraint block is empty,
        # so users can quickly determine the cause of the solve failure.

        output_file.write("\n")
        output_file.write("s.t.\n")
        output_file.write("\n")

        have_nontrivial = False

        supports_quadratic_constraint = solver_capability(
            'quadratic_constraint')

        def constraint_generator():
            for block in all_blocks:

                gen_con_repn = getattr(block, "_gen_con_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block, '_repn'):
                    block._repn = ComponentMap()
                block_repn = block._repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if (not constraint_data.has_lb()) and \
                       (not constraint_data.has_ub()):
                        assert not constraint_data.equality
                        continue  # non-binding, so skip

                    if constraint_data._linear_canonical_form:
                        repn = constraint_data.canonical_form()
                    elif gen_con_repn:
                        repn = generate_standard_repn(constraint_data.body)
                        block_repn[constraint_data] = repn
                    else:
                        repn = block_repn[constraint_data]

                    yield constraint_data, repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])

            def yield_all_constraints():
                for data, repn in sorted_constraint_list:
                    yield data, repn
        else:
            yield_all_constraints = constraint_generator

        # FIXME: This is a hack to get nested blocks working...
        eq_string_template = "= %" + self._precision_string + '\n'
        geq_string_template = ">= %" + self._precision_string + '\n\n'
        leq_string_template = "<= %" + self._precision_string + '\n\n'
        for constraint_data, repn in yield_all_constraints():
            have_nontrivial = True

            degree = repn.polynomial_degree()

            #
            # Write constraint
            #

            # There are conditions, e.g., when fixing variables, under which
            # a constraint block might be empty.  Ignore these, for both
            # practical reasons and the fact that the CPLEX LP format
            # requires a variable in the constraint body.  It is also
            # possible that the body of the constraint consists of only a
            # constant, in which case the "variable" of
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif degree == 2:
                if not supports_quadratic_constraint:
                    raise ValueError(
                        "Solver unable to handle quadratic expressions. Constraint"
                        " at issue: '%s'" % (constraint_data.name))
            elif degree is None:
                raise ValueError(
                    "Cannot write legal LP file.  Constraint '%s' has a body "
                    "with nonlinear terms." % (constraint_data.name))

            # Create symbol
            con_symbol = create_symbol_func(symbol_map, constraint_data,
                                            labeler)

            if constraint_data.equality:
                assert value(constraint_data.lower) == \
                    value(constraint_data.upper)
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(label + ':\n')
                offset = print_expr_canonical(repn, output_file,
                                              object_symbol_dictionary,
                                              variable_symbol_dictionary,
                                              False, column_order)
                bound = constraint_data.lower
                bound = _get_bound(bound) - offset
                output_file.write(eq_string_template %
                                  (_no_negative_zero(bound)))
                output_file.write("\n")
            else:
                if constraint_data.has_lb():
                    if constraint_data.has_ub():
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label + ':\n')
                    offset = print_expr_canonical(repn, output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False, column_order)
                    bound = constraint_data.lower
                    bound = _get_bound(bound) - offset
                    output_file.write(geq_string_template %
                                      (_no_negative_zero(bound)))
                else:
                    assert constraint_data.has_ub()

                if constraint_data.has_ub():
                    if constraint_data.has_lb():
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label + ':\n')
                    offset = print_expr_canonical(repn, output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False, column_order)
                    bound = constraint_data.upper
                    bound = _get_bound(bound) - offset
                    output_file.write(leq_string_template %
                                      (_no_negative_zero(bound)))
                else:
                    assert constraint_data.has_lb()

        if not have_nontrivial:
            logger.warning('Empty constraint block written in LP format '  \
                  '- solver may error')

        # the CPLEX LP format doesn't allow constants in the objective (or
        # constraint body), which is a bit silly.  To avoid painful
        # book-keeping, we introduce the following "variable", constrained
        # to the value 1.  This is used when quadratic terms are present.
        # worst-case, if not used, is that CPLEX easily pre-processes it out.
        prefix = ""
        output_file.write('%sc_e_ONE_VAR_CONSTANT: \n' % prefix)
        output_file.write('%sONE_VAR_CONSTANT = 1.0\n' % prefix)
        output_file.write("\n")

        # SOS constraints
        #
        # For now, we write out SOS1 and SOS2 constraints in the cplex format
        #
        # All Component objects are stored in model._component, which is a
        # dictionary of {class: {objName: object}}.
        #
        # Consider the variable X,
        #
        #   model.X = Var(...)
        #
        # We print X to CPLEX format as X(i,j,k,...) where i, j, k, ... are the
        # indices of X.
        #
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        writtenSOS = False
        for block in all_blocks:

            for soscondata in block.component_data_objects(SOSConstraint,
                                                           active=True,
                                                           sort=sortOrder,
                                                           descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" %
                        (level))
                if writtenSOS == False:
                    SOSlines.write("SOS\n")
                    writtenSOS = True
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self.printSOS(symbol_map, labeler, variable_symbol_map,
                              soscondata, SOSlines)

        #
        # Bounds
        #

        output_file.write("bounds\n")

        # Scan all variables even if we're only writing a subset of them.
        # required because we don't store maps by variable type currently.

        # FIXME: This is a hack to get nested blocks working...
        lb_string_template = "%" + self._precision_string + " <= "
        ub_string_template = " <= %" + self._precision_string + "\n"
        # Track the number of integer and binary variables, so you can
        # output their status later.
        integer_vars = []
        binary_vars = []
        for vardata in variable_list:

            # TODO: We could just loop over the set of items in
            #       self._referenced_variable_ids, except this is
            #       a dictionary that is hashed by id(vardata)
            #       which would make the bounds section
            #       nondeterministic (bad for unit testing)
            if (not include_all_variable_bounds) and \
               (id(vardata) not in self._referenced_variable_ids):
                continue

            if vardata.fixed:
                if not output_fixed_variable_bounds:
                    raise ValueError(
                        "Encountered a fixed variable (%s) inside an active "
                        "objective or constraint expression on model %s, which is "
                        "usually indicative of a preprocessing error. Use the "
                        "IO-option 'output_fixed_variable_bounds=True' to suppress "
                        "this error and fix the variable by overwriting its bounds "
                        "in the LP file." % (vardata.name, model.name))
                if vardata.value is None:
                    raise ValueError(
                        "Variable cannot be fixed to a value of None.")
                vardata_lb = value(vardata.value)
                vardata_ub = value(vardata.value)
            else:
                vardata_lb = _get_bound(vardata.lb)
                vardata_ub = _get_bound(vardata.ub)

            name_to_output = variable_symbol_dictionary[id(vardata)]

            # track the number of integer and binary variables, so we know whether
            # to output the general / binary sections below.
            if vardata.is_binary():
                binary_vars.append(name_to_output)
            elif vardata.is_integer():
                integer_vars.append(name_to_output)
            elif not vardata.is_continuous():
                raise TypeError(
                    "Invalid domain type for variable with name '%s'. "
                    "Variable is not continuous, integer, or binary." %
                    (vardata.name))

            # in the CPLEX LP file format, the default variable
            # bounds are 0 and +inf.  These bounds are in
            # conflict with Pyomo, which assumes -inf and +inf
            # (which we would argue is more rational).
            output_file.write("   ")
            if vardata.has_lb():
                output_file.write(lb_string_template %
                                  (_no_negative_zero(vardata_lb)))
            else:
                output_file.write(" -inf <= ")
            if name_to_output == "e":
                raise ValueError(
                    "Attempting to write variable with name 'e' in a CPLEX LP "
                    "formatted file will cause a parse failure due to confusion with "
                    "numeric values expressed in scientific notation")

            output_file.write(name_to_output)
            if vardata.has_ub():
                output_file.write(ub_string_template %
                                  (_no_negative_zero(vardata_ub)))
            else:
                output_file.write(" <= +inf\n")

        if len(integer_vars) > 0:

            output_file.write("general\n")
            for var_name in integer_vars:
                output_file.write('  %s\n' % var_name)

        if len(binary_vars) > 0:

            output_file.write("binary\n")
            for var_name in binary_vars:
                output_file.write('  %s\n' % var_name)

        # Write the SOS section
        output_file.write(SOSlines.getvalue())

        #
        # wrap-up
        #
        output_file.write("end\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
Ejemplo n.º 2
0
    def _print_model_MPS(self,
                         model,
                         output_file,
                         solver_capability,
                         labeler,
                         output_fixed_variable_bounds=False,
                         file_determinism=1,
                         row_order=None,
                         column_order=None,
                         skip_trivial_constraints=False,
                         force_objective_constant=False,
                         include_all_variable_bounds=False,
                         skip_objective_sense=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        extract_variable_coefficients = self._extract_variable_coefficients
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True,
                                              sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(
                    Var,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata,create_symbol_func(symbol_map,
                                                vardata,
                                                labeler)))

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # sort the variable ordering by the user
        # column_order ComponentMap
        if column_order is not None:
            variable_list.sort(key=lambda _x: column_order[_x])

        # prepare to hold the sparse columns
        variable_to_column = ComponentMap(
            (vardata, i) for i, vardata in enumerate(variable_list))
        # add one position for ONE_VAR_CONSTANT
        column_data = [[] for i in xrange(len(variable_list)+1)]
        quadobj_data = []
        quadmatrix_data = []
        # constraint rhs
        rhs_data = []

        # print the model name and the source, so we know
        # roughly where
        output_file.write("* Source:     Pyomo MPS Writer\n")
        output_file.write("* Format:     Free MPS\n")
        output_file.write("*\n")
        output_file.write("NAME %s\n" % (model.name,))

        #
        # ROWS section
        #

        objective_label = None
        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn
            for objective_data in block.component_data_objects(
                    Objective,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.cname())
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal MPS file\n"
                        "Objectives: %s" % (model.cname(True), ' '.join(onames)))

                objective_label = create_symbol_func(symbol_map,
                                                     objective_data,
                                                     labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if not skip_objective_sense:
                    output_file.write("OBJSENSE\n")
                    if objective_data.is_minimizing():
                        output_file.write(" MIN\n")
                    else:
                        output_file.write(" MAX\n")
                # This section is not recognized by the COIN-OR
                # MPS reader
                #output_file.write("OBJNAME\n")
                #output_file.write(" %s\n" % (objective_label))
                output_file.write("ROWS\n")
                output_file.write(" N  %s\n" % (objective_label))

                if gen_obj_canonical_repn:
                    canonical_repn = \
                        generate_canonical_repn(objective_data.expr)
                    block_canonical_repn[objective_data] = canonical_repn
                else:
                    canonical_repn = block_canonical_repn[objective_data]

                degree = canonical_degree(canonical_repn)
                if degree == 0:
                    print("Warning: Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif (degree != 1) and (degree != 2):
                    raise RuntimeError(
                        "Cannot write legal MPS file. Objective '%s' "
                        "has nonlinear terms that are not quadratic."
                        % objective_data.cname(True))

                constant = extract_variable_coefficients(
                    objective_label,
                    canonical_repn,
                    column_data,
                    quadobj_data,
                    variable_to_column)
                if force_objective_constant or (constant != 0.0):
                    # ONE_VAR_CONSTANT
                    column_data[-1].append((objective_label, constant))

        if numObj == 0:
            raise ValueError(
                "Cannot write legal MPS file: No objective defined "
                "for input model '%s'." % str(model))
        assert objective_label is not None

        # Constraints
        def constraint_generator():
            for block in all_blocks:

                gen_con_canonical_repn = \
                    getattr(block, "_gen_con_canonical_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block,'_canonical_repn'):
                    block._canonical_repn = ComponentMap()
                block_canonical_repn = block._canonical_repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if isinstance(constraint_data, LinearCanonicalRepn):
                        canonical_repn = constraint_data
                    else:
                        if gen_con_canonical_repn:
                            canonical_repn = generate_canonical_repn(
                                constraint_data.body)
                            block_canonical_repn[constraint_data] = canonical_repn
                        else:
                            canonical_repn = block_canonical_repn[constraint_data]

                    yield constraint_data, canonical_repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])
            def yield_all_constraints():
                for constraint_data, canonical_repn in sorted_constraint_list:
                    yield constraint_data, canonical_repn
        else:
            yield_all_constraints = constraint_generator

        for constraint_data, canonical_repn in yield_all_constraints():

            degree = canonical_degree(canonical_repn)

            # Write constraint
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif (degree != 1) and (degree != 2):
                raise RuntimeError(
                    "Cannot write legal MPS file. Constraint '%s' "
                    "has nonlinear terms that are not quadratic."
                    % constraint_data.cname(True))

            # Create symbol
            con_symbol = create_symbol_func(symbol_map,
                                            constraint_data,
                                            labeler)

            if constraint_data.equality:
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(" E  %s\n" % (label))
                offset = extract_variable_coefficients(
                    label,
                    canonical_repn,
                    column_data,
                    quadmatrix_data,
                    variable_to_column)
                bound = constraint_data.lower
                bound = self._get_bound(bound) - offset
                rhs_data.append((label, bound))
            else:
                if constraint_data.lower is not None:
                    if constraint_data.upper is not None:
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" G  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label,
                        canonical_repn,
                        column_data,
                        quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.lower
                    bound = self._get_bound(bound) - offset
                    rhs_data.append((label, bound))
                if constraint_data.upper is not None:
                    if constraint_data.lower is not None:
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" L  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label,
                        canonical_repn,
                        column_data,
                        quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.upper
                    bound = self._get_bound(bound) - offset
                    rhs_data.append((label, bound))

        if len(column_data[-1]) > 0:
            # ONE_VAR_CONSTANT = 1
            output_file.write(" E  c_e_ONE_VAR_CONSTANT\n")
            column_data[-1].append(("c_e_ONE_VAR_CONSTANT",1))
            rhs_data.append(("c_e_ONE_VAR_CONSTANT",1))

        #
        # COLUMNS section
        #
        column_template = "     %s %s %"+self._precision_string+"\n"
        output_file.write("COLUMNS\n")
        cnt = 0
        for vardata in variable_list:
            col_entries = column_data[variable_to_column[vardata]]
            cnt += 1
            if len(col_entries) > 0:
                var_label = variable_symbol_dictionary[id(vardata)]
                for i, (row_label, coef) in enumerate(col_entries):
                    output_file.write(column_template % (var_label,
                                                         row_label,
                                                         coef))
            elif include_all_variable_bounds:
                # the column is empty, so add a (0 * var)
                # term to the objective
                # * Note that some solvers (e.g., Gurobi)
                #   will accept an empty column as a line
                #   with just the column name. This doesn't
                #   seem to work for CPLEX 12.6, so I am
                #   doing it this way so that it will work for both
                var_label = variable_symbol_dictionary[id(vardata)]
                output_file.write(column_template % (var_label,
                                                     objective_label,
                                                     0))

        assert cnt == len(column_data)-1
        if len(column_data[-1]) > 0:
            col_entries = column_data[-1]
            var_label = "ONE_VAR_CONSTANT"
            for i, (row_label, coef) in enumerate(col_entries):
                output_file.write(column_template % (var_label,
                                                     row_label,
                                                     coef))

        #
        # RHS section
        #
        rhs_template = "     RHS %s %"+self._precision_string+"\n"
        output_file.write("RHS\n")
        for i, (row_label, rhs) in enumerate(rhs_data):
            output_file.write(rhs_template % (row_label, rhs))

        # SOS constraints
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        for block in all_blocks:

            for soscondata in block.component_data_objects(
                    SOSConstraint,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" % (level))
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self._printSOS(symbol_map,
                               labeler,
                               variable_symbol_map,
                               soscondata,
                               SOSlines)

        #
        # BOUNDS section
        #
        entry_template = "%s %"+self._precision_string+"\n"
        output_file.write("BOUNDS\n")
        for vardata in variable_list:
            if include_all_variable_bounds or \
               (id(vardata) in self._referenced_variable_ids):
                var_label = variable_symbol_dictionary[id(vardata)]
                if vardata.fixed:
                    if not output_fixed_variable_bounds:
                        raise ValueError(
                            "Encountered a fixed variable (%s) inside an active "
                            "objective or constraint expression on model %s, which is "
                            "usually indicative of a preprocessing error. Use the "
                            "IO-option 'output_fixed_variable_bounds=True' to suppress "
                            "this error and fix the variable by overwriting its bounds "
                            "in the MPS file." % (vardata.cname(True), model.cname(True)))
                    if vardata.value is None:
                        raise ValueError("Variable cannot be fixed to a value of None.")
                    output_file.write((" FX BOUND "+entry_template)
                                      % (var_label, value(vardata.value)))
                    continue

                vardata_lb = self._get_bound(vardata.lb)
                vardata_ub = self._get_bound(vardata.ub)
                # Make it harder for -0 to show up in
                # the output. This makes file diffing
                # for test baselines slightly less
                # annoying
                if vardata_lb == 0:
                    vardata_lb = 0
                if vardata_ub == 0:
                    vardata_ub = 0
                unbounded_lb = (vardata_lb is None) or (vardata_lb == -infinity)
                unbounded_ub = (vardata_ub is None) or (vardata_ub == infinity)
                treat_as_integer = False
                if vardata.is_binary():
                    if (vardata_lb == 0) and (vardata_ub == 1):
                        output_file.write(" BV BOUND %s\n" % (var_label))
                        continue
                    else:
                        # so we can add bounds
                        treat_as_integer = True
                if treat_as_integer or vardata.is_integer():
                    # Indicating unbounded integers is tricky because
                    # the only way to indicate a variable is integer
                    # is using the bounds section. Thus, we signify
                    # infinity with a large number (10E20)
                    # * Note: Gurobi allows values like inf and -inf
                    #         but CPLEX 12.6 does not, so I am just
                    #         using a large value
                    if not unbounded_lb:
                        output_file.write((" LI BOUND "+entry_template)
                                          % (var_label, vardata_lb))
                    else:
                        output_file.write(" LI BOUND %s -10E20\n" % (var_label))
                    if not unbounded_ub:
                        output_file.write((" UI BOUND "+entry_template)
                                          % (var_label, vardata_ub))
                    else:
                        output_file.write(" UI BOUND %s 10E20\n" % (var_label))
                else:
                    assert vardata.is_continuous()
                    if unbounded_lb and unbounded_ub:
                        output_file.write(" FR BOUND %s\n" % (var_label))
                    else:
                        if not unbounded_lb:
                            output_file.write((" LO BOUND "+entry_template)
                                              % (var_label, vardata_lb))
                        else:
                            output_file.write(" MI BOUND %s\n" % (var_label))

                        if not unbounded_ub:
                            output_file.write((" UP BOUND "+entry_template)
                                              % (var_label, vardata_ub))

        #
        # SOS section
        #
        output_file.write(SOSlines.getvalue())

        # Formatting of the next two sections comes from looking
        # at Gurobi and Cplex output

        #
        # QUADOBJ section
        #
        if len(quadobj_data) > 0:
            assert len(quadobj_data) == 1
            # it looks like the COIN-OR MPS Reader only
            # recognizes QUADOBJ (Gurobi and Cplex seem to
            # be okay with this)
            output_file.write("QUADOBJ\n")
            #output_file.write("QMATRIX\n")
            label, quad_terms = quadobj_data[0]
            assert label == objective_label
            for (var1, var2), coef in sorted(quad_terms,
                                             key=lambda _x: (variable_to_column[_x[0][0]],
                                                             variable_to_column[_x[0][1]])):
                var1_label = variable_symbol_dictionary[id(var1)]
                var2_label = variable_symbol_dictionary[id(var2)]
                # Don't forget that a quadratic objective is always
                # assumed to be divided by 2
                if var1_label == var2_label:
                    output_file.write(column_template % (var1_label,
                                                         var2_label,
                                                         coef * 2))
                else:
                    # the matrix needs to be symmetric so split
                    # the coefficient (but remember it is divided by 2)
                    output_file.write(column_template % (var1_label,
                                                         var2_label,
                                                         coef))
                    output_file.write(column_template % (var2_label,
                                                         var1_label,
                                                         coef))

        #
        # QCMATRIX section
        #
        if len(quadmatrix_data) > 0:
            for row_label, quad_terms in quadmatrix_data:
                output_file.write("QCMATRIX    %s\n" % (row_label))
                for (var1, var2), coef in sorted(quad_terms,
                                                 key=lambda _x: (variable_to_column[_x[0][0]],
                                                                 variable_to_column[_x[0][1]])):
                    var1_label = variable_symbol_dictionary[id(var1)]
                    var2_label = variable_symbol_dictionary[id(var2)]
                    if var1_label == var2_label:
                        output_file.write(column_template % (var1_label,
                                                             var2_label,
                                                             coef))
                    else:
                        # the matrix needs to be symmetric so split
                        # the coefficient
                        output_file.write(column_template % (var1_label,
                                                             var2_label,
                                                             coef * 0.5))
                        output_file.write(column_template % (var2_label,
                                                             var1_label,
                                                             coef * 0.5))

        output_file.write("ENDATA\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
Ejemplo n.º 3
0
Archivo: mps.py Proyecto: vova292/pyomo
    def _print_model_MPS(self,
                         model,
                         output_file,
                         solver_capability,
                         labeler,
                         output_fixed_variable_bounds=False,
                         file_determinism=1,
                         row_order=None,
                         column_order=None,
                         skip_trivial_constraints=False,
                         force_objective_constant=False,
                         include_all_variable_bounds=False,
                         skip_objective_sense=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        extract_variable_coefficients = self._extract_variable_coefficients
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True, sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(Var,
                                                        active=True,
                                                        sort=sortOrder,
                                                        descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata, create_symbol_func(symbol_map, vardata,
                                                 labeler)))

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # sort the variable ordering by the user
        # column_order ComponentMap
        if column_order is not None:
            variable_list.sort(key=lambda _x: column_order[_x])

        # prepare to hold the sparse columns
        variable_to_column = ComponentMap(
            (vardata, i) for i, vardata in enumerate(variable_list))
        # add one position for ONE_VAR_CONSTANT
        column_data = [[] for i in xrange(len(variable_list) + 1)]
        quadobj_data = []
        quadmatrix_data = []
        # constraint rhs
        rhs_data = []

        # print the model name and the source, so we know
        # roughly where
        output_file.write("* Source:     Pyomo MPS Writer\n")
        output_file.write("* Format:     Free MPS\n")
        output_file.write("*\n")
        output_file.write("NAME %s\n" % (model.name, ))

        #
        # ROWS section
        #

        objective_label = None
        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_repn = \
                getattr(block, "_gen_obj_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block, '_repn'):
                block._repn = ComponentMap()
            block_repn = block._repn
            for objective_data in block.component_data_objects(
                    Objective, active=True, sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.name)
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal MPS file\n"
                        "Objectives: %s" % (model.name, ' '.join(onames)))

                objective_label = create_symbol_func(symbol_map,
                                                     objective_data, labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if not skip_objective_sense:
                    output_file.write("OBJSENSE\n")
                    if objective_data.is_minimizing():
                        output_file.write(" MIN\n")
                    else:
                        output_file.write(" MAX\n")
                # This section is not recognized by the COIN-OR
                # MPS reader
                #output_file.write("OBJNAME\n")
                #output_file.write(" %s\n" % (objective_label))
                output_file.write("ROWS\n")
                output_file.write(" N  %s\n" % (objective_label))

                if gen_obj_repn:
                    repn = \
                        generate_standard_repn(objective_data.expr)
                    block_repn[objective_data] = repn
                else:
                    repn = block_repn[objective_data]

                degree = repn.polynomial_degree()
                if degree == 0:
                    logger.warning(
                        "Constant objective detected, replacing "
                        "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif degree is None:
                    raise RuntimeError(
                        "Cannot write legal MPS file. Objective '%s' "
                        "has nonlinear terms that are not quadratic." %
                        objective_data.name)

                constant = extract_variable_coefficients(
                    objective_label, repn, column_data, quadobj_data,
                    variable_to_column)
                if force_objective_constant or (constant != 0.0):
                    # ONE_VAR_CONSTANT
                    column_data[-1].append((objective_label, constant))

        if numObj == 0:
            raise ValueError(
                "Cannot write legal MPS file: No objective defined "
                "for input model '%s'." % str(model))
        assert objective_label is not None

        # Constraints
        def constraint_generator():
            for block in all_blocks:

                gen_con_repn = \
                    getattr(block, "_gen_con_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block, '_repn'):
                    block._repn = ComponentMap()
                block_repn = block._repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if (not constraint_data.has_lb()) and \
                       (not constraint_data.has_ub()):
                        assert not constraint_data.equality
                        continue  # non-binding, so skip

                    if constraint_data._linear_canonical_form:
                        repn = constraint_data.canonical_form()
                    elif gen_con_repn:
                        repn = generate_standard_repn(constraint_data.body)
                        block_repn[constraint_data] = repn
                    else:
                        repn = block_repn[constraint_data]

                    yield constraint_data, repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])

            def yield_all_constraints():
                for constraint_data, repn in sorted_constraint_list:
                    yield constraint_data, repn
        else:
            yield_all_constraints = constraint_generator

        for constraint_data, repn in yield_all_constraints():

            degree = repn.polynomial_degree()

            # Write constraint
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif degree is None:
                raise RuntimeError(
                    "Cannot write legal MPS file. Constraint '%s' "
                    "has nonlinear terms that are not quadratic." %
                    constraint_data.name)

            # Create symbol
            con_symbol = create_symbol_func(symbol_map, constraint_data,
                                            labeler)

            if constraint_data.equality:
                assert value(constraint_data.lower) == \
                    value(constraint_data.upper)
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(" E  %s\n" % (label))
                offset = extract_variable_coefficients(label, repn,
                                                       column_data,
                                                       quadmatrix_data,
                                                       variable_to_column)
                bound = constraint_data.lower
                bound = _get_bound(bound) - offset
                rhs_data.append((label, _no_negative_zero(bound)))
            else:
                if constraint_data.has_lb():
                    if constraint_data.has_ub():
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" G  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label, repn, column_data, quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.lower
                    bound = _get_bound(bound) - offset
                    rhs_data.append((label, _no_negative_zero(bound)))
                else:
                    assert constraint_data.has_ub()

                if constraint_data.has_ub():
                    if constraint_data.has_lb():
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" L  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label, repn, column_data, quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.upper
                    bound = _get_bound(bound) - offset
                    rhs_data.append((label, _no_negative_zero(bound)))
                else:
                    assert constraint_data.has_lb()

        if len(column_data[-1]) > 0:
            # ONE_VAR_CONSTANT = 1
            output_file.write(" E  c_e_ONE_VAR_CONSTANT\n")
            column_data[-1].append(("c_e_ONE_VAR_CONSTANT", 1))
            rhs_data.append(("c_e_ONE_VAR_CONSTANT", 1))

        #
        # COLUMNS section
        #
        column_template = "     %s %s %" + self._precision_string + "\n"
        output_file.write("COLUMNS\n")
        cnt = 0
        for vardata in variable_list:
            col_entries = column_data[variable_to_column[vardata]]
            cnt += 1
            if len(col_entries) > 0:
                var_label = variable_symbol_dictionary[id(vardata)]
                for i, (row_label, coef) in enumerate(col_entries):
                    output_file.write(
                        column_template %
                        (var_label, row_label, _no_negative_zero(coef)))
            elif include_all_variable_bounds:
                # the column is empty, so add a (0 * var)
                # term to the objective
                # * Note that some solvers (e.g., Gurobi)
                #   will accept an empty column as a line
                #   with just the column name. This doesn't
                #   seem to work for CPLEX 12.6, so I am
                #   doing it this way so that it will work for both
                var_label = variable_symbol_dictionary[id(vardata)]
                output_file.write(column_template %
                                  (var_label, objective_label, 0))

        assert cnt == len(column_data) - 1
        if len(column_data[-1]) > 0:
            col_entries = column_data[-1]
            var_label = "ONE_VAR_CONSTANT"
            for i, (row_label, coef) in enumerate(col_entries):
                output_file.write(
                    column_template %
                    (var_label, row_label, _no_negative_zero(coef)))

        #
        # RHS section
        #
        rhs_template = "     RHS %s %" + self._precision_string + "\n"
        output_file.write("RHS\n")
        for i, (row_label, rhs) in enumerate(rhs_data):
            # note: we have already converted any -0 to 0 by this point
            output_file.write(rhs_template % (row_label, rhs))

        # SOS constraints
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        for block in all_blocks:

            for soscondata in block.component_data_objects(SOSConstraint,
                                                           active=True,
                                                           sort=sortOrder,
                                                           descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" %
                        (level))
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self._printSOS(symbol_map, labeler, variable_symbol_map,
                               soscondata, SOSlines)

        #
        # BOUNDS section
        #
        entry_template = "%s %" + self._precision_string + "\n"
        output_file.write("BOUNDS\n")
        for vardata in variable_list:
            if include_all_variable_bounds or \
               (id(vardata) in self._referenced_variable_ids):
                var_label = variable_symbol_dictionary[id(vardata)]
                if vardata.fixed:
                    if not output_fixed_variable_bounds:
                        raise ValueError(
                            "Encountered a fixed variable (%s) inside an active "
                            "objective or constraint expression on model %s, which is "
                            "usually indicative of a preprocessing error. Use the "
                            "IO-option 'output_fixed_variable_bounds=True' to suppress "
                            "this error and fix the variable by overwriting its bounds "
                            "in the MPS file." % (vardata.name, model.name))
                    if vardata.value is None:
                        raise ValueError(
                            "Variable cannot be fixed to a value of None.")
                    output_file.write(
                        (" FX BOUND " + entry_template) %
                        (var_label, _no_negative_zero(value(vardata.value))))
                    continue

                # convert any -0 to 0 to make baseline diffing easier
                vardata_lb = _no_negative_zero(_get_bound(vardata.lb))
                vardata_ub = _no_negative_zero(_get_bound(vardata.ub))
                unbounded_lb = not vardata.has_lb()
                unbounded_ub = not vardata.has_ub()
                treat_as_integer = False
                if vardata.is_binary():
                    if (vardata_lb == 0) and (vardata_ub == 1):
                        output_file.write(" BV BOUND %s\n" % (var_label))
                        continue
                    else:
                        # so we can add bounds
                        treat_as_integer = True
                if treat_as_integer or vardata.is_integer():
                    # Indicating unbounded integers is tricky because
                    # the only way to indicate a variable is integer
                    # is using the bounds section. Thus, we signify
                    # infinity with a large number (10E20)
                    # * Note: Gurobi allows values like inf and -inf
                    #         but CPLEX 12.6 does not, so I am just
                    #         using a large value
                    if not unbounded_lb:
                        output_file.write((" LI BOUND " + entry_template) %
                                          (var_label, vardata_lb))
                    else:
                        output_file.write(" LI BOUND %s -10E20\n" %
                                          (var_label))
                    if not unbounded_ub:
                        output_file.write((" UI BOUND " + entry_template) %
                                          (var_label, vardata_ub))
                    else:
                        output_file.write(" UI BOUND %s 10E20\n" % (var_label))
                else:
                    assert vardata.is_continuous()
                    if unbounded_lb and unbounded_ub:
                        output_file.write(" FR BOUND %s\n" % (var_label))
                    else:
                        if not unbounded_lb:
                            output_file.write((" LO BOUND " + entry_template) %
                                              (var_label, vardata_lb))
                        else:
                            output_file.write(" MI BOUND %s\n" % (var_label))

                        if not unbounded_ub:
                            output_file.write((" UP BOUND " + entry_template) %
                                              (var_label, vardata_ub))

        #
        # SOS section
        #
        output_file.write(SOSlines.getvalue())

        # Formatting of the next two sections comes from looking
        # at Gurobi and Cplex output

        #
        # QUADOBJ section
        #
        if len(quadobj_data) > 0:
            assert len(quadobj_data) == 1
            # it looks like the COIN-OR MPS Reader only
            # recognizes QUADOBJ (Gurobi and Cplex seem to
            # be okay with this)
            output_file.write("QUADOBJ\n")
            #output_file.write("QMATRIX\n")
            label, quad_terms = quadobj_data[0]
            assert label == objective_label
            # sort by the sorted tuple of symbols (or column assignments)
            # for the variables appearing in the term
            quad_terms = sorted(quad_terms,
                                key=lambda _x: \
                                  sorted((variable_to_column[_x[0][0]],
                                          variable_to_column[_x[0][1]])))
            for term, coef in quad_terms:
                # sort the term for consistent output
                var1, var2 = sorted(term,
                                    key=lambda _x: variable_to_column[_x])
                var1_label = variable_symbol_dictionary[id(var1)]
                var2_label = variable_symbol_dictionary[id(var2)]
                # Don't forget that a quadratic objective is always
                # assumed to be divided by 2
                if var1_label == var2_label:
                    output_file.write(
                        column_template %
                        (var1_label, var2_label, _no_negative_zero(coef * 2)))
                else:
                    # the matrix needs to be symmetric so split
                    # the coefficient (but remember it is divided by 2)
                    output_file.write(
                        column_template %
                        (var1_label, var2_label, _no_negative_zero(coef)))
                    output_file.write(
                        column_template %
                        (var2_label, var1_label, _no_negative_zero(coef)))

        #
        # QCMATRIX section
        #
        if len(quadmatrix_data) > 0:
            for row_label, quad_terms in quadmatrix_data:
                output_file.write("QCMATRIX    %s\n" % (row_label))
                # sort by the sorted tuple of symbols (or
                # column assignments) for the variables
                # appearing in the term
                quad_terms = sorted(quad_terms,
                                    key=lambda _x: \
                                      sorted((variable_to_column[_x[0][0]],
                                              variable_to_column[_x[0][1]])))
                for term, coef in quad_terms:
                    # sort the term for consistent output
                    var1, var2 = sorted(term,
                                        key=lambda _x: variable_to_column[_x])
                    var1_label = variable_symbol_dictionary[id(var1)]
                    var2_label = variable_symbol_dictionary[id(var2)]
                    if var1_label == var2_label:
                        output_file.write(
                            column_template %
                            (var1_label, var2_label, _no_negative_zero(coef)))
                    else:
                        # the matrix needs to be symmetric so split
                        # the coefficient
                        output_file.write(column_template %
                                          (var1_label, var2_label,
                                           _no_negative_zero(coef * 0.5)))
                        output_file.write(column_template %
                                          (var2_label, var1_label, coef * 0.5))

        output_file.write("ENDATA\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
Ejemplo n.º 4
0
    def _print_model_LP(self,
                        model,
                        output_file,
                        solver_capability,
                        labeler,
                        output_fixed_variable_bounds=False,
                        file_determinism=1,
                        row_order=None,
                        column_order=None,
                        skip_trivial_constraints=False,
                        force_objective_constant=False,
                        include_all_variable_bounds=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        # populate the symbol map in a single pass.
        #objective_list, constraint_list, sosconstraint_list, variable_list \
        #    = self._populate_symbol_map(model,
        #                                symbol_map,
        #                                labeler,
        #                                variable_symbol_map,
        #                                file_determinism=file_determinism)
        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True,
                                              sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(
                    Var,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata,create_symbol_func(symbol_map,
                                                vardata,
                                                labeler)))

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # cache - these are called all the time.
        print_expr_canonical = self._print_expr_canonical

        # print the model name and the source, so we know roughly where
        # it came from.
        #
        # NOTE: this *must* use the "\* ... *\" comment format: the GLPK
        # LP parser does not correctly handle other formats (notably, "%").
        output_file.write(
            "\\* Source Pyomo model name=%s *\\\n\n" % (model.name,) )

        #
        # Objective
        #

        supports_quadratic_objective = \
            solver_capability('quadratic_objective')

        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for objective_data in block.component_data_objects(
                    Objective,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.name)
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal LP file\n"
                        "Objectives: %s" % (model.name, ' '.join(onames)))

                create_symbol_func(symbol_map,
                                   objective_data,
                                   labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if objective_data.is_minimizing():
                    output_file.write("min \n")
                else:
                    output_file.write("max \n")

                if gen_obj_canonical_repn:
                    canonical_repn = \
                        generate_canonical_repn(objective_data.expr)
                    block_canonical_repn[objective_data] = canonical_repn
                else:
                    canonical_repn = block_canonical_repn[objective_data]

                degree = canonical_degree(canonical_repn)

                if degree == 0:
                    logger.warning("Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif degree == 2:
                    if not supports_quadratic_objective:
                        raise RuntimeError(
                            "Selected solver is unable to handle "
                            "objective functions with quadratic terms. "
                            "Objective at issue: %s."
                            % objective_data.name)
                elif degree != 1:
                    raise RuntimeError(
                        "Cannot write legal LP file.  Objective '%s' "
                        "has nonlinear terms that are not quadratic."
                        % objective_data.name)

                output_file.write(
                    object_symbol_dictionary[id(objective_data)]+':\n')

                offset = print_expr_canonical(
                    canonical_repn,
                    output_file,
                    object_symbol_dictionary,
                    variable_symbol_dictionary,
                    True,
                    column_order,
                    force_objective_constant=force_objective_constant)

        if numObj == 0:
            raise ValueError(
                "ERROR: No objectives defined for input model '%s'; "
                " cannot write legal LP file" % str(model.name))

        # Constraints
        #
        # If there are no non-trivial constraints, you'll end up with an empty
        # constraint block. CPLEX is OK with this, but GLPK isn't. And
        # eliminating the constraint block (i.e., the "s.t." line) causes GLPK
        # to whine elsewhere. Output a warning if the constraint block is empty,
        # so users can quickly determine the cause of the solve failure.

        output_file.write("\n")
        output_file.write("s.t.\n")
        output_file.write("\n")

        have_nontrivial = False

        supports_quadratic_constraint = solver_capability('quadratic_constraint')

        def constraint_generator():
            for block in all_blocks:

                gen_con_canonical_repn = \
                    getattr(block, "_gen_con_canonical_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block,'_canonical_repn'):
                    block._canonical_repn = ComponentMap()
                block_canonical_repn = block._canonical_repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if isinstance(constraint_data, LinearCanonicalRepn):
                        canonical_repn = constraint_data
                    else:
                        if gen_con_canonical_repn:
                            canonical_repn = generate_canonical_repn(constraint_data.body)
                            block_canonical_repn[constraint_data] = canonical_repn
                        else:
                            canonical_repn = block_canonical_repn[constraint_data]

                    yield constraint_data, canonical_repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])
            def yield_all_constraints():
                for constraint_data, canonical_repn in sorted_constraint_list:
                    yield constraint_data, canonical_repn
        else:
            yield_all_constraints = constraint_generator

        # FIXME: This is a hack to get nested blocks working...
        eq_string_template = "= %"+self._precision_string+'\n'
        geq_string_template = ">= %"+self._precision_string+'\n\n'
        leq_string_template = "<= %"+self._precision_string+'\n\n'
        for constraint_data, canonical_repn in yield_all_constraints():
            have_nontrivial = True

            degree = canonical_degree(canonical_repn)

            #
            # Write constraint
            #

            # There are conditions, e.g., when fixing variables, under which
            # a constraint block might be empty.  Ignore these, for both
            # practical reasons and the fact that the CPLEX LP format
            # requires a variable in the constraint body.  It is also
            # possible that the body of the constraint consists of only a
            # constant, in which case the "variable" of
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif degree == 2:
                if not supports_quadratic_constraint:
                    raise ValueError(
                        "Solver unable to handle quadratic expressions. Constraint"
                        " at issue: '%s'" % (constraint_data.name))
            elif degree != 1:
                raise ValueError(
                    "Cannot write legal LP file.  Constraint '%s' has a body "
                    "with nonlinear terms." % (constraint_data.name))

            # Create symbol
            con_symbol = create_symbol_func(symbol_map, constraint_data, labeler)

            if constraint_data.equality:
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(label+':\n')
                offset = print_expr_canonical(canonical_repn,
                                              output_file,
                                              object_symbol_dictionary,
                                              variable_symbol_dictionary,
                                              False,
                                              column_order)
                bound = constraint_data.lower
                bound = self._get_bound(bound) - offset
                output_file.write(eq_string_template
                                  % (_no_negative_zero(bound)))
                output_file.write("\n")
            else:
                if constraint_data.lower is not None:
                    if constraint_data.upper is not None:
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label+':\n')
                    offset = print_expr_canonical(canonical_repn,
                                                  output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False,
                                                  column_order)
                    bound = constraint_data.lower
                    bound = self._get_bound(bound) - offset
                    output_file.write(geq_string_template
                                      % (_no_negative_zero(bound)))
                if constraint_data.upper is not None:
                    if constraint_data.lower is not None:
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label+':\n')
                    offset = print_expr_canonical(canonical_repn,
                                                  output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False,
                                                  column_order)
                    bound = constraint_data.upper
                    bound = self._get_bound(bound) - offset
                    output_file.write(leq_string_template
                                      % (_no_negative_zero(bound)))

        if not have_nontrivial:
            logger.warning('Empty constraint block written in LP format '  \
                  '- solver may error')

        # the CPLEX LP format doesn't allow constants in the objective (or
        # constraint body), which is a bit silly.  To avoid painful
        # book-keeping, we introduce the following "variable", constrained
        # to the value 1.  This is used when quadratic terms are present.
        # worst-case, if not used, is that CPLEX easily pre-processes it out.
        prefix = ""
        output_file.write('%sc_e_ONE_VAR_CONSTANT: \n' % prefix)
        output_file.write('%sONE_VAR_CONSTANT = 1.0\n' % prefix)
        output_file.write("\n")

        # SOS constraints
        #
        # For now, we write out SOS1 and SOS2 constraints in the cplex format
        #
        # All Component objects are stored in model._component, which is a
        # dictionary of {class: {objName: object}}.
        #
        # Consider the variable X,
        #
        #   model.X = Var(...)
        #
        # We print X to CPLEX format as X(i,j,k,...) where i, j, k, ... are the
        # indices of X.
        #
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        writtenSOS = False
        for block in all_blocks:

            for soscondata in block.component_data_objects(
                    SOSConstraint,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" % (level))
                if writtenSOS == False:
                    SOSlines.write("SOS\n")
                    writtenSOS = True
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self.printSOS(symbol_map,
                              labeler,
                              variable_symbol_map,
                              soscondata,
                              SOSlines)

        #
        # Bounds
        #

        output_file.write("bounds\n")

        # Scan all variables even if we're only writing a subset of them.
        # required because we don't store maps by variable type currently.

        # FIXME: This is a hack to get nested blocks working...
        lb_string_template = "%"+self._precision_string+" <= "
        ub_string_template = " <= %"+self._precision_string+"\n"
        # Track the number of integer and binary variables, so you can
        # output their status later.
        integer_vars = []
        binary_vars = []
        for vardata in variable_list:

            # TODO: We could just loop over the set of items in
            #       self._referenced_variable_ids, except this is
            #       a dictionary that is hashed by id(vardata)
            #       which would make the bounds section
            #       nondeterministic (bad for unit testing)
            if (not include_all_variable_bounds) and \
               (id(vardata) not in self._referenced_variable_ids):
                continue

            if vardata.fixed:
                if not output_fixed_variable_bounds:
                    raise ValueError(
                        "Encountered a fixed variable (%s) inside an active "
                        "objective or constraint expression on model %s, which is "
                        "usually indicative of a preprocessing error. Use the "
                        "IO-option 'output_fixed_variable_bounds=True' to suppress "
                        "this error and fix the variable by overwriting its bounds "
                        "in the LP file." % (vardata.name, model.name))
                if vardata.value is None:
                    raise ValueError("Variable cannot be fixed to a value of None.")
                vardata_lb = value(vardata.value)
                vardata_ub = value(vardata.value)
            else:
                vardata_lb = self._get_bound(vardata.lb)
                vardata_ub = self._get_bound(vardata.ub)

            name_to_output = variable_symbol_dictionary[id(vardata)]

            # track the number of integer and binary variables, so we know whether
            # to output the general / binary sections below.
            if vardata.is_integer():
                integer_vars.append(name_to_output)
            elif vardata.is_binary():
                binary_vars.append(name_to_output)
            elif not vardata.is_continuous():
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary."
                                % (vardata.name))

            # in the CPLEX LP file format, the default variable
            # bounds are 0 and +inf.  These bounds are in
            # conflict with Pyomo, which assumes -inf and +inf
            # (which we would argue is more rational).
            output_file.write("   ")
            if (vardata_lb is not None) and (vardata_lb != -infinity):
                output_file.write(lb_string_template
                                  % (_no_negative_zero(vardata_lb)))
            else:
                output_file.write(" -inf <= ")
            if name_to_output == "e":
                raise ValueError(
                    "Attempting to write variable with name 'e' in a CPLEX LP "
                    "formatted file will cause a parse failure due to confusion with "
                    "numeric values expressed in scientific notation")

            output_file.write(name_to_output)
            if (vardata_ub is not None) and (vardata_ub != infinity):
                output_file.write(ub_string_template
                                  % (_no_negative_zero(vardata_ub)))
            else:
                output_file.write(" <= +inf\n")

        if len(integer_vars) > 0:

            output_file.write("general\n")
            for var_name in integer_vars:
                output_file.write('  %s\n' % var_name)

        if len(binary_vars) > 0:

            output_file.write("binary\n")
            for var_name in binary_vars:
                output_file.write('  %s\n' % var_name)


        # Write the SOS section
        output_file.write(SOSlines.getvalue())

        #
        # wrap-up
        #
        output_file.write("end\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map