Ejemplo n.º 1
0
    def test_generate_delaunay(self):
        vlist = variable_list()
        vlist.append(variable(lb=0, ub=1))
        vlist.append(variable(lb=1, ub=2))
        vlist.append(variable(lb=2, ub=3))
        if not (util.numpy_available and util.scipy_available):
            with self.assertRaises(ImportError):
                util.generate_delaunay(vlist)
        else:
            tri = util.generate_delaunay(vlist, num=2)
            self.assertTrue(
                isinstance(tri, util.scipy.spatial.Delaunay))
            self.assertEqual(len(tri.simplices), 6)
            self.assertEqual(len(tri.points), 8)

            tri = util.generate_delaunay(vlist, num=3)
            self.assertTrue(
                isinstance(tri, util.scipy.spatial.Delaunay))
            self.assertEqual(len(tri.simplices), 62)
            self.assertEqual(len(tri.points), 27)

        #
        # Check cases where not all variables are bounded
        #
        vlist = variable_list()
        vlist.append(variable(lb=0))
        with self.assertRaises(ValueError):
            util.generate_delaunay(vlist)

        vlist = variable_list()
        vlist.append(variable(ub=0))
        with self.assertRaises(ValueError):
            util.generate_delaunay(vlist)
Ejemplo n.º 2
0
def setUpModule():
    global _test_v
    global _test_tri
    global _test_values
    if util.numpy_available and util.scipy_available:
        _test_v = variable_list(variable(lb=i, ub=i + 1) for i in range(3))
        _test_tri = util.generate_delaunay(_test_v, num=4)
        _test_values = []
        for _xi in _test_tri.points:
            _test_values.append(sum(_xi))
        _test_values = util.numpy.array(_test_values)
Ejemplo n.º 3
0
    def test_call(self):

        #
        # 2d points
        #
        vlist = variable_list([variable(lb=0, ub=1),
                               variable(lb=0, ub=1)])
        tri = util.generate_delaunay(vlist, num=3)
        x, y = tri.points.T
        values = x*y
        g = PiecewiseLinearFunctionND(tri, values)
        f = TransformedPiecewiseLinearFunctionND(g)
        self.assertTrue(f.parent is None)
        self.assertEqual(f.ctype, Block)
        self.assertTrue(util.numpy.isclose(f(tri.points), values).all())
        self.assertAlmostEqual(f([0,0]), 0.0)
        self.assertAlmostEqual(f(util.numpy.array([0,0])), 0.0)
        self.assertAlmostEqual(f([1,1]), 1.0)
        self.assertAlmostEqual(f(util.numpy.array([1,1])), 1.0)

        #
        # 3d points
        #
        vlist = variable_list([variable(lb=0, ub=1),
                               variable(lb=0, ub=1),
                               variable(lb=0, ub=1)])
        tri = util.generate_delaunay(vlist, num=10)
        x, y, z = tri.points.T
        values = x*y*z
        g = PiecewiseLinearFunctionND(tri, values)
        f = TransformedPiecewiseLinearFunctionND(g)
        self.assertTrue(f.parent is None)
        self.assertEqual(f.ctype, Block)
        self.assertTrue(util.numpy.isclose(f(tri.points), values).all())
        self.assertAlmostEqual(f([0,0,0]), 0.0)
        self.assertAlmostEqual(f(util.numpy.array([0,0,0])), 0.0)
        self.assertAlmostEqual(f([1,1,1]), 1.0)
        self.assertAlmostEqual(f(util.numpy.array([1,1,1])), 1.0)