Ejemplo n.º 1
0
 def test_trig(self):
     m = ConcreteModel()
     m.x = Var(bounds=(pi / 4, pi / 2), initialize=pi / 4)
     mc_expr = mc(tan(atan((m.x))))
     self.assertAlmostEqual(mc_expr.lower(), pi / 4)
     self.assertAlmostEqual(mc_expr.upper(), pi / 2)
     m.y = Var(bounds=(0, sin(pi / 4)), initialize=0)
     mc_expr = mc(asin((m.y)))
     self.assertEqual(mc_expr.lower(), 0)
     self.assertAlmostEqual(mc_expr.upper(), pi / 4)
     m.z = Var(bounds=(0, cos(pi / 4)), initialize=0)
     mc_expr = mc(acos((m.z)))
     self.assertAlmostEqual(mc_expr.lower(), pi / 4)
     self.assertAlmostEqual(mc_expr.upper(), pi / 2)
Ejemplo n.º 2
0
 def test_trig(self):
     m = ConcreteModel()
     m.x = Var(bounds=(pi / 4, pi / 2), initialize=pi / 4)
     mc_expr = mc(tan(atan((m.x))))
     self.assertAlmostEqual(mc_expr.lower(), pi / 4)
     self.assertAlmostEqual(mc_expr.upper(), pi / 2)
     m.y = Var(bounds=(0, sin(pi / 4)), initialize=0)
     mc_expr = mc(asin((m.y)))
     self.assertEqual(mc_expr.lower(), 0)
     self.assertAlmostEqual(mc_expr.upper(), pi / 4)
     m.z = Var(bounds=(0, cos(pi / 4)), initialize=0)
     mc_expr = mc(acos((m.z)))
     self.assertAlmostEqual(mc_expr.lower(), pi / 4)
     self.assertAlmostEqual(mc_expr.upper(), pi / 2)
Ejemplo n.º 3
0
        raise NondifferentiableError(
            "The sub-expression '%s' is not differentiable with respect to %s"
            % (x[0], x[1]))

    _operatorMap = {
        sympy.Add: _sum,
        sympy.Mul: _prod,
        sympy.Pow: lambda x, y: x**y,
        sympy.exp: lambda x: core.exp(x),
        sympy.log: lambda x: core.log(x),
        sympy.sin: lambda x: core.sin(x),
        sympy.asin: lambda x: core.asin(x),
        sympy.sinh: lambda x: core.sinh(x),
        sympy.asinh: lambda x: core.asinh(x),
        sympy.cos: lambda x: core.cos(x),
        sympy.acos: lambda x: core.acos(x),
        sympy.cosh: lambda x: core.cosh(x),
        sympy.acosh: lambda x: core.acosh(x),
        sympy.tan: lambda x: core.tan(x),
        sympy.atan: lambda x: core.atan(x),
        sympy.tanh: lambda x: core.tanh(x),
        sympy.atanh: lambda x: core.atanh(x),
        sympy.ceiling: lambda x: core.ceil(x),
        sympy.floor: lambda x: core.floor(x),
        sympy.Derivative: _nondifferentiable,
    }
except ImportError:  #pragma:nocover
    _sympy_available = False

# A "public" attribute indicating that differentiate() can be called
# ... this provides a bit of future-proofing for alternative approaches
Ejemplo n.º 4
0
    def _nondifferentiable(*x):
        raise NondifferentiableError(
            "The sub-expression '%s' is not differentiable with respect to %s"
            % (x[0],x[1]) )

    _operatorMap = {
        sympy.Add: _sum,
        sympy.Mul: _prod,
        sympy.Pow: lambda x,y: x**y,
        sympy.log: lambda x: core.log(x),
        sympy.sin: lambda x: core.sin(x),
        sympy.asin: lambda x: core.asin(x),
        sympy.sinh: lambda x: core.sinh(x),
        sympy.asinh: lambda x: core.asinh(x),
        sympy.cos: lambda x: core.cos(x),
        sympy.acos: lambda x: core.acos(x),
        sympy.cosh: lambda x: core.cosh(x),
        sympy.acosh: lambda x: core.acosh(x),
        sympy.tan: lambda x: core.tan(x),
        sympy.atan: lambda x: core.atan(x),
        sympy.tanh: lambda x: core.tanh(x),
        sympy.atanh: lambda x: core.atanh(x),
        sympy.ceiling: lambda x: core.ceil(x),
        sympy.floor: lambda x: core.floor(x),
        sympy.Derivative: _nondifferentiable,
    }
except ImportError: #pragma:nocover
    _sympy_available = False


class NondifferentiableError(ValueError):