Ejemplo n.º 1
0
 def test_LP_case(self):
     with SolverFactory('mindtpy') as opt:
         m_class = LP_unbounded()
         m_class._generate_model()
         model = m_class.model
         print('\n Solving LP case with extended cutting plane')
         opt.solve(model, strategy='ECP',
                   mip_solver=required_solvers[1],
                   nlp_solver=required_solvers[0],
                   )
Ejemplo n.º 2
0
 def test_LP_case(self):
     with SolverFactory('mindtpy') as opt:
         m_class = LP_unbounded()
         m_class._generate_model()
         model = m_class.model
         print('\n Solving LP case with Outer Approximation')
         opt.solve(model, strategy='OA',
                   mip_solver=required_solvers[1],
                   nlp_solver=required_solvers[0],
                   )
Ejemplo n.º 3
0
from pyomo.contrib.mindtpy.nlp_solve import handle_subproblem_other_termination, handle_feasibility_subproblem_tc, solve_subproblem, handle_nlp_subproblem_tc
from pyomo.core.base import TransformationFactory
from pyomo.opt import TerminationCondition as tc
from pyomo.contrib.gdpopt.util import create_utility_block, time_code, process_objective, setup_results_object
from pyomo.contrib.mindtpy.initialization import MindtPy_initialize_main, init_rNLP
from pyomo.contrib.mindtpy.feasibility_pump import generate_norm_constraint, handle_fp_main_tc
from pyomo.core import Block, ConstraintList
from pyomo.contrib.mindtpy.mip_solve import solve_main, handle_main_other_conditions
from pyomo.opt import SolutionStatus, SolverStatus
from pyomo.core import (Constraint, Objective, TransformationFactory, minimize,
                        Var, RangeSet, NonNegativeReals)
from pyomo.contrib.mindtpy.iterate import algorithm_should_terminate

nonconvex_model_list = [EightProcessFlowsheet(convex=False)]

LP_model = LP_unbounded()
LP_model._generate_model()

QCP_model = QCP_simple()
QCP_model._generate_model()
extreme_model_list = [LP_model.model, QCP_model.model]

required_solvers = ('ipopt', 'glpk')
# required_solvers = ('gams', 'gams')
if all(SolverFactory(s).available() for s in required_solvers):
    subsolvers_available = True
else:
    subsolvers_available = False


@unittest.skipIf(not subsolvers_available,