Ejemplo n.º 1
0
bebop = Bebop()

print("connecting")
success = bebop.connect(10)
print(success)

print("sleeping")
bebop.smart_sleep(5)

bebop.ask_for_state_update()

bebop.safe_takeoff(10)

# do it using move_relative()
# fly forward
bebop.move_relative(1, 0, 0, 0)

bebop.smart_sleep(2)

# fly right
bebop.move_relative(0, 1, 0, 0)

bebop.smart_sleep(2)

# fly backward
bebop.move_relative(-1, 0, 0, 0)

bebop.smart_sleep(2)

# fly left
bebop.move_relative(0, -1, 0, 0)
bebop = Bebop()
success = bebop.connect(2)
jumpSizes = float(
    input(
        "Select your Jump size:\n\n2m Jumps (Type 2)"
        "\n1m Jumps (Type 1)\n0.5m Jumps (Type 0.5)\n0.25m Jumps (Type 0.25)\n"
    ))
bebop.safe_takeoff(10)
totalJump = 2
numberOfJumps = int(totalJump / jumpSizes)
startingPosition = getRealLocation(bebop, False)
expectedLocation = startingPosition
try:
    for i in range(numberOfJumps):
        # fly left
        bebop.move_relative(0, -jumpSizes, 0, 0)
        #Orient the copter
        expectedLocation = numpy.add((-jumpSizes, 0), expectedLocation)
        orientCopter(expectedLocation, bebop)

    for i in range(numberOfJumps):
        #fly forward
        bebop.move_relative(jumpSizes, 0, 0, 0)
        #Orient the copter
        expectedLocation = numpy.add((0, jumpSizes), expectedLocation)
        orientCopter(expectedLocation, bebop)

    for i in range(numberOfJumps):
        # fly right
        bebop.move_relative(0, jumpSizes, 0, 0)
        #Orient the copter
Ejemplo n.º 3
0
print("PositionChanged_altitude: " +
      str(bebop.sensors.sensors_dict["PositionChanged_altitude"]))

print("HomeChanged_longitude: " +
      str(bebop.sensors.sensors_dict["HomeChanged_longitude"]))
print("HomeChanged_latitude: " +
      str(bebop.sensors.sensors_dict["HomeChanged_latitude"]))
print("HomeChanged_altitude: " +
      str(bebop.sensors.sensors_dict["HomeChanged_altitude"]))

#bebop.smart_sleep(5)

bebop.safe_takeoff(10)
bebop.smart_sleep(5)

bebop.move_relative(0, 0, -2, 0)  #move_relative(self, dx, dy, dz, dradians)
print("First Move Done")

bebop.smart_sleep(1)

print("flip left")
print("flying state is %s" % bebop.sensors.flying_state)
success = bebop.flip(direction="left")
print("mambo flip result %s" % success)
bebop.smart_sleep(2)

#bebop.move_relative(0, 0, 0, 6.28)
#print("Second Move Done")

#print("flip right")
#print("flying state is %s" % bebop.sensors.flying_state)
Ejemplo n.º 4
0
# make my mambo object
# remember to set True/False for the wifi depending on if you are using the wifi or the BLE to connect

if (success):
    # get the state information
    print("sleeping")
    bebop.smart_sleep(2)
    bebop.ask_for_state_update()
    bebop.smart_sleep(5)

    print("taking off!")
    bebop.safe_takeoff(5)
    bebop.fly_direct(roll=0, pitch=0, yaw=0, vertical_movement=50, duration=1)

    bebop.smart_sleep(3)

    bebop.move_relative(3, 0, 0, 6.3)

    #bebop.smart_sleep(3)
    #bebop.fly_direct(roll=0, pitch=0, yaw=0, vertical_movement=-50, duration=1)
    #bebop.smart_sleep(2)
    #bebop.flip(direction="front")

    #    bebop.fly_direct(roll=-25,pitch=0, yaw=-25,vertical_movement=10, duration=3)
    print("landing")
    bebop.safe_land(5)
    bebop.smart_sleep(5)

    print("disconnect")
    bebop.disconnect()
Ejemplo n.º 5
0
class PyParrot(gui.MyFrame1):
    def __init__(self, parent):
        gui.MyFrame1.__init__(self, parent)
        self.statusBar.SetStatusWidths([100, -1])
        self.statusBar.SetStatusText('Not Connected')
        self.lc_commands.InsertColumn(0, 'command', width=300)
        self.bebop = Bebop()

        # load saved commands from file
        self._loadJsonFile()
    
    def OnClose( self, event ):
        if wx.MessageBox("Commands are not yet saved. Do you want to save now?", "Save Changes", wx.ICON_QUESTION | wx.YES_NO) == wx.YES:
            # Retrive commands from lc_commands
            cmdList = []
            for i in range(self.lc_commands.GetItemCount()):
                cmdList.append(self.lc_commands.GetItemText(i))
            self._saveJsonFile(cmdList)

        self.OnDisconnect(None)
        event.Skip() # calls the parent close method

    def OnConnect( self, event ):
        isConnected = self.bebop.connect(10)
        statusText = 'Connected'
        if not isConnected:
            statusText = 'Not ' + statusText
        self.statusBar.SetStatusText(statusText)

    def OnDisconnect( self, event ):
        self.bebop.disconnect()
        self.statusBar.SetStatusText('Disconnected')
        self.statusBar.SetStatusText(f'Battery: {self.bebop.sensors.battery}%', 1)

    def OnTakeOff( self, event ):
        self.bebop.safe_takeoff(10)

        # By default, setting the status text only sets the first
        # one. So we must specify the second status text (index 1
        # , instead of index 0)
        self.statusBar.SetStatusText('Taking off', 1)

    def OnLand( self, event ):
        self.bebop.safe_land(10)
        self.statusBar.SetStatusText('Landing', 1)

    def OnAddTakeOff( self, event ):
        self._addCommand(f'{CmdType.TakeOff.value},10')

    def OnAddLand( self, event ):
        self._addCommand(f'{CmdType.Land.value},10')

    def OnAddRelative( self, event ):
        x = int(self.fld_x.GetValue())
        y = int(self.fld_y.GetValue())
        z = int(self.fld_z.GetValue())
        rads = int(self.fld_radians.GetValue())
        self._addCommand(f'{CmdType.Relative.value},{x},{y},{z},{rads}')

    def OnAddDirect( self, event ):
        roll = int(self.fld_roll.GetValue())
        pitch = int(self.fld_pitch.GetValue())
        yaw = int(self.fld_yaw.GetValue())
        vertical = int(self.fld_vertical.GetValue())
        duration = int(self.fld_duration.GetValue())
        self._addCommand(f'{CmdType.Direct.value},{roll},{pitch},{yaw},{vertical},{duration}')

    def OnAddSleep( self, event ):
        sleep = int(self.fld_sleep.GetValue())
        self._addCommand(f'{CmdType.Sleep.value},{sleep}')

    def OnAddFlip( self, event ):
        dir = str(self.fld_direction.GetValue())
        self._addCommand(f'{CmdType.Flip.value},{dir}')

    def OnAddFlyGrid(self, event):
        print("Make sure you take off first!")
        heightGain = int(self.fld_gridHeight.GetValue())
        lengthForward = int(self.fld_gridLength.GetValue())
        width = int(self.fld_gridWidth.GetValue())
        biLines = int(self.fld_gridLines.GetValue())
        widthSection = width/(biLines+1)

        # Rise
        self._addCommand(f'{CmdType.Relative.value},0,0,{heightGain},0')
        # Fly forward and turn right
        self._addCommand(f'{CmdType.Relative.value},{lengthForward},0,0,90')
        # Flip
        self._addCommand(f'{"flip"},{"up"}')
        # Fly right and turn right
        self._addCommand(f'{CmdType.Relative.value},{widthSection},0,0,90')
        # Flip
        self._addCommand(f'{"flip"},{"up"}')
        # Fly back and turn left
        self._addCommand(f'{CmdType.Relative.value},{lengthForward},0,0,-90')
        # Flip
        self._addCommand(f'{"flip"},{"up"}')
        while (biLines >= 2):
            biLines -= 2
            # Fly right and turn left
            self._addCommand(f'{CmdType.Relative.value},{widthSection},0,0,-90')
            # Flip
            self._addCommand(f'{"flip"},{"up"}')
            # Fly forward and turn right
            self._addCommand(f'{CmdType.Relative.value},{lengthForward},0,0,90')
            # Flip
            self._addCommand(f'{"flip"},{"up"}')
            # Fly right and turn right
            self._addCommand(f'{CmdType.Relative.value},{widthSection},0,0,90')
            # Flip
            self._addCommand(f'{"flip"},{"up"}')
            # Fly back and turn left
            self._addCommand(f'{CmdType.Relative.value},{lengthForward},0,0,-90')
            # Flip
            self._addCommand(f'{"flip"},{"up"}')
        if (biLines == 1):
            biLines -= 1
            # Fly right and turn left
            self._addCommand(f'{CmdType.Relative.value},{widthSection},0,0,-90')
            # Flip
            self._addCommand(f'{"flip"},{"up"}')
            # Fly forward
            self._addCommand(f'{CmdType.Relative.value},{lengthForward},0,0,0')
            # Flip
            self._addCommand(f'{"flip"},{"up"}')
            # Fly back left to home
            self._addCommand(f'{CmdType.Relative.value},{-lengthForward},{-width},0,0')
            # Flip
            self._addCommand(f'{"flip"},{"up"}')
            # Descend
            self._addCommand(f'{CmdType.Relative.value},0,0,{-heightGain},0')
        else:
            # Fly left and turn left
            self._addCommand(f'{CmdType.Relative.value},{-width},0,0,-90')
            # Flip
            self._addCommand(f'{"flip"},{"up"}')
            # Descend
            self._addCommand(f'{CmdType.Relative.value},0,0,{-heightGain},0')
        print("Make sure you land!")

    def OnRemove( self, event ):
        self.lc_commands.DeleteItem(self.lc_commands.GetFocusedItem())

    def OnUp( self, event ):
        """Swap the selected item with the one above it"""
        index = self.lc_commands.GetFocusedItem()
        if index >= 1:
            selItemStr = self.lc_commands.GetItemText(index)
            aboveItemStr = self.lc_commands.GetItemText(index-1)
            self.lc_commands.SetItemText(index, aboveItemStr)
            self.lc_commands.SetItemText(index-1, selItemStr)
            self.lc_commands.Focus(index-1)

    def OnDown( self, event ):
        """Swap the selected item with the one below it"""
        index = self.lc_commands.GetFocusedItem()
        if index < self.lc_commands.GetItemCount() - 1:
            selItemStr = self.lc_commands.GetItemText(index)
            belowItemStr = self.lc_commands.GetItemText(index+1)
            self.lc_commands.SetItemText(index, belowItemStr)
            self.lc_commands.SetItemText(index+1, selItemStr)
            self.lc_commands.Focus(index+1)

    def OnClear( self, event ):
        self.lc_commands.DeleteAllItems()

    def OnRunFromSelection( self, event ):
        index = self.lc_commands.GetFocusedItem()
        while index > 0:
            self.lc_commands.DeleteItem(index - 1)
            index = self.lc_commands.GetFocusedItem()
            
        self.OnRunCommands(event)

    def OnRunCommands( self, event ):
        """Go through each item in lc_commands and convert the string to 
        a list. Then use the first item in the list to determine the 
        command type, and the rest of the items are the params"""

        # Retrive commands from lc_commands
        cmdList = []
        for i in range(self.lc_commands.GetItemCount()):
            cmdList.append(self.lc_commands.GetItemText(i))

        self._saveJsonFile(cmdList)
        
        # Abort running attempt if not connected
        if not self.bebop.drone_connection.is_connected:
            print("No Connection. Aborting process.")
            return

        # === Run Commands ===
        for i in range(self.lc_commands.GetItemCount()):
            args = self.lc_commands.GetItemText(i).split(',')
            self.statusBar.SetStatusText(f'Executing command: {args}', 1)
            try:
                if (args[0] == CmdType.Sleep.value):
                    self.bebop.smart_sleep(int(args[1]))

                elif args[0] == CmdType.TakeOff.value:
                    self.bebop.safe_takeoff(int(args[1]))

                elif args[0] == CmdType.Land.value:
                    self.bebop.safe_land(int(args[1]))

                elif args[0] == CmdType.Direct.value:
                    self.bebop.fly_direct(int(args[1]), int(args[2]), int(args[3]), int(args[4]), int(args[5]))

                elif args[0] == CmdType.Relative.value:
                    self.bebop.move_relative(int(args[1]), int(args[2]), int(args[3]), math.radians(int(args[4])))

                elif args[0] == CmdType.Flip.value:
                    self.bebop.flip(str(args[1]))
            except Exception as e:
                print("Error occurred: ")
                print(e)
                continue
            
    
    def _loadJsonFile(self):
        # Open up JSON file with last run commands
        filePath = os.getcwd() + os.sep + "cmd_data.json"
        if os.path.isfile(filePath):
            f = open(filePath,"r")
            s = f.read()
            commands = json.loads(s)
            # Input commands into GUI interface
            for c in commands:
                self._addCommand(c)

    def _saveJsonFile(self, cmdList):
        # Place all commands into JSON file and write them to the disk
        jsonStr = json.dumps(cmdList)
        filePath = os.getcwd() + os.sep + "cmd_data.json"
        with open(filePath,"w") as f:
            f.write(jsonStr)

    def _addCommand(self, cmd: str):
        self.lc_commands.InsertItem(self.lc_commands.GetItemCount(), cmd)
        self.statusBar.SetStatusText(f'Added command: {cmd}', 1)
Ejemplo n.º 6
0
        try:

            exit = input("\n\n\n\tExit the program and land the copter (y/n)?")
            if exit in yesStrings:
                break

            x = float(
                input("\n\n\n\tPlease input your desired coordinates:\n\tX: "))
            y = float(input("\n\tY: "))
            z = float(input("\n\tZ: "))
            rotation = float(input("\n\tCopter Rotation (Radians): "))
            delta = numpy.subtract((x, y, z, rotation), previousPosition)
            previousPosition = (x, y, z, rotation)

            print(delta)
            bebop.move_relative(0, 0, -delta[2], 0)
            bebop.move_relative(0, delta[0], 0, 0)
            bebop.move_relative(delta[1], 0, 0, 0)
            bebop.move_relative(0, 0, 0, delta[3])

        except:

            bebop.emergency_land()
            bebop.disconnect()
            print("\tError found. Closing application")
            import sys
            sys.exit(0)

    bebop.safe_land(10)
    bebop.disconnect()
Ejemplo n.º 7
0
class drone:
    def __init__(self, home):
        self.rango_largo = properties.RANGO_LARGO
        self.rango_ancho = properties.RANGO_ANCHO
        self.mapa_largo = properties.MAPA_LARGO / self.rango_largo
        self.mapa_ancho = properties.MAPA_ANCHO / self.rango_ancho
        self.ip = None
        self.port = None
        self.search_map = [[0 for j in range(int(self.mapa_largo))]for i in range(int(self.mapa_ancho))]
        self.current_position = home
        self.current_rotation = math.pi / 2
        self.mutex_search_map = threading.Lock()
        self.poi_position = None
        self.home = home
        self.bebop = Bebop()
        self.init_time = None
        self.obstaculos = properties.OBSTACLES
        self.max_altitude = properties.MAX_ALTITUDE
        self.pathToFollow = None
        self.destinationZone = None
        self.countIter = 0
        self.logMapTimestamp = None
        self.logMap = None

    def initialize(self, ip, port):
        self.initSearchMapWithObstacles()
        init_time = time.time()
        self.init_time = init_time
        if properties.ALGORITHM == SH_ORIGINAL:
            self.search_map[self.home[0]][self.home[1]] = 1
        elif properties.ALGORITHM == SH_TIMESTAMP or ALGORITHM == SH_NO_GREEDY_TIMESTAMP or ALGORITHM == RANDOM:
            self.search_map = [[init_time for j in range(int(self.mapa_largo))]for i in range(int(self.mapa_ancho))]
        # elif properties.ALGORITHM == RANDOM:
        #     self.search_map[self.home[0]][self.home[1]] = 1
        self.ip = ip
        self.port = port
        # success = self.bebop.connect(10)
        # print(success)
        self.bebop.set_max_altitude(self.max_altitude)
        self.bebop.ask_for_state_update()
        if properties.STREAMING_MODE_ON:
            self.initializeStreaming()
        self.logMap = [[0 for j in range(int(self.mapa_largo))]for i in range(int(self.mapa_ancho))]
        self.logMapTimestamp = [[init_time for j in range(int(self.mapa_largo))]for i in range(int(self.mapa_ancho))]

    def initSearchMapWithObstacles(self):
        for obstacle in self.obstaculos:
            self.search_map[obstacle[0]][obstacle[1]] = -1

    def take_off(self):
        self.bebop.safe_takeoff(10)

    def land(self):
        self.bebop.safe_land(10)

    def move(self, new_position):
        verticalMove = self.getDronVerticalAlignment()
        if properties.ROTATE:
            rotation_diff = utils.angleDifference(self.current_position, new_position, self.current_rotation)
            distance_diff = utils.cartesianDistance(self.current_position, new_position)
            self.bebop.move_relative(0, 0, 0, rotation_diff)
            time.sleep(2)
            self.bebop.move_relative(distance_diff, 0, verticalMove, 0)
            self.current_rotation -= rotation_diff
            time.sleep(2)
        else:
            dx, dy = new_position[0] - self.current_position[0], new_position[1] - self.current_position[1]
            real_dx, real_dy = dx * self.rango_ancho, dy * self.rango_largo
            self.bebop.move_relative(real_dx, real_dy, verticalMove, 0)
        time.sleep(2)
        self.current_position = new_position
        self.mutex_search_map.acquire()
        utils.printMatrix(self.search_map)
        self.mutex_search_map.release()

    def setPoiPosition(self, poiPosition):
        self.poi_position = poiPosition

    def explore(self, forcePosition):
        if properties.ALGORITHM == SH_ORIGINAL:
            return self.explore_sh_original(forcePosition)
        elif properties.ALGORITHM == SH_TIMESTAMP:
            return self.explore_sh_timestamp(forcePosition)
        elif properties.ALGORITHM == RANDOM:
            return self.explore_random(forcePosition)
        elif properties.ALGORITHM == SH_NO_GREEDY or properties.ALGORITHM == SH_NO_GREEDY_TIMESTAMP:
            return self.explore_sh_no_greedy2(forcePosition)

    def explore_sh_original(self, forcePosition):
        firstTime = True
        x = self.current_position[0]
        y = self.current_position[1]
        best_values = []
        for y2 in range(-1, 2):
            for x2 in range(-1, 2):
                x3 = x + x2
                y3 = y + y2
                if self.validatePosition(x3, y3, forcePosition):
                    if firstTime:
                        self.mutex_search_map.acquire()
                        val = self.search_map[x3][y3]
                        self.mutex_search_map.release()
                        firstTime = False
                    # print("x3: " + str(x3) + " y3: " + str(y3) + " self.mapa_ancho: " + str(self.mapa_ancho) + " self.mapa_largo: " + str(self.mapa_largo))
                    self.mutex_search_map.acquire()
                    if (self.search_map[x3][y3] == val):
                        best_values.append((x3, y3))
                        val = self.search_map[x3][y3]
                    elif self.search_map[x3][y3] < val:
                        best_values = [(x3, y3)]
                        val = self.search_map[x3][y3]
                    self.mutex_search_map.release()
        selected = self.selectBestValue(best_values)
        return selected

    def explore_sh_timestamp(self, forcePosition):
        firstTime = True
        x = self.current_position[0]
        y = self.current_position[1]
        best_values = []
        for y2 in range(-1, 2):
            for x2 in range(-1, 2):
                x3 = x + x2
                y3 = y + y2
                if self.validatePosition(x3, y3, forcePosition):
                    if firstTime:
                        self.mutex_search_map.acquire()
                        val = self.search_map[x3][y3]
                        self.mutex_search_map.release()
                        firstTime = False
                    self.mutex_search_map.acquire()
                    if (self.search_map[x3][y3] == val):
                        best_values.append((x3, y3))
                        val = self.search_map[x3][y3]
                    elif self.search_map[x3][y3] < val:
                        best_values = [(x3, y3)]
                        val = self.search_map[x3][y3]
                    self.mutex_search_map.release()
        selected = self.selectBestValue(best_values)
        return selected

    def explore_random(self, forcePosition):
        x = self.current_position[0]
        y = self.current_position[1]
        best_values = []
        for y2 in range(-1, 2):
            for x2 in range(-1, 2):
                x3 = x + x2
                y3 = y + y2
                if self.validatePosition(x3, y3, forcePosition):
                    best_values.append((x3, y3))
        selected = self.selectBestValue(best_values)
        return selected

# primer intento de algoritmo no greedy, si se lo trabaja un poco puede funcionar
    def explore_sh_no_greedy(self, forcePosition):
        firstTime = True
        x = self.current_position[0]
        y = self.current_position[1]
        best_values = []
        for y2 in range(-1, 2):
            for x2 in range(-1, 2):
                x3 = x + x2
                y3 = y + y2
                if self.validatePosition(x3, y3, forcePosition):
                    if firstTime:
                        self.mutex_search_map.acquire()
                        val = self.search_map[x3][y3]
                        self.mutex_search_map.release()
                        firstTime = False
                    self.mutex_search_map.acquire()
                    currentRegion = self.getCurrentRegion()
                    bestRegion = self.selectUnexploredRegion()
                    if self.isClosestToBestRegion(currentRegion, bestRegion, x2, y2):
                        if (self.search_map[x3][y3] == val):
                            best_values.append((x3, y3))
                            val = self.search_map[x3][y3]
                        elif self.search_map[x3][y3] < val:
                            best_values = [(x3, y3)]
                            val = self.search_map[x3][y3]
                    self.mutex_search_map.release()
        selected = self.selectBestValue(best_values)
        return selected

    def explore_sh_no_greedy2(self, forcePosition):
        if self.pathToFollow is not None and len(self.pathToFollow) > 0:
            return self.getNewPositionFromPath()
        else:
            newZone = self.isChangeZone()
            if newZone is not None:
                self.destinationZone = newZone
                self.getZonePath(newZone)
                # self.selectNewZone(newZone)
                return self.getNewPositionFromPath()
            else:
                if ALGORITHM == SH_NO_GREEDY:
                    return self.explore_sh_original(forcePosition)
                else:
                    return self.explore_sh_timestamp(forcePosition)

    def explore_sh_no_greedy_timestamp(self, forcePosition):
        if self.pathToFollow is not None and len(self.pathToFollow) > 0:
            return self.getNewPositionFromPath()
        else:
            newZone = self.isChangeZone()
            if newZone is not None:
                self.destinationZone = newZone
                self.getZonePath(newZone)
                # self.selectNewZone(newZone)
                return self.getNewPositionFromPath()
            else:
                return self.explore_sh_timestamp(forcePosition)

    def getNewPositionFromPath(self):
        new_position = self.pathToFollow[0]
        del self.pathToFollow[0]
        if self.getPositionZone(new_position) == self.destinationZone and self.isUnexploredPosition(new_position):
            self.pathToFollow = None
            self.destinationZone = None
        return new_position

    def isUnexploredPosition(self, new_position):
        if ALGORITHM == SH_NO_GREEDY_TIMESTAMP or ALGORITHM == SH_TIMESTAMP:
            timeBetweenLastVisit = time.time() - self.search_map[new_position[0]][new_position[1]]
            firstTime = self.search_map[new_position[0]][new_position[1]] == self.init_time
            return timeBetweenLastVisit > TIME_COVERAGE_REFRESH or firstTime
        else:
            return self.search_map[new_position[0]][new_position[1]] == self.countIter

    def isChangeZone(self):
        currentZone = self.getCurrentRegion()
        zonesCoverage = self.getZonesCoverage()
        currentZoneCoverage = zonesCoverage[currentZone - 1]
        minZoneCoverage = min(zonesCoverage)
        if minZoneCoverage >= MIN_ACCEPTABLE_COVERAGE:
            self.countIter += 1
            # self.updateCoverageCondition()
            zonesCoverage = self.getZonesCoverage()
            currentZoneCoverage = zonesCoverage[currentZone - 1]
            minZoneCoverage = min(zonesCoverage)
        if currentZoneCoverage >= MIN_ACCEPTABLE_COVERAGE or currentZoneCoverage - minZoneCoverage > COVERAGE_THRESHOLD:
            newZone = self.selectUnexploredRegion()
            return newZone
        return None

    def updateCoverageCondition(self):
        if self.init_time is not None:
            self.init_time = time.time()
        else:
            self.countIter += 1

    def getZonePath(self, newZone):
        zonePosition = self.selectPositionInZone(newZone)
        pathfinder = Pathfinder(self.current_position, zonePosition)
        pathToFollow = pathfinder.findPath()
        self.pathToFollow = pathfinder.parsePathToCoordinates(pathToFollow)

    def selectPositionInZone(self, zone):
        if zone == 1:
            position = (0, 0)
        elif zone == 2:
            position = (0, int(self.mapa_largo - 1))
        elif zone == 3:
            position = (int(self.mapa_ancho - 1), 0)
        else:
            position = (int(self.mapa_ancho - 1), int(self.mapa_largo - 1))
        # if zone == 1 or zone == 2:
        #     while position[0] < self.mapa_ancho and self.search_map[position[0], position[1]] == -1:
        #         position = (position[0] + 1, 0)
        # elif zone == 3 or zone == 4:
        #     while position[0] < self.mapa_largo and self.search_map[position[0], position[1]] == -1:
        #         position = (0, position[1] + 1)
        # asumo que encuentro posicion valida
        return position

    def selectNewZone(self, currentZone):
        newZone = random.randint(0, 3)
        while newZone == currentZone:
            newZone = random.randint(0, 3)
        return newZone

    def isClosestToBestRegion(currentRegion, bestRegion, x, y):
        if currentRegion == bestRegion:
            return True
        bestCoordinates = getBestCoordinates(currentRegion, bestRegion)
        if x in bestCoordinates[0] and y in bestCoordinates[1]:
            return True
        return False

    def getBestCoordinates(currentRegion, bestRegion):
        if currentRegion == 1:
            if bestRegion == 2:
                return [(-1, 1), (0, 1), (1, 1)]
            elif bestRegion == 3:
                return [(1, -1), (1, 0), (1, 1)]
            else:
                return [(0, 1), (1, 1), (1, 0)]
        elif currentRegion == 2:
            if bestRegion == 1:
                return [(-1, -1), (0, -1), (1, 1)]
            elif bestRegion == 3:
                return [(1, -1), (0, -1), (1, 0)]
            else:
                return [(1, -1), (1, 0), (1, 1)]
        elif currentRegion == 3:
            if bestRegion == 1:
                return [(-1, -1), (-1, 0), (-1, 1)]
            elif bestRegion == 2:
                return [(-1, 0), (-1, 1), (0, 1)]
            else:
                return [(-1, 1), (0, 1), (1, 1)]
        else:
            if bestRegion == 1:
                return [(-1, -1), (-1, 0), (0, -1)]
            elif bestRegion == 2:
                return [(-1, -1), (-1, 0), (-1, 1)]
            else:
                return [(-1, -1), (0, -1), (1, -1)]

    def getCurrentRegion(self):
        return self.getPositionZone(self.current_position)

    def getPositionZone(self, position):
        if self.mapa_largo / 2 > position[1] and self .mapa_ancho / 2 > position[0]:
            return 1
        elif self.mapa_largo / 2 <= position[1] and self .mapa_ancho / 2 > position[0]:
            return 2
        elif self.mapa_largo / 2 > position[1] and self .mapa_ancho / 2 <= position[0]:
            return 3
        elif self.mapa_largo / 2 <= position[1] and self .mapa_ancho / 2 <= position[0]:
            return 4

    def selectUnexploredRegion(self):
        regionCoverage = []
        regionCoverage.append(getMapCoverage(self, 0, self.mapa_ancho / 2, 0, self.mapa_largo / 2))
        regionCoverage.append(getMapCoverage(self, self.mapa_ancho / 2, self.mapa_ancho, 0, self.mapa_largo / 2))
        regionCoverage.append(getMapCoverage(self, 0, self.mapa_ancho / 2, self.mapa_largo / 2, self.mapa_largo))
        regionCoverage.append(getMapCoverage(self, self.mapa_ancho / 2, self.mapa_ancho, self.mapa_largo / 2, self.mapa_largo))
        selectedZone = regionCoverage.index(min(regionCoverage)) + 1
        if selectedZone == self.getCurrentRegion():
            return None
        return selectedZone

    def getZonesCoverage(self):
        regionCoverage = []
        regionCoverage.append(getMapCoverage(self, 0, self.mapa_ancho / 2, 0, self.mapa_largo / 2))
        regionCoverage.append(getMapCoverage(self, self.mapa_ancho / 2, self.mapa_ancho, 0, self.mapa_largo / 2))
        regionCoverage.append(getMapCoverage(self, 0, self.mapa_ancho / 2, self.mapa_largo / 2, self.mapa_largo))
        regionCoverage.append(getMapCoverage(self, self.mapa_ancho / 2, self.mapa_ancho, self.mapa_largo / 2, self.mapa_largo))
        return regionCoverage

    def selectBestValue(self, best_values):
        lenght = len(best_values)
        # print("selectBestValue: " + str(lenght))
        if(lenght == 1):
            return best_values[0]
        else:
            selected = random.randint(0, lenght - 1)
            return best_values[selected]

    def validatePosition(self, x3, y3, forcePosition):
        condition = x3 >= 0 and y3 >= 0 and x3 < self.mapa_ancho and y3 < self.mapa_largo
        tupla = (x3, y3)
        if self.pointIsObstacule(x3, y3):
            return False
        elif (forcePosition is not None):
            return (condition and self.minDistanceToTarget(self.home, self.current_position, tupla))
        elif self.poi_position is not None:
            return (condition and self.minDistanceToTarget(self.poi_position, self.current_position, tupla))
        elif self.checkBatteryStatus() == NORMAL:
            return condition
        else:
            return (condition and self.minDistanceToTarget(self.home, self.current_position, tupla))

    def minDistanceToTarget(self, target, positionA, positionB):
        # print("minDistanceToTarget")
        distance2 = self.calculateDistance(target, positionA)
        distance1 = self.calculateDistance(target, positionB)
        # print("distance1: " + str(distance1) + " distance2: " + str(distance2))
        return (distance1 <= distance2)

    def pointIsObstacule(self, x1, x2):
        isObstacule = False
        for obs in self.obstaculos:
            if obs[0] == x1 and obs[1] == x2:
                isObstacule = True
        return isObstacule

    def calculateDistance(self, tuple1, tuple2):
        return math.sqrt((tuple2[1] - tuple1[1])**2 + (tuple2[0] - tuple1[0])**2)

    def updateSearchMap(self, tupla):
        self.mutex_search_map.acquire()
        if properties.ALGORITHM == SH_ORIGINAL or properties.ALGORITHM == SH_NO_GREEDY:
            self.search_map[tupla[0]][tupla[1]] += 1
        elif properties.ALGORITHM == SH_TIMESTAMP or ALGORITHM == SH_NO_GREEDY_TIMESTAMP or ALGORITHM == RANDOM:
            self.search_map[tupla[0]][tupla[1]] = time.time()
        self.logMap[tupla[0]][tupla[1]] += 1
        self.logMapTimestamp[tupla[0]][tupla[1]] = time.time()
        self.mutex_search_map.release()

    def getSearchMap(self):
        # self.mutex_search_map.acquire()
        return [[self.search_map[i][j] for j in range(int(self.mapa_largo))]for i in range(int(self.mapa_ancho))]
        # self.mutex_search_map.release()

    def getDroneAltitude(self):
        return self.bebop.sensors.sensors_dict["AltitudeChanged_altitude"]

    def checkDroneAltitudeStatus(self):
        altitude = self.getDroneAltitude()
        if (altitude < properties.MIN_ALTITUDE):
            return TOO_LOW
        elif (altitude > properties.MAX_ALTITUDE):
            return TOO_HIGH
        else:
            return ALTITUDE_OK

    def getDronVerticalAlignment(self):
        droneAltitudeStatus = self.checkDroneAltitudeStatus()
        verticalAlignment = 0
        if (droneAltitudeStatus == TOO_LOW or droneAltitudeStatus == TOO_HIGH):
            # negative goes up, positive goes down
            verticalAlignment = self.getDroneAltitude() - properties.OPTIMAL_ALTITUDE
        else:
            verticalAlignment = 0
        return verticalAlignment

    def getBatteryPercentage(self):
        return self.bebop.sensors.battery

    def checkBatteryStatus(self):
        batteryPercentage = self.getBatteryPercentage()
        if batteryPercentage < 5:
            return CRITICAL
        elif batteryPercentage < 10:
            return LOW
        else:
            return NORMAL

    def goHome(self):
        if self.current_position != self.home:
            pathfinder = Pathfinder(self.current_position, self.home)
            pathToFollow = pathfinder.findPath()
            pathfinder.printFinalMap()
            for nextPosition in pathfinder.parsePathToCoordinates(pathToFollow):
                self.move(nextPosition)

    def getClosestCoordinateToTarget(self, target, pos):
        res = self.current_position[pos]
        if res < target[pos]:
            res = res + 1
        elif res > target[pos]:
            res = res - 1
        return res

    def moveToPoiCritico(self, path):
        for nextPosition in path:
            self.move(nextPosition)

    def moveNextPositionPOICritico(self, new_position):
        dx, dy = new_position[0] - self.current_position[0], new_position[1] - self.current_position[1]
        real_dx, real_dy = dx * self.rango_ancho, dy * self.rango_largo
        verticalMove = self.getDronVerticalAlignment()
        self.bebop.move_relative(real_dx, real_dy, verticalMove, 0)
        time.sleep(2)
        self.current_position = new_position

    def disconnect(self):
        if properties.STREAMING_MODE_ON:
            self.closeStreaming()
        self.bebop.disconnect()

    def initializeStreaming(self):
        print("-- Starting Streaming... --")
        self.bebop.set_video_resolutions('rec720_stream720')
        self.bebop.start_video_stream()
        print("-- Streaming Started! --")

    def closeStreaming(self):
        print("-- Stopping Streaming... --")
        self.bebop.stop_video_stream()
        print("-- Streaming stopped!")
##bebop.start_video_stream()
##bebop.smart_sleep(5)
##
##
#bebop.safe_takeoff(10)
#bebop.smart_sleep(10)
#
##print("flip left")
##print("flying state is %s" % bebop.sensors.flying_state)
##success = bebop.flip(direction="left")
##print("mambo flip result %s" % success)
##bebop.smart_sleep(5)
#
#bebop.move_relative(0, 0, -1, -1)  #move_relative(self, dx, dy, dz, dradians)
#print("First Move Done")
##bebop.move_relative(0, 0, 0, 1)
##print("Second Move Done")
#

bebop.move_relative(0, 0, -1, 6.28)  #move_relative(self, dx, dy, dz, dradians)
print("First Move Done")

bebop.smart_sleep(1)
bebop.safe_land(10)

print(bebop.sensors.sensors_dict)

print(bebop.sensors.battery)

print("DONE - disconnecting")
bebop.disconnect()