Ejemplo n.º 1
0
def standard_sensfunc(wave, flux, ivar, mask_bad, flux_std, mask_balm=None, mask_tell=None,
                 maxiter=35, upper=2.0, lower=2.0, polyorder=5, balm_mask_wid=50., nresln=20., telluric=True,
                 resolution=2700., polycorrect=True, debug=False, polyfunc=False, show_QA=False):
    """
    Generate a sensitivity function based on observed flux and standard spectrum.

    Parameters
    ----------
    wave : ndarray
      wavelength as observed
    flux : ndarray
      counts/s as observed
    ivar : ndarray
      inverse variance
    flux_std : Quantity array
      standard star true flux (erg/s/cm^2/A)
    msk_bad : ndarray
      mask for bad pixels. True is good.
    msk_star: ndarray
      mask for hydrogen recombination lines. True is good.
    msk_tell:ndarray
      mask for telluric regions. True is good.
    maxiter : integer
      maximum number of iterations for polynomial fit
    upper : integer
      number of sigma for rejection in polynomial
    lower : integer
      number of sigma for rejection in polynomial
    polyorder : integer
      order of polynomial fit
    balm_mask_wid: float
      in units of angstrom
      Mask parameter for Balmer absorption. A region equal to
      balm_mask_wid is masked.
    resolution: integer/float.
      spectra resolution
      This paramters should be removed in the future. The resolution should be estimated from spectra directly.
    debug : bool
      if True shows some dubugging plots

    Returns
    -------
    sensfunc
    """
    # Create copy of the arrays to avoid modification
    wave_obs = wave.copy()
    flux_obs = flux.copy()
    ivar_obs = ivar.copy()
    # preparing arrays
    if np.any(np.invert(np.isfinite(ivar_obs))):
        msgs.warn("NaN are present in the inverse variance")

    # check masks
    if mask_tell is None:
        mask_tell = np.ones_like(wave_obs,dtype=bool)
    if mask_balm is None:
        mask_balm = np.ones_like(wave_obs, dtype=bool)

    # Removing outliers
    # Calculate log of flux_obs setting a floor at TINY
    logflux_obs = 2.5 * np.log10(np.maximum(flux_obs, TINY))
    # Set a fix value for the variance of logflux
    logivar_obs = np.ones_like(logflux_obs) * (10.0 ** 2)
    # Calculate log of flux_std model setting a floor at TINY
    logflux_std = 2.5 * np.log10(np.maximum(flux_std, TINY))
    # Calculate ratio setting a floor at MAGFUNC_MIN and a ceiling at
    # MAGFUNC_MAX
    magfunc = logflux_std - logflux_obs
    magfunc = np.maximum(np.minimum(magfunc, MAGFUNC_MAX), MAGFUNC_MIN)
    msk_magfunc = (magfunc < 0.99 * MAGFUNC_MAX) & (magfunc > 0.99 * MAGFUNC_MIN)

    # Define two new masks, True is good and False is masked pixel
    # mask for all bad pixels on sensfunc
    masktot = mask_bad & msk_magfunc & np.isfinite(ivar_obs) & np.isfinite(logflux_obs) & np.isfinite(logflux_std)
    logivar_obs[np.invert(masktot)] = 0.0
    # mask used for polynomial fit
    msk_fit_sens = masktot & mask_tell & mask_balm

    # Polynomial fitting to derive a smooth sensfunc (i.e. without telluric)
    pypeitFit = fitting.robust_fit(wave_obs[msk_fit_sens], magfunc[msk_fit_sens], polyorder,
                                             function='polynomial', maxiter=maxiter,
                                             lower=lower, upper=upper,
                                             groupbadpix=False,
                                             grow=0, sticky=True, use_mad=True)
    magfunc_poly = pypeitFit.eval(wave_obs)

    # Polynomial corrections on Hydrogen Recombination lines
    if ((sum(msk_fit_sens) > 0.5 * len(msk_fit_sens)) & polycorrect):
        ## Only correct Hydrogen Recombination lines with polyfit in the telluric free region
        balmer_clean = np.zeros_like(wave_obs, dtype=bool)
        # Commented out the bluest recombination lines since they are weak for spectroscopic standard stars.
        #836.4, 3969.6, 3890.1, 4102.8, 4102.8, 4341.6, 4862.7,   \
        lines_hydrogen = np.array([5407.0, 6564.6, 8224.8, 8239.2, 8203.6, 8440.3, 8469.6, 8504.8, 8547.7, 8600.8, \
                                   8667.4, 8752.9, 8865.2, 9017.4, 9229.0, 10049.4, 10938.1, 12818.1, 21655.0])
        for line_hydrogen in lines_hydrogen:
            ihydrogen = np.abs(wave_obs - line_hydrogen) <= balm_mask_wid
            balmer_clean[ihydrogen] = True
        msk_clean = ((balmer_clean) | (magfunc == MAGFUNC_MAX) | (magfunc == MAGFUNC_MIN)) & \
                    (magfunc_poly > MAGFUNC_MIN) & (magfunc_poly < MAGFUNC_MAX)
        magfunc[msk_clean] = magfunc_poly[msk_clean]
        msk_badpix = np.isfinite(ivar_obs) & (ivar_obs > 0)
        magfunc[np.invert(msk_badpix)] = magfunc_poly[np.invert(msk_badpix)]
    else:
        ## if half more than half of your spectrum is masked (or polycorrect=False) then do not correct it with polyfit
        msgs.warn('No polynomial corrections performed on Hydrogen Recombination line regions')

    if not telluric:
        # Apply mask to ivar
        #logivar_obs[~msk_fit_sens] = 0.

        # ToDo
        # Compute an effective resolution for the standard. This could be improved
        # to setup an array of breakpoints based on the resolution. At the
        # moment we are using only one number
        msgs.work("Should pull resolution from arc line analysis")
        msgs.work("At the moment the resolution is taken as the PixelScale")
        msgs.work("This needs to be changed!")
        std_pix = np.median(np.abs(wave_obs - np.roll(wave_obs, 1)))
        std_res = np.median(wave_obs/resolution) # median resolution in units of Angstrom.
        #std_res = std_pix
        #resln = std_res
        if (nresln * std_res) < std_pix:
            msgs.warn("Bspline breakpoints spacing shoud be larger than 1pixel")
            msgs.warn("Changing input nresln to fix this")
            nresln = std_res / std_pix

        # Fit magfunc with bspline
        kwargs_bspline = {'bkspace': std_res * nresln}
        kwargs_reject = {'maxrej': 5}
        msgs.info("Initialize bspline for flux calibration")
#        init_bspline = pydl.bspline(wave_obs, bkspace=kwargs_bspline['bkspace'])
        init_bspline = bspline.bspline(wave_obs, bkspace=kwargs_bspline['bkspace'])
        fullbkpt = init_bspline.breakpoints

        # TESTING turning off masking for now
        # remove masked regions from breakpoints
        msk_obs = np.ones_like(wave_obs).astype(bool)
        msk_obs[np.invert(masktot)] = False
        msk_bkpt = interpolate.interp1d(wave_obs, msk_obs, kind='nearest',
                                        fill_value='extrapolate')(fullbkpt)
        init_breakpoints = fullbkpt[msk_bkpt > 0.999]

        # init_breakpoints = fullbkpt
        msgs.info("Bspline fit on magfunc. ")
        bset1, bmask = fitting.iterfit(wave_obs, magfunc, invvar=logivar_obs, inmask=msk_fit_sens, upper=upper, lower=lower,
                                    fullbkpt=init_breakpoints, maxiter=maxiter, kwargs_bspline=kwargs_bspline,
                                    kwargs_reject=kwargs_reject)
        logfit1, _ = bset1.value(wave_obs)
        logfit_bkpt, _ = bset1.value(init_breakpoints)

        if debug:
            # Check for calibration
            plt.figure(1)
            plt.plot(wave_obs, magfunc, drawstyle='steps-mid', color='black', label='magfunc')
            plt.plot(wave_obs, logfit1, color='cornflowerblue', label='logfit1')
            plt.plot(wave_obs[np.invert(msk_fit_sens)], magfunc[np.invert(msk_fit_sens)], '+', color='red', markersize=5.0,
                     label='masked magfunc')
            plt.plot(wave_obs[np.invert(msk_fit_sens)], logfit1[np.invert(msk_fit_sens)], '+', color='red', markersize=5.0,
                     label='masked logfit1')
            plt.plot(init_breakpoints, logfit_bkpt, '.', color='green', markersize=4.0, label='breakpoints')
            plt.plot(init_breakpoints, np.interp(init_breakpoints, wave_obs, magfunc), '.', color='green',
                     markersize=4.0,
                     label='breakpoints')
            plt.plot(wave_obs, 1.0 / np.sqrt(logivar_obs), color='orange', label='sigma')
            plt.legend()
            plt.xlabel('Wavelength [ang]')
            plt.ylim(0.0, 1.2 * MAGFUNC_MAX)
            plt.title('1st Bspline fit')
            plt.show()
        # Create sensitivity function
        magfunc = np.maximum(np.minimum(logfit1, MAGFUNC_MAX), MAGFUNC_MIN)
        if ((sum(msk_fit_sens) > 0.5 * len(msk_fit_sens)) & polycorrect):
            msk_clean = ((magfunc == MAGFUNC_MAX) | (magfunc == MAGFUNC_MIN)) & \
                        (magfunc_poly > MAGFUNC_MIN) & (magfunc_poly<MAGFUNC_MAX)
            magfunc[msk_clean] = magfunc_poly[msk_clean]
            msk_badpix = np.isfinite(ivar_obs) & (ivar_obs>0)
            magfunc[np.invert(msk_badpix)] = magfunc_poly[np.invert(msk_badpix)]
        else:
            ## if half more than half of your spectrum is masked (or polycorrect=False) then do not correct it with polyfit
            msgs.warn('No polynomial corrections performed on Hydrogen Recombination line regions')

    # Calculate sensfunc
    if polyfunc:
        sensfunc = 10.0 ** (0.4 * magfunc_poly)
        magfunc = magfunc_poly
    else:
        sensfunc = 10.0 ** (0.4 * magfunc)

    if debug:
        plt.figure()
        magfunc_raw = logflux_std - logflux_obs
        plt.plot(wave_obs[masktot],magfunc_raw[masktot] , 'k-',lw=3,label='Raw Magfunc')
        plt.plot(wave_obs[masktot],magfunc_poly[masktot] , 'c-',lw=3,label='Polynomial Fit')
        plt.plot(wave_obs[np.invert(mask_tell)], magfunc_raw[np.invert(mask_tell)], 's',
                 color='0.7',label='Telluric Region')
        plt.plot(wave_obs[np.invert(mask_balm)], magfunc_raw[np.invert(mask_balm)], 'r+',label='Recombination Line region')
        plt.plot(wave_obs[masktot], magfunc[masktot],'b-',label='Final Magfunc')
        plt.legend(fancybox=True, shadow=True)
        plt.xlim([0.995*np.min(wave_obs[masktot]),1.005*np.max(wave_obs[masktot])])
        plt.ylim([0.,1.2*np.max(magfunc[masktot])])
        plt.show()
        plt.close()

    return sensfunc, masktot
Ejemplo n.º 2
0
def sensfunc_eval(wave, counts, counts_ivar, counts_mask, exptime, airmass, std_dict, longitude, latitude,
                  mask_abs_lines=True, telluric=False, polyorder=4, balm_mask_wid=5., nresln=20., resolution=3000.,
                  trans_thresh=0.9, polycorrect=True, polyfunc=False, debug=False):

    """

    Function to generate the sensitivity function. This function fits
    a bspline to the 2.5*log10(flux_std/flux_counts). The break
    points spacing, which determines the scale of variation of the
    sensitivity function is determined by the nresln parameter. This
    code can work in different regimes, but NOTE THAT TELLURIC MODE
    IS DEPRECATED, use telluric.sensfunc_telluric instead.

        - If telluric=False, a sensfunc is generated by fitting a
          bspline to the using nresln=20.0 and masking out telluric
          regions.

        - If telluric=True, sensfunc is a pixelized sensfunc (not
          smooth) for correcting both throughput and telluric lines.
          if you set polycorrect=True, the sensfunc in the Hydrogen
          recombination line region (often seen in star spectra) will
          be replaced by a smoothed polynomial function.

    Args:
        wave (ndarray):
            Wavelength of the star. Shape (nspec,)
        counts (ndarray):
            Flux (in counts) of the star. Shape (nspec,)
        counts_ivar (ndarray):
            Inverse variance of the star counts. Shape (nspec,)
        counts_mask (ndarray):
            Good pixel mask for the counts.
        exptime (float):
            Exposure time in seconds
        airmass (float):
            Airmass
        std_dict (dict):
            Dictionary containing information about the standard star returned by flux_calib.get_standard_spectrum
        longitude (float):
            Telescope longitude, used for extinction correction.
        latitude (float):
            Telescope latitude, used for extinction correction
        telluric (bool):
            If True attempts to fit telluric absorption. This feature is deprecated, as one should instead
            use telluric.sensfunc_telluric. Default=False
        mask_abs_lines (bool):
            If True, mask stellar absorption lines before fitting sensitivity function. Default = True
        balm_mask_wid (float):
            Parameter describing the width of the mask for or stellar absorption lines (i.e. mask_abs_lines=True). A region
            equal to balm_mask_wid*resln is masked where resln is the estimate for the spectral resolution in pixels
            per resolution element.
        polycorrect: bool
            Whether you want to interpolate the sensfunc with polynomial in the stellar absortion line regions before
            fitting with the bspline
        nresln (float):
            Parameter governing the spacing of the bspline breakpoints. default = 20.0
        resolution (float):
            Expected resolution of the standard star spectrum. This should probably be determined from the grating, but is
            currently hard wired. default=3000.0
        trans_thresh (float):
            Parameter for selecting telluric regions which are masked. Locations below this transmission value are masked.
            If you have significant telluric absorption you should be using telluric.sensnfunc_telluric. default = 0.9

    Returns:
        tuple: Returns:

            - sensfunc (ndarray) -- Sensitivity function with same shape as wave (nspec,)
            - mask_sens (ndarray, bool) -- Good pixel mask for sensitivity function with same shape as wave (nspec,)

    """
    # Create copy of the arrays to avoid modification and convert to
    # electrons / s
    wave_star = wave.copy()
    flux_star = counts.copy() / exptime
    ivar_star = counts_ivar.copy() * exptime ** 2

    # Extinction correction
    msgs.info("Applying extinction correction")
    extinct = load_extinction_data(longitude,latitude)
    ext_corr = extinction_correction(wave * units.AA, airmass, extinct)
    # Correct for extinction
    flux_star = flux_star * ext_corr
    ivar_star = ivar_star / ext_corr ** 2
    mask_star = counts_mask

    # Interpolate the standard star onto the current set of observed wavelengths
    flux_true = interpolate.interp1d(std_dict['wave'], std_dict['flux'], bounds_error=False,
                                     fill_value='extrapolate')(wave_star)
    # Do we need to extrapolate? TODO Replace with a model or a grey body?
    if np.min(flux_true) <= 0.:
        msgs.warn('Your spectrum extends beyond calibrated standard star, extrapolating the spectra with polynomial.')
        mask_model = flux_true <= 0
        pypeitFit = fitting.robust_fit(std_dict['wave'].value, std_dict['flux'].value,8,function='polynomial',
                                                    maxiter=50, lower=3.0, upper=3.0, maxrej=3,
                                                    grow=0, sticky=True, use_mad=True)
        star_poly = pypeitFit.eval(wave_star.value)
        #flux_true[mask_model] = star_poly[mask_model]
        flux_true = star_poly.copy()
        if debug:
            plt.plot(std_dict['wave'], std_dict['flux'],'bo',label='Raw Star Model')
            plt.plot(std_dict['wave'],  pypeitFit.eval(std_dict['wave'].value),
                     'k-',label='robust_poly_fit')
            plt.plot(wave_star,flux_true,'r-',label='Your Final Star Model used for sensfunc')
            plt.show()

    # Get masks from observed star spectrum. True = Good pixels
    mask_bad, mask_balm, mask_tell = get_mask(wave_star, flux_star, ivar_star, mask_star, mask_abs_lines=mask_abs_lines,
                                              mask_telluric=True, balm_mask_wid=balm_mask_wid, trans_thresh=trans_thresh)

    # Get sensfunc
    #LBLRTM = False
    #if LBLRTM:
    #    # sensfunc = lblrtm_sensfunc() ???
    #    msgs.develop('fluxing and telluric correction based on LBLRTM model is under developing.')
    #else:
    sensfunc, mask_sens = standard_sensfunc(
        wave_star, flux_star, ivar_star, mask_bad, flux_true, mask_balm=mask_balm,
        mask_tell=mask_tell, maxiter=35, upper=3.0, lower=3.0, polyorder=polyorder,
        balm_mask_wid=balm_mask_wid, nresln=nresln,telluric=telluric, resolution=resolution,
        polycorrect=polycorrect, polyfunc=polyfunc, debug=debug, show_QA=False)

    if debug:
        plt.plot(wave_star[mask_sens], flux_true[mask_sens], color='k',lw=2, label='Reference Star')
        plt.plot(wave_star[mask_sens], flux_star[mask_sens]*sensfunc[mask_sens], color='r', label='Fluxed Observed Star')
        plt.xlabel(r'Wavelength [$\AA$]')
        plt.ylabel('Flux [erg/s/cm2/Ang.]')
        plt.legend(fancybox=True, shadow=True)
        plt.show()


    return sensfunc, mask_sens
Ejemplo n.º 3
0
def fit_pca_coefficients(coeff,
                         order,
                         ivar=None,
                         weights=None,
                         function='legendre',
                         lower=3.0,
                         upper=3.0,
                         maxrej=1,
                         maxiter=25,
                         coo=None,
                         minx=None,
                         maxx=None,
                         debug=False):
    r"""
    Fit a parameterized function to a set of PCA coefficients,
    primarily for the purpose of predicting coefficients at
    intermediate locations.

    The coefficients of each PCA component are fit by a low-order
    polynomial, where the abscissa is set by the `coo` argument (see
    :func:`pypeit.fitting.robust_fit`).

    .. note::
        This is a general function, not really specific to the PCA;
        and is really just a wrapper for
        :func:`pypeit.fitting.robust_fit`.

    Args:
        coeff (`numpy.ndarray`_):
            PCA component coefficients. If the PCA decomposition used
            :math:`N_{\rm comp}` components for :math:`N_{\rm vec}`
            vectors, the shape of this array must be :math:`(N_{\rm
            vec}, N_{\rm comp})`. The array can be 1D with shape
            :math:`(N_{\rm vec},)` if there was only one PCA
            component.
        order (:obj:`int`, `numpy.ndarray`_):
            The order, :math:`o`, of the function used to fit the PCA
            coefficients. Can be a single number for all PCA
            components, or an array with an order specific to each
            component. If the latter, the shape must be
            :math:`(N_{\rm comp},)`.
        ivar (`numpy.ndarray`_, optional):
            Inverse variance in the PCA coefficients to use during
            the fit; see the `invvar` parameter of
            :func:`pypeit.fitting.robust_fit`. If None, fit is
            not error weighted. If a vector with shape :math:`(N_{\rm
            vec},)`, the same error will be assumed for all PCA
            components (i.e., `ivar` will be expanded to match the
            shape of `coeff`). If a 2D array, the shape must match
            `coeff`.
        weights (`numpy.ndarray`_, optional):
            Weights to apply to the PCA coefficients during the fit;
            see the `weights` parameter of
            :func:`pypeit.fitting.robust_fit`. If None, the
            weights are uniform. If a vector with shape
            :math:`(N_{\rm vec},)`, the same weights will be assumed
            for all PCA components (i.e., `weights` will be expanded
            to match the shape of `coeff`). If a 2D array, the shape
            must match `coeff`.
        function (:obj:`str`, optional):
            Type of function used to fit the data.
        lower (:obj:`float`, optional):
            Number of standard deviations used for rejecting data
            **below** the mean residual. If None, no rejection is
            performed. See :func:`fitting.robust_fit`.
        upper (:obj:`float`, optional):
            Number of standard deviations used for rejecting data
            **above** the mean residual. If None, no rejection is
            performed. See :func:`fitting.robust_fit`.
        maxrej (:obj:`int`, optional):
            Maximum number of points to reject during fit iterations.
            See :func:`fitting.robust_fit`.
        maxiter (:obj:`int`, optional):
            Maximum number of rejection iterations allows. To force
            no rejection iterations, set to 0.
        coo (`numpy.ndarray`_, optional):
            Floating-point array with the independent coordinates to
            use when fitting the PCA coefficients. If None, simply
            uses a running number. Shape must be :math:`(N_{\rm
            vec},)`.
        minx, maxx (:obj:`float`, optional):
            Minimum and maximum values used to rescale the
            independent axis data. If None, the minimum and maximum
            values of `coo` are used. See
            :func:`fitting.robust_fit`.
        debug (:obj:`bool`, optional):
            Show plots useful for debugging.

    Returns:
        `numpy.ndarray`_: One or more
        :class:`~pypeit.core.fitting.PypeItFit` instances, one per
        PCA component, that models the PCA component coefficients as
        a function of the reference coordinates. These can be used to
        predict new vectors that follow the PCA model at a new
        coordinate; see :func:`pca_predict`.
    """
    # Check the input
    #   - Get the shape of the input data to fit
    _coeff = np.asarray(coeff)
    if _coeff.ndim == 1:
        _coeff = np.expand_dims(_coeff, 1)
    if _coeff.ndim != 2:
        raise ValueError('Array with coefficiencts cannot be more than 2D')
    nvec, npca = _coeff.shape
    #   - Check the inverse variance
    _ivar = None if ivar is None else np.atleast_2d(ivar)
    if _ivar is not None and _ivar.shape != _coeff.shape:
        raise ValueError(
            'Inverse variance array does not match input coefficients.')
    #   - Check the weights
    _weights = np.ones(_coeff.shape,
                       dtype=float) if weights is None else np.asarray(weights)
    if _weights.ndim == 1:
        _weights = np.tile(_weights, (_coeff.shape[1], 1)).T
    if _weights.shape != _coeff.shape:
        raise ValueError('Weights array does not match input coefficients.')
    #   - Set the abscissa of the data if not provided and check its
    #   shape
    if coo is None:
        coo = np.arange(nvec, dtype=float)
    if coo.size != nvec:
        raise ValueError('Vector coordinates have incorrect shape.')
    #   - Check the order of the functions to fit
    _order = np.atleast_1d(order)
    if _order.size == 1:
        _order = np.full(npca, order, dtype=int)
    if _order.size != npca:
        raise ValueError(
            'Function order must be a single number or one number per PCA component.'
        )
    #   - Force the values of minx and maxx if they're not provided directly
    if minx is None:
        minx = np.amin(coo)
    if maxx is None:
        maxx = np.amax(coo)

    # Instantiate the output

    # TODO: This fitting is fast. Maybe we should determine the best
    #  order for each PCA component, up to some maximum, by comparing
    #  reduction in chi-square vs added number of parameters?

    # Fit the coefficients of each PCA component so that they can be
    # interpolated to other coordinates.

    inmask = np.ones_like(coo, dtype=bool)
    model = np.empty(npca, dtype=fitting.PypeItFit)
    for i in range(npca):
        model[i] = fitting.robust_fit(
            coo,
            _coeff[:, i],
            _order[i],
            in_gpm=inmask,
            invvar=None if _ivar is None else _ivar[:, i],
            weights=_weights[:, i],
            function=function,
            maxiter=maxiter,
            lower=lower,
            upper=upper,
            maxrej=maxrej,
            sticky=False,
            use_mad=_ivar is None,
            minx=minx,
            maxx=maxx)
        if debug:
            # Visually check the fits
            xvec = np.linspace(np.amin(coo), np.amax(coo), num=100)
            rejected = np.logical_not(model[i].gpm) & inmask
            plt.scatter(coo[inmask],
                        _coeff[inmask, i],
                        marker='.',
                        color='k',
                        s=100,
                        facecolor='none',
                        label='pca coeff')
            plt.scatter(coo[np.logical_not(inmask)],
                        _coeff[np.logical_not(inmask), i],
                        marker='.',
                        color='orange',
                        s=100,
                        facecolor='none',
                        label='pca coeff, masked from previous')
            if np.any(rejected):
                plt.scatter(coo[rejected],
                            _coeff[rejected, i],
                            marker='x',
                            color='C3',
                            s=80,
                            label='robust_polyfit_djs rejected')
            plt.plot(xvec,
                     model[i].eval(xvec),
                     linestyle='--',
                     color='C0',
                     label='Polynomial fit of order={0}'.format(_order[i]))
            plt.xlabel('Trace Coordinate', fontsize=14)
            plt.ylabel('PCA Coefficient', fontsize=14)
            plt.title('PCA Fit for Dimension #{0}/{1}'.format(i + 1, npca))
            plt.legend()
            plt.show()

        # Propagate rejection of coeffs for this component to the next
        # component.
        # TODO: Can we put in a comment here or in the docstring
        # explaining why we do this?
        inmask = model[i].gpm.astype(bool)

    # Return the fitted model
    return model
Ejemplo n.º 4
0
def slit_match(x_det,
               x_model,
               step=1,
               xlag_range=[-50, 50],
               sigrej=3,
               print_matches=False,
               edge=None):
    """
    Script that perform the slit edges matching.

    This method uses :func:`discrete_correlate_match` to find the
    indices of x_model that match x_det.

    Taken from DEEP2/spec2d/pro/deimos_slit_match.pro

    Parameters
    ----------
    x_det: `numpy.ndarray`_
        1D array of slit edge spatial positions found from image.
    x_model: `numpy.ndarray`_
        1D array of slit edge spatial positions predicted by the
        optical model.
    step: :obj:`int`, optional
        Step size in pixels used to generate a list of possible
        offsets within the `offsets_range`.
    xlag_range: :obj:`list`, optional
        Range of offsets in pixels allowed between the slit
        positions predicted by the mask design and the traced
        slit positions.
    sigrej: :obj:`float`, optional
        Reject slit matches larger than this number of sigma in
        the match residuals.
    print_matches: :obj:`bool`, optional
        Print the result of the matching.
    edge: :obj:`str`, optional
        String that indicates which edges are being plotted,
        i.e., left of right. Ignored if ``print_matches`` is
        False.

    Returns
    -------
    ind: `numpy.ndarray`_
        1D array of indices for `x_model`, which defines the matches
        to `x_det`, i.e., `x_det` matches `x_model[ind]`
    dupl: `numpy.ndarray`_
        1D array of `bool` that flags which `ind` are duplicates.
    coeff: `numpy.ndarray`_
        pypeitFit coefficients of the fitted relation between `x_det`
        and `x_model[ind]`
    sigres: :obj:`float`
        RMS residual for the fitted relation between `x_det` and
        `x_model[ind]`

    """
    # Determine the indices of `x_model` that match `x_det`
    ind = discrete_correlate_match(x_det,
                                   np.ma.masked_equal(x_model, -1),
                                   step=step,
                                   xlag_range=xlag_range)

    # Define the weights for the fitting
    residual = (x_det - x_model[ind]) - np.median(x_det - x_model[ind])
    weights = np.zeros(residual.size, dtype=int)
    weights[np.abs(residual) < 100.] = 1
    if weights.sum() == 0:
        weights = np.ones(residual.size, dtype=int)
    # Fit between `x_det` and `x_model[ind]`
    pypeitFit = fitting.robust_fit(x_model[ind],
                                   x_det,
                                   1,
                                   maxiter=100,
                                   weights=weights,
                                   lower=3,
                                   upper=3)
    coeff = pypeitFit.fitc
    yfit = pypeitFit.eval(x_model[ind])

    # compute residuals
    res = yfit - x_det
    sigres = sigma_clipped_stats(res, sigma=sigrej)[2]  # RMS residuals
    # flag the matches that have residuals > `sigrej` times the RMS, or if res>5
    cut = 5 if res.size < 5 else sigrej * sigres
    out = np.abs(res) > cut

    # check for duplicate indices
    dupl = np.ones(ind.size, dtype=bool)
    # If there are duplicates of `ind`, for now we keep only the first one. We don't remove the others yet
    dupl[np.unique(ind, return_index=True)[1]] = False
    wdupl = np.where(dupl)[0]
    # Iterate over the duplicates flagged as bad
    if wdupl.size > 0:
        for i in range(wdupl.size):
            duplind = ind[wdupl[i]]
            # Where are the other duplicates of this `ind`?
            w = np.where(ind == duplind)[0]
            # set those to be bad (for the moment)
            dupl[w] = True
            # Among the duplicates of this particular `ind`, which one has the smallest residual?
            wdif = np.argmin(np.abs(res[w]))
            # The one with the smallest residuals, is then set to not bad
            dupl[w[wdif]] = False
        # Both duplicates and matches with high RMS are considered bad
        dupl = dupl | out
        if edge is not None:
            msgs.warn('{} duplicate match(es) for {} edges'.format(
                dupl[dupl == 1].size, edge))
        else:
            msgs.warn('{} duplicate match(es)'.format(dupl[dupl == 1].size))
        # I commented the 3 lines below because I don't really need to trim the duplicate matches. I just
        # propagate the flag.
        # good = dupl == 0
        # ind = ind[good]
        # x_det=x_det[good]
    if print_matches:
        if edge is not None:
            msgs.info('-----------------------------------------------')
            msgs.info('             {} slit edges               '.format(edge))
        msgs.info('-----------------------------------------------')
        msgs.info('Index      omodel_edge       spat_edge               ')
        msgs.info('-----------------------------------------------')
        for i in range(ind.size):
            msgs.info('{}  {}  {}'.format(ind[i], x_model[ind][i], x_det[i]))
        msgs.info('-----------------------------------------------')
    return ind, dupl, coeff, sigres
Ejemplo n.º 5
0
def discrete_correlate_match(x_det, x_model, step=1, xlag_range=[-50, 50]):
    """
    Script to find the the x_model values that match the traced edges.

    This method uses :func:`best_offset` to determine the best offset between
    slit edge predicted by the optical model and the one found in the image, given a range of
    offsets. This is used iteratively.

   Taken from in DEEP2/spec2d/pro/discrete_correlate_match.pro
    x_det==x1, x_model==x2_in

    Args:
        x_det (`numpy.ndarray`_):
            1D array of slit edge spatial positions found from image
        x_model (`numpy.ndarray`_):
            1D array of slit edge spatial positions predicted by the optical model
        step (:obj:`int`):
            step size in pixels used to generate a list of possible offsets within the `offsets_range`
        xlag_range (:obj:`list`, optional):
            range of offsets in pixels allowed between the slit positions predicted by
            the mask design and the traced slit positions.

    Returns:
        `numpy.ndarray`_: array of indices for x_model, which defines the matches to x_det,
        i.e., x_det matches x_model[ind]

    """
    # -------- PASS 1: get offset between x1 and x2

    # Determine the offset between x_det and x_model
    best_off = best_offset(x_det, x_model, step=step, xlag_range=xlag_range)
    # apply the offset to x_model
    x_model_new = x_model - best_off

    # for each traced edge (`x_det`) determine the value of x_model that gives the smallest offset
    ind = np.ma.argmin(np.ma.absolute(x_det[:, None] - x_model_new[None, :]),
                       axis=1)

    # -------- PASS 2: remove linear trend (i.e. adjust scale)
    # fit the offsets to `x_det` to find the scale and apply it to x_model
    dx = np.ma.compressed(x_det - x_model_new[ind])
    pypeitFit = fitting.robust_fit(x_det, dx, 1, maxiter=100, lower=2, upper=2)
    coeff = pypeitFit.fitc
    scale = 1 + coeff[1] if x_det.size > 4 else 1
    x_model_new *= scale

    # Find again the best offset and apply it to x_model
    new_best_off = best_offset(x_det,
                               x_model_new,
                               step=step,
                               xlag_range=xlag_range)

    x_model_new -= new_best_off

    # find again `ind`
    ind = np.ma.argmin(np.ma.absolute(x_det[:, None] - x_model_new[None, :]),
                       axis=1)

    # -------- PASS 3: tweak offset
    dx = x_det - x_model_new[ind]
    x_model_new += np.ma.median(dx)

    # find again `ind`
    ind = np.ma.argmin(np.ma.absolute(x_det[:, None] - x_model_new[None, :]),
                       axis=1)

    return ind
Ejemplo n.º 6
0
def iterative_fitting(spec, tcent, ifit, IDs, llist, disp,
                      match_toler = 2.0, func = 'legendre', n_first=2, sigrej_first=2.0,
                      n_final=4, sigrej_final=3.0, input_only=False,
                      weights=None, plot_fil=None, verbose=False):

    """ Routine for iteratively fitting wavelength solutions.

    Parameters
    ----------
    spec : ndarray, shape = (nspec,)
      arcline spectrum
    tcent : ndarray
      Centroids in pixels of lines identified in spec
    ifit : ndarray
      Indices of the lines that will be fit
    IDs: ndarray
      wavelength IDs of the lines that will be fit (I think?)
    llist: dict
      Linelist dictionary
    disp: float
      dispersion

    Optional Parameters
    -------------------
    match_toler: float, default = 3.0
      Matching tolerance when searching for new lines. This is the difference in pixels between the wavlength assigned to
      an arc line by an iteration of the wavelength solution to the wavelength in the line list.
    func: str, default = 'legendre'
      Name of function used for the wavelength solution
    n_first: int, default = 2
      Order of first guess to the wavelength solution.
    sigrej_first: float, default = 2.0
      Number of sigma for rejection for the first guess to the wavelength solution.
    n_final: int, default = 4
      Order of the final wavelength solution fit
    sigrej_final: float, default = 3.0
      Number of sigma for rejection for the final fit to the wavelength solution.
    input_only: bool
      If True, the routine will only perform a robust polyfit to the input IDs.
      If False, the routine will fit the input IDs, and then include additional
      lines in the linelist that are a satisfactory fit.
    weights: ndarray
      Weights to be used?
    verbose : bool
      If True, print out more information.
    plot_fil:
      Filename for plotting some QA?

    Returns
    -------
    final_fit: :class:`pypeit.core.wavecal.wv_fitting.WaveFit`
    """

    #TODO JFH add error checking here to ensure that IDs and ifit have the same size!

    if weights is None:
        weights = np.ones(tcent.size)

    nspec = spec.size
    xnspecmin1 = float(nspec-1)
    # Setup for fitting
    sv_ifit = list(ifit)  # Keep the originals
    all_ids = -999.*np.ones(len(tcent))
    all_idsion = np.array(['UNKNWN']*len(tcent))
    all_ids[ifit] = IDs

    # Fit
    n_order = n_first
    flg_continue = True
    flg_penultimate = False
    fmin, fmax = 0.0, 1.0
    # Note the number of parameters is actually n_order and not n_order+1
    while flg_continue:
        if flg_penultimate:
            flg_continue = False
        # Fit with rejection
        xfit, yfit, wfit = tcent[ifit], all_ids[ifit], weights[ifit]
        maxiter = xfit.size - n_order - 2
        #
        if xfit.size == 0:
            msgs.warn("All points rejected !!")
            return None
        # Fit
        pypeitFit = fitting.robust_fit(xfit/xnspecmin1, yfit, n_order, function=func, maxiter=maxiter,
                                       lower=sigrej_first, upper=sigrej_first, maxrej=1, sticky=True,
                                       minx=fmin, maxx=fmax, weights=wfit)
        # Junk fit?
        if pypeitFit is None:
            msgs.warn("Bad fit!!")
            return None

        rms_ang = pypeitFit.calc_fit_rms(apply_mask=True)
        rms_pix = rms_ang/disp
        if verbose:
            msgs.info('n_order = {:d}'.format(n_order) + ': RMS = {:g}'.format(rms_pix))

        # Reject but keep originals (until final fit)
        ifit = list(ifit[pypeitFit.gpm == 1]) + sv_ifit
        if not input_only:
            # Find new points from the linelist (should we allow removal of the originals?)
            twave = pypeitFit.eval(tcent/xnspecmin1)#, func, minx=fmin, maxx=fmax)
            for ss, iwave in enumerate(twave):
                mn = np.min(np.abs(iwave-llist['wave']))
                if mn/disp < match_toler:
                    imn = np.argmin(np.abs(iwave-llist['wave']))
                    #if verbose:
                    #    print('Adding {:g} at {:g}'.format(llist['wave'][imn],tcent[ss]))
                    # Update and append
                    all_ids[ss] = llist['wave'][imn]
                    all_idsion[ss] = llist['ion'][imn]
                    ifit.append(ss)
        # Keep unique ones
        ifit = np.unique(np.array(ifit, dtype=int))
        # Increment order?
        if n_order < n_final:
            n_order += 1
        else:
            flg_penultimate = True

    # Final fit (originals can now be rejected)
    xfit, yfit, wfit = tcent[ifit], all_ids[ifit], weights[ifit]
    pypeitFit = fitting.robust_fit(xfit/xnspecmin1, yfit, n_order, function=func,
                                   lower=sigrej_final, upper=sigrej_final, maxrej=1, sticky=True,
                                   minx=fmin, maxx=fmax, weights=wfit)#, debug=True)
    irej = np.where(np.logical_not(pypeitFit.bool_gpm))[0]
    if len(irej) > 0:
        xrej = xfit[irej]
        yrej = yfit[irej]
        if verbose:
            for kk, imask in enumerate(irej):
                wave = pypeitFit.eval(xrej[kk]/xnspecmin1)#, func, minx=fmin, maxx=fmax)
                msgs.info('Rejecting arc line {:g}; {:g}'.format(yfit[imask], wave))
    else:
        xrej = []
        yrej = []

    ions = all_idsion[ifit]
    # Final RMS
    rms_ang = pypeitFit.calc_fit_rms(apply_mask=True)
    rms_pix = rms_ang/disp

    # Pack up fit
    spec_vec = np.arange(nspec)
    wave_soln = pypeitFit.eval(spec_vec/xnspecmin1)
    cen_wave = pypeitFit.eval(float(nspec)/2/xnspecmin1)
    cen_wave_min1 = pypeitFit.eval((float(nspec)/2 - 1.0)/xnspecmin1)
    cen_disp = cen_wave - cen_wave_min1

    # Ions bit
    ion_bits = np.zeros(len(ions), dtype=WaveFit.bitmask.minimum_dtype())
    for kk,ion in enumerate(ions):
        ion_bits[kk] = WaveFit.bitmask.turn_on(ion_bits[kk], ion.replace(' ', ''))

    # DataContainer time
    # spat_id is set to an arbitrary -1 here and is updated in wavecalib.py
    final_fit = WaveFit(-1, pypeitfit=pypeitFit, pixel_fit=xfit, wave_fit=yfit,
                        ion_bits=ion_bits, xnorm=xnspecmin1,
                        cen_wave=cen_wave, cen_disp=cen_disp,
                        spec=spec, wave_soln = wave_soln, sigrej=sigrej_final,
                        shift=0., tcent=tcent, rms=rms_pix)

    # QA
    if plot_fil is not None:
        autoid.arc_fit_qa(final_fit, plot_fil)
    # Return
    return final_fit