Ejemplo n.º 1
0
    def __init__(self,
                 tslits_dict,
                 tilts,
                 wv_calib,
                 spectrograph,
                 det,
                 maskslits,
                 master_key=None,
                 master_dir=None,
                 reuse_masters=False):

        # Image
        pypeitimage.PypeItImage.__init__(self, spectrograph, det)

        # MasterFrame
        MasterFrame.__init__(self,
                             self.master_type,
                             master_dir=master_dir,
                             master_key=master_key,
                             reuse_masters=reuse_masters)

        # Required parameters
        self.spectrograph = spectrograph

        self.tslits_dict = tslits_dict
        self.tilts = tilts
        self.wv_calib = wv_calib
        if tslits_dict is not None:
            self.slitmask = pixels.tslits2mask(self.tslits_dict)
            self.slit_spat_pos = trace_slits.slit_spat_pos(self.tslits_dict)
        else:
            self.slitmask = None
            self.slit_spat_pos = None

        # TODO: only echelle is ever used.  Do we need to keep the whole
        # thing?
        self.par = wv_calib['par'] if wv_calib is not None else None

        self.maskslits = maskslits

        # For echelle order, primarily

        # List to hold ouptut from inspect about what module create the image?
        self.steps = []

        # Main output
        self.image = None
Ejemplo n.º 2
0
def main(args):

    # Load fits file
    cfg_lines, data_files, frametype, usrdata, setups = parse_pypeit_file(args.file, runtime=False)

    # Get the raw fits file name
    sciIdx = get_science_frame(usrdata)
    fname = data_files[sciIdx]

    # Load the spectrograph
    cfg = ConfigObj(cfg_lines)
    spectrograph_name = cfg['rdx']['spectrograph']
    spectrograph = load_spectrograph(spectrograph_name, ifile=data_files[sciIdx])
    msgs.info('Loaded spectrograph {0}'.format(spectrograph.spectrograph))
    spectrograph_cfg_lines = spectrograph.config_specific_par(fname).to_config()
    par = PypeItPar.from_cfg_lines(cfg_lines=spectrograph_cfg_lines, merge_with=cfg_lines)

    # Get the master key
    file_base = os.path.basename(fname)
    ftdict = dict({file_base: 'science'})
    fitstbl = PypeItMetaData(spectrograph, par, files=[data_files[sciIdx]], usrdata=Table(usrdata[sciIdx]), strict=True)
    fitstbl.finalize_usr_build(ftdict, setups[0])
    mkey = fitstbl.master_key(0, det=args.det)

    # Load the frame data
    rawimage, _, _, datasec, _ = spectrograph.get_rawimage(fname, args.det)
    rawimage = procimg.trim_frame(rawimage, datasec < 1)
    frame = spectrograph.orient_image(rawimage, args.det)

    # Set paths
    if par['calibrations']['caldir'] == 'default':
        mdir = os.path.join(par['rdx']['redux_path'], 'Masters')
    else:
        mdir = par['calibrations']['caldir']

    if not os.path.exists(mdir):
        mdir_base = os.path.join(os.getcwd(), os.path.basename(mdir))
        msgs.warn('Master file dir: {0} does not exist. Using {1}'.format(mdir, mdir_base))
        mdir = mdir_base

    # Load the tslits_dict
    trc_file = os.path.join(mdir, MasterFrame.construct_file_name('Edges', mkey)) + '.gz'
    tslits_dict = edgetrace.EdgeTraceSet.from_file(trc_file).convert_to_tslits_dict()

    # Derive an appropriate output filename
    prefix = os.path.splitext(file_base)
    if prefix[1] == ".gz":
        prefix = os.path.splitext(prefix[0])[0]
    else:
        prefix = prefix[0]
    outname = "{0:s}_skyregions.fits".format(prefix)

    # Finally, initialise the GUI
    skyreg = SkySubGUI.initialize(args.det, frame, tslits_dict, outname=outname, runtime=False, printout=True)

    # Get the results
    skyreg.get_result()
Ejemplo n.º 3
0
    def __init__(self,
                 tslits_dict,
                 tilts,
                 wv_calib,
                 spectrograph,
                 maskslits,
                 master_key=None,
                 master_dir=None,
                 reuse_masters=False):

        #    def __init__(self, spectrograph, tslits_dict, tilts, wv_calib, maskslits,
        #                 master_key=None, master_dir=None, reuse_masters=False):

        # MasterFrame
        MasterFrame.__init__(self,
                             self.master_type,
                             master_dir=master_dir,
                             master_key=master_key,
                             reuse_masters=reuse_masters)

        # Required parameters
        self.spectrograph = spectrograph

        self.tslits_dict = tslits_dict
        self.tilts = tilts
        self.wv_calib = wv_calib
        self.slitmask = pixels.tslits2mask(
            self.tslits_dict) if tslits_dict is not None else None
        # TODO: only echelle is ever used.  Do we need to keep the whole
        # thing?
        self.par = wv_calib['par'] if wv_calib is not None else None

        self.maskslits = maskslits

        # List to hold ouptut from inspect about what module create the image?
        self.steps = []

        # Main output
        self.mswave = None
Ejemplo n.º 4
0
    def load_from_file(filename, return_header=False):
        """
        Load the wavelength image data from a saved master frame.

        Args:
            filename (:obj:`str`, optional):
                Name of the master frame file.
            return_header (:obj:`bool`, optional):
                Return the header

        Returns:
            tuple: Returns an `numpy.ndarray`_ with the wavelength
            image.  Also returns the primary header, if requested.
        """
        # Use of super() to call staticmethods of the base class seems
        # like a bit of a mess (bound vs. unbound methods).  There's a
        # syntax that works, but for now, I'm just going to call the
        # static method explicitly without using super().  See:
        # https://stackoverflow.com/questions/26788214/super-and-staticmethod-interaction
        return MasterFrame.load_from_file(filename,
                                          'WAVE',
                                          return_header=return_header)
Ejemplo n.º 5
0
def main(args):

    # List only?
    hdu = fits.open(args.file)
    head0 = hdu[0].header
    if args.list:
        hdu.info()
        return

    # Setup for PYPIT imports
    msgs.reset(verbosity=2)

    # Init
    sdet = get_dnum(args.det, prefix=False)

    # One detector, sky sub for now
    names = [hdu[i].name for i in range(len(hdu))]

    try:
        exten = names.index('DET{:s}-PROCESSED'.format(sdet))
    except:  # Backwards compatability
        msgs.error(
            'Requested detector {:s} was not processed.\n'
            'Maybe you chose the wrong one to view?\n'
            'Set with --det= or check file contents with --list'.format(sdet))
    sciimg = hdu[exten].data
    try:
        exten = names.index('DET{:s}-SKY'.format(sdet))
    except:  # Backwards compatability
        msgs.error(
            'Requested detector {:s} has no sky model.\n'
            'Maybe you chose the wrong one to view?\n'
            'Set with --det= or check file contents with --list'.format(sdet))
    skymodel = hdu[exten].data
    try:
        exten = names.index('DET{:s}-MASK'.format(sdet))
    except ValueError:  # Backwards compatability
        msgs.error(
            'Requested detector {:s} has no bit mask.\n'
            'Maybe you chose the wrong one to view?\n'
            'Set with --det= or check file contents with --list'.format(sdet))
    mask = hdu[exten].data
    try:
        exten = names.index('DET{:s}-IVARMODEL'.format(sdet))
    except ValueError:  # Backwards compatability
        msgs.error(
            'Requested detector {:s} has no IVARMODEL.\n'
            'Maybe you chose the wrong one to view?\n' +
            'Set with --det= or check file contents with --list'.format(sdet))
    ivarmodel = hdu[exten].data
    # Read in the object model for residual map
    try:
        exten = names.index('DET{:s}-OBJ'.format(sdet))
    except ValueError:  # Backwards compatability
        msgs.error(
            'Requested detector {:s} has no object model.\n'
            'Maybe you chose the wrong one to view?\n' +
            'Set with --det= or check file contents with --list'.format(sdet))
    objmodel = hdu[exten].data
    # Get waveimg
    mdir = head0['PYPMFDIR'] + '/'
    if not os.path.exists(mdir):
        mdir_base = os.path.basename(os.path.dirname(mdir)) + '/'
        msgs.warn('Master file dir: {0} does not exist. Using ./{1}'.format(
            mdir, mdir_base))
        mdir = mdir_base

    trace_key = '{0}_{1:02d}'.format(head0['TRACMKEY'], args.det)
    trc_file = os.path.join(
        mdir, MasterFrame.construct_file_name('Trace', trace_key))

    wave_key = '{0}_{1:02d}'.format(head0['ARCMKEY'], args.det)
    waveimg = os.path.join(mdir,
                           MasterFrame.construct_file_name('Wave', wave_key))

    tslits_dict = TraceSlits.load_from_file(trc_file)[0]
    slitmask = pixels.tslits2mask(tslits_dict)
    shape = (tslits_dict['nspec'], tslits_dict['nspat'])
    slit_ids = [
        trace_slits.get_slitid(shape, tslits_dict['slit_left'],
                               tslits_dict['slit_righ'], ii)[0]
        for ii in range(tslits_dict['slit_left'].shape[1])
    ]
    # Show the bitmask?
    mask_in = mask if args.showmask else None

    # Object traces
    spec1d_file = args.file.replace('spec2d', 'spec1d')

    det_nm = 'DET{:s}'.format(sdet)
    if os.path.isfile(spec1d_file):
        hdulist_1d = fits.open(spec1d_file)
    else:
        hdulist_1d = []
        msgs.warn('Could not find spec1d file: {:s}'.format(spec1d_file) +
                  msgs.newline() +
                  '                          No objects were extracted.')

    # Unpack the bitmask
    bitMask = bitmask()
    bpm, crmask, satmask, minmask, offslitmask, nanmask, ivar0mask, ivarnanmask, extractmask \
            = bitMask.unpack(mask)

    # Now show each image to a separate channel

    # SCIIMG
    image = sciimg  # Raw science image
    (mean, med, sigma) = sigma_clipped_stats(image[mask == 0],
                                             sigma_lower=5.0,
                                             sigma_upper=5.0)
    cut_min = mean - 1.0 * sigma
    cut_max = mean + 4.0 * sigma
    chname_skysub = 'sciimg-det{:s}'.format(sdet)
    # Clear all channels at the beginning
    viewer, ch = ginga.show_image(image,
                                  chname=chname_skysub,
                                  waveimg=waveimg,
                                  bitmask=mask_in,
                                  clear=True)
    #, cuts=(cut_min, cut_max), wcs_match=True)
    ginga.show_slits(viewer, ch, tslits_dict['slit_left'],
                     tslits_dict['slit_righ'], slit_ids)
    #, args.det)

    # SKYSUB
    image = (sciimg - skymodel) * (mask == 0)  # sky subtracted image
    (mean, med, sigma) = sigma_clipped_stats(image[mask == 0],
                                             sigma_lower=5.0,
                                             sigma_upper=5.0)
    cut_min = mean - 1.0 * sigma
    cut_max = mean + 4.0 * sigma
    chname_skysub = 'skysub-det{:s}'.format(sdet)
    # Clear all channels at the beginning
    # TODO: JFH For some reason Ginga crashes when I try to put cuts in here.
    viewer, ch = ginga.show_image(
        image, chname=chname_skysub, waveimg=waveimg,
        bitmask=mask_in)  #, cuts=(cut_min, cut_max),wcs_match=True)
    show_trace(hdulist_1d, det_nm, viewer, ch)
    ginga.show_slits(viewer, ch, tslits_dict['slit_left'],
                     tslits_dict['slit_righ'], slit_ids)
    #, args.det)

    # SKRESIDS
    chname_skyresids = 'sky_resid-det{:s}'.format(sdet)
    image = (sciimg - skymodel) * np.sqrt(ivarmodel) * (mask == 0
                                                        )  # sky residual map
    viewer, ch = ginga.show_image(image,
                                  chname_skyresids,
                                  waveimg=waveimg,
                                  cuts=(-5.0, 5.0),
                                  bitmask=mask_in)  #,wcs_match=True)
    show_trace(hdulist_1d, det_nm, viewer, ch)
    ginga.show_slits(viewer, ch, tslits_dict['slit_left'],
                     tslits_dict['slit_righ'], slit_ids)
    #, args.det)

    # RESIDS
    chname_resids = 'resid-det{:s}'.format(sdet)
    # full model residual map
    image = (sciimg - skymodel - objmodel) * np.sqrt(ivarmodel) * (mask == 0)
    viewer, ch = ginga.show_image(image,
                                  chname=chname_resids,
                                  waveimg=waveimg,
                                  cuts=(-5.0, 5.0),
                                  bitmask=mask_in)  #,wcs_match=True)
    show_trace(hdulist_1d, det_nm, viewer, ch)
    ginga.show_slits(viewer, ch, tslits_dict['slit_left'],
                     tslits_dict['slit_righ'], slit_ids)
    #, args.det)

    # After displaying all the images sync up the images with WCS_MATCH
    shell = viewer.shell()
    out = shell.start_global_plugin('WCSMatch')
    out = shell.call_global_plugin_method('WCSMatch', 'set_reference_channel',
                                          [chname_resids], {})

    if args.embed:
        IPython.embed()
Ejemplo n.º 6
0
def load_coadd2d_stacks(spec2d_files, det):
    """

    Args:
        spec2d_files: list
           List of spec2d filenames
        det: int
           detector in question

    Returns:
        stack_dict: dict
           Dictionary containing all the images and keys required for perfomring 2d coadds.

    """

    # Get the detector string
    sdet = parse.get_dnum(det, prefix=False)

    # Get the master dir
    head0 = fits.getheader(spec2d_files[0])
    master_dir = os.path.basename(head0['PYPMFDIR'])
    redux_path =  os.getcwd()
    master_path = os.path.join(redux_path, master_dir)

    # Grab the files
    head2d_list=[]
    tracefiles = []
    waveimgfiles = []
    tiltfiles = []
    spec1d_files = []
    for f in spec2d_files:
        head = fits.getheader(f)
        trace_key = '{0}_{1:02d}'.format(head['TRACMKEY'], det)
        wave_key = '{0}_{1:02d}'.format(head['ARCMKEY'], det)

        head2d_list.append(head)
        spec1d_files.append(f.replace('spec2d', 'spec1d'))
        tracefiles.append(os.path.join(master_path,
                                       MasterFrame.construct_file_name('Trace', trace_key)))
        waveimgfiles.append(os.path.join(master_path,
                                         MasterFrame.construct_file_name('Wave', wave_key)))
        tiltfiles.append(os.path.join(master_path,
                                      MasterFrame.construct_file_name('Tilts', wave_key)))

    nfiles = len(spec2d_files)

    specobjs_list = []
    head1d_list=[]
    # TODO Sort this out with the correct detector extensions etc.
    # Read in the image stacks
    for ifile in range(nfiles):
        waveimg = WaveImage.load_from_file(waveimgfiles[ifile])
        tilts = WaveTilts.load_from_file(tiltfiles[ifile])
        hdu = fits.open(spec2d_files[ifile])
        # One detector, sky sub for now
        names = [hdu[i].name for i in range(len(hdu))]
        # science image
        try:
            exten = names.index('DET{:s}-PROCESSED'.format(sdet))
        except:  # Backwards compatability
            det_error_msg(exten, sdet)
        sciimg = hdu[exten].data
        # skymodel
        try:
            exten = names.index('DET{:s}-SKY'.format(sdet))
        except:  # Backwards compatability
            det_error_msg(exten, sdet)
        skymodel = hdu[exten].data
        # Inverse variance model
        try:
            exten = names.index('DET{:s}-IVARMODEL'.format(sdet))
        except ValueError:  # Backwards compatability
            det_error_msg(exten, sdet)
        sciivar = hdu[exten].data
        # Mask
        try:
            exten = names.index('DET{:s}-MASK'.format(sdet))
        except ValueError:  # Backwards compatability
            det_error_msg(exten, sdet)
        mask = hdu[exten].data
        if ifile == 0:
            # the two shapes accomodate the possibility that waveimg and tilts are binned differently
            shape_wave = (nfiles,waveimg.shape[0],waveimg.shape[1])
            shape_sci = (nfiles,sciimg.shape[0],sciimg.shape[1])
            waveimg_stack = np.zeros(shape_wave,dtype=float)
            tilts_stack = np.zeros(shape_wave,dtype=float)
            sciimg_stack = np.zeros(shape_sci,dtype=float)
            skymodel_stack = np.zeros(shape_sci,dtype=float)
            sciivar_stack = np.zeros(shape_sci,dtype=float)
            mask_stack = np.zeros(shape_sci,dtype=float)

        waveimg_stack[ifile,:,:] = waveimg
        tilts_stack[ifile,:,:] = tilts['tilts']
        sciimg_stack[ifile,:,:] = sciimg
        sciivar_stack[ifile,:,:] = sciivar
        mask_stack[ifile,:,:] = mask
        skymodel_stack[ifile,:,:] = skymodel

        sobjs, head = load.load_specobjs(spec1d_files[ifile])
        head1d_list.append(head)
        specobjs_list.append(sobjs)

    # Right now we assume there is a single tslits_dict for all images and read in the first one
    # TODO this needs to become a tslits_dict for each file to accomodate slits defined by flats taken on different
    # nights
    tslits_dict, _ = TraceSlits.load_from_file(tracefiles[0])
    spectrograph = util.load_spectrograph(tslits_dict['spectrograph'])
    slitmask = pixels.tslits2mask(tslits_dict)
    slitmask_stack = np.einsum('i,jk->ijk', np.ones(nfiles), slitmask)

    # Fill the master key dict
    head2d = head2d_list[0]
    master_key_dict = {}
    master_key_dict['frame'] = head2d['FRAMMKEY']  + '_{:02d}'.format(det)
    master_key_dict['bpm']   = head2d['BPMMKEY']   + '_{:02d}'.format(det)
    master_key_dict['bias']  = head2d['BIASMKEY']  + '_{:02d}'.format(det)
    master_key_dict['arc']   = head2d['ARCMKEY']   + '_{:02d}'.format(det)
    master_key_dict['trace'] = head2d['TRACMKEY']  + '_{:02d}'.format(det)
    master_key_dict['flat']  = head2d['FLATMKEY']  + '_{:02d}'.format(det)
    stack_dict = dict(specobjs_list=specobjs_list, tslits_dict=tslits_dict,
                      slitmask_stack=slitmask_stack,
                      sciimg_stack=sciimg_stack, sciivar_stack=sciivar_stack,
                      skymodel_stack=skymodel_stack, mask_stack=mask_stack,
                      tilts_stack=tilts_stack, waveimg_stack=waveimg_stack,
                      head1d_list = head1d_list, head2d_list=head2d_list,
                      redux_path=redux_path, master_path=master_path, master_dir=master_dir,
                      master_key_dict=master_key_dict,
                      spectrograph = tslits_dict['spectrograph'])

    return stack_dict
Ejemplo n.º 7
0
def load_kast_blue_masters(aimg=False,
                           edges=False,
                           tilts=False,
                           wvcalib=False,
                           pixflat=False):
    """
    Load up the set of shane_kast_blue master frames

    Order is Arc, edges, tilts_dict, wv_calib, pixflat

    Args:
        get_spectrograph:
        aimg:
        edges (bool, optional):
            Load the slit edges
        tilts:
        datasec:
        wvcalib:

    Returns:
        list: List of calibration items

    """

    spectrograph = load_spectrograph('shane_kast_blue')
    spectrograph.naxis = (2112, 350)  # Image shape with overscan

    master_dir = os.path.join(os.getenv('PYPEIT_DEV'), 'Cooked',
                              'Shane_Kast_blue')

    reuse_masters = True

    # Load up the Masters
    ret = []

    master_key = 'A_1_01'
    if aimg:
        AImg = arcimage.ArcImage(spectrograph,
                                 master_key=master_key,
                                 master_dir=master_dir,
                                 reuse_masters=reuse_masters)
        msarc = AImg.load()
        ret.append(msarc)

    if edges:
        trace_file = '{0}.gz'.format(
            os.path.join(master_dir,
                         MasterFrame.construct_file_name('Edges', master_key)))
        ret.append(edgetrace.EdgeTraceSet.from_file(trace_file))

    if tilts:
        tilts_file = os.path.join(
            master_dir, MasterFrame.construct_file_name('Tilts', master_key))
        tilts_dict = wavetilts.WaveTilts.from_master_file(
            tilts_file).tilts_dict
        ret.append(tilts_dict)

    if wvcalib:
        calib_file = os.path.join(
            master_dir,
            MasterFrame.construct_file_name('WaveCalib',
                                            master_key,
                                            file_format='json'))
        wv_calib = waveio.load_wavelength_calibration(calib_file)
        ret.append(wv_calib)

    # Pixelflat
    if pixflat:
        calib_file = os.path.join(
            master_dir, MasterFrame.construct_file_name('Flat', master_key))
        flatField = flatfield.FlatField.from_master_file(calib_file)
        ret.append(flatField.mspixelflat)

    # Return
    return ret
Ejemplo n.º 8
0
def main(args):

    # List only?
    hdu = fits.open(args.file)
    head0 = hdu[0].header
    if args.list:
        hdu.info()
        return

    # Init
    sdet = get_dnum(args.det, prefix=False)

    # One detector, sky sub for now
    names = [hdu[i].name for i in range(len(hdu))]

    try:
        exten = names.index('DET{:s}-PROCESSED'.format(sdet))
    except:  # Backwards compatability
        msgs.error('Requested detector {:s} was not processed.\n'
                   'Maybe you chose the wrong one to view?\n'
                   'Set with --det= or check file contents with --list'.format(sdet))
    sciimg = hdu[exten].data
    try:
        exten = names.index('DET{:s}-SKY'.format(sdet))
    except:  # Backwards compatability
        msgs.error('Requested detector {:s} has no sky model.\n'
                   'Maybe you chose the wrong one to view?\n'
                   'Set with --det= or check file contents with --list'.format(sdet))
    skymodel = hdu[exten].data
    try:
        exten = names.index('DET{:s}-MASK'.format(sdet))
    except ValueError:  # Backwards compatability
        msgs.error('Requested detector {:s} has no bit mask.\n'
                   'Maybe you chose the wrong one to view?\n'
                   'Set with --det= or check file contents with --list'.format(sdet))

    mask = hdu[exten].data
    frame = (sciimg - skymodel) * (mask == 0)

    mdir = head0['PYPMFDIR']
    if not os.path.exists(mdir):
        mdir_base = os.path.join(os.getcwd(), os.path.basename(mdir))
        msgs.warn('Master file dir: {0} does not exist. Using {1}'.format(mdir, mdir_base))
        mdir = mdir_base

    trace_key = '{0}_{1:02d}'.format(head0['TRACMKEY'], args.det)
    trc_file = os.path.join(mdir, MasterFrame.construct_file_name('Trace', trace_key))

    # TODO -- Remove this once the move to Edges is complete
    if args.old:
        tslits_dict = TraceSlits.load_from_file(trc_file)[0]
    else:
        trc_file = trc_file.replace('Trace', 'Edges')+'.gz'
        tslits_dict = edgetrace.EdgeTraceSet.from_file(trc_file).convert_to_tslits_dict()
    shape = (tslits_dict['nspec'], tslits_dict['nspat'])
    slit_ids = [trace_slits.get_slitid(shape, tslits_dict['slit_left'], tslits_dict['slit_righ'], ii)[0]
                for ii in range(tslits_dict['slit_left'].shape[1])]

    # Object traces
    spec1d_file = args.file.replace('spec2d', 'spec1d')

    det_nm = 'DET{:s}'.format(sdet)
    if os.path.isfile(spec1d_file):
        hdulist_1d = fits.open(spec1d_file)
    else:
        hdulist_1d = []
        msgs.warn('Could not find spec1d file: {:s}'.format(spec1d_file) + msgs.newline() +
                  '                          No objects were extracted.')
    tslits_dict['objtrc'] = parse_traces(hdulist_1d, det_nm)

    # TODO :: Need to include standard star trace in the spec2d files
    std_trace = None

    # Extract some trace models
    fwhm = 2  # Start with some default value
    # Brightest object on slit
    trace_model_obj = None
    trace_model_dict = dict()
    if len(tslits_dict['objtrc']['pkflux']) > 0:
        smash_peakflux = tslits_dict['objtrc']['pkflux']
        ibri = smash_peakflux.argmax()
        trace_model_obj = tslits_dict['objtrc']['traces'][ibri]
        fwhm = tslits_dict['objtrc']['fwhm'][ibri]
    trace_model_dict['object'] = dict(trace_model=trace_model_obj, fwhm=fwhm)
    # Standard star trace
    trace_model_dict['std'] = dict(trace_model=std_trace, fwhm=fwhm)
    # Trace of the slit edge
    trace_model_dict['slit'] = dict(trace_model=tslits_dict['slit_left'].copy(), fwhm=fwhm)
    tslits_dict['trace_model'] = trace_model_dict

    # Finally, initialise the GUI
    gui_object_find.initialise(args.det, frame, tslits_dict, None, printout=True, slit_ids=slit_ids)
Ejemplo n.º 9
0
def load_kast_blue_masters(aimg=False,
                           tslits=False,
                           tilts=False,
                           wvcalib=False,
                           pixflat=False):
    """
    Load up the set of shane_kast_blue master frames

    Order is Arc, tslits_dict, tilts_dict, wv_calib, pixflat

    Args:
        get_spectrograph:
        aimg:
        tslits (bool, optional):
            Load the tslits_dict
        tilts:
        datasec:
        wvcalib:

    Returns:
        list: List of calibration items

    """

    spectrograph = load_spectrograph('shane_kast_blue')
    spectrograph.naxis = (2112, 350)  # Image shape with overscan

    master_dir = os.path.join(os.getenv('PYPEIT_DEV'), 'Cooked',
                              'Shane_Kast_blue')
    #    master_dir = root_path+'_'+spectrograph.spectrograph

    reuse_masters = True

    # Load up the Masters
    ret = []

    #    if get_spectrograph:
    #        ret.append(spectrograph)

    master_key = 'A_1_01'
    if aimg:
        AImg = arcimage.ArcImage(spectrograph,
                                 master_key=master_key,
                                 master_dir=master_dir,
                                 reuse_masters=reuse_masters)
        msarc = AImg.load()
        ret.append(msarc)

    if tslits:
        trace_file = os.path.join(
            master_dir, MasterFrame.construct_file_name('Trace', master_key))
        tslits_dict, mstrace = traceslits.TraceSlits.load_from_file(trace_file)
        ret.append(tslits_dict)
        ret.append(mstrace)

    if tilts:
        tilts_file = os.path.join(
            master_dir, MasterFrame.construct_file_name('Tilts', master_key))
        tilts_dict = wavetilts.WaveTilts.load_from_file(tilts_file)
        ret.append(tilts_dict)

    if wvcalib:
        calib_file = os.path.join(
            master_dir,
            MasterFrame.construct_file_name('WaveCalib',
                                            master_key,
                                            file_format='json'))
        wv_calib = waveio.load_wavelength_calibration(calib_file)
        ret.append(wv_calib)

    # Pixelflat
    if pixflat:
        flatField = flatfield.FlatField(
            spectrograph,
            spectrograph.default_pypeit_par()['calibrations']
            ['pixelflatframe'])
        calib_file = os.path.join(
            master_dir, MasterFrame.construct_file_name('Flat', master_key))
        pixelflat = flatField.load_from_file(calib_file, 2)
        ret.append(pixelflat)

    # Return
    return ret
Ejemplo n.º 10
0
def main(args):

    import os
    import sys
    import astropy.io.fits as fits
    from pypeit.masterframe import MasterFrame
    from pypeit.spectrographs.util import load_spectrograph
    from pypeit.core import parse
    from pypeit.core.gui import identify as gui_identify
    from pypeit.core.wavecal import waveio, templates
    from pypeit.wavecalib import WaveCalib
    from pypeit import edgetrace
    from pypeit.images import pypeitimage

    # Load the MasterArc file
    if os.path.exists(args.file):
        arcfil = args.file
    else:
        try:
            arcfil = "Masters/{0:s}".format(args.file)
        except FileNotFoundError:
            print("Could not find MasterArc file.")
            sys.exit()
    msarc = pypeitimage.PypeItImage.from_file(arcfil)

    mdir = msarc.head0['MSTRDIR']
    mkey = msarc.head0['MSTRKEY']

    # Load the spectrograph
    specname = msarc.head0['PYP_SPEC']
    spec = load_spectrograph(specname)
    par = spec.default_pypeit_par()['calibrations']['wavelengths']

    # Get the lamp list
    if args.lamps is None:
        lamplist = par['lamps']
        if lamplist is None:
            print("ERROR :: Cannot determine the lamps")
            sys.exit()
    else:
        lamplist = args.lamps.split(",")
    par['lamps'] = lamplist

    # Load the tslits_dict
    trc_file = os.path.join(mdir, MasterFrame.construct_file_name('Edges', mkey, file_format='fits.gz'))
    tslits_dict = edgetrace.EdgeTraceSet.from_file(trc_file).convert_to_tslits_dict()

    # Check if a solution exists
    solnname = os.path.join(mdir, MasterFrame.construct_file_name('WaveCalib', mkey, file_format='json'))
    wv_calib = waveio.load_wavelength_calibration(solnname) if os.path.exists(solnname) else None

    # Load the MasterFrame (if it exists and is desired)?
    wavecal = WaveCalib(msarc, tslits_dict, spec, par)
    arccen, arc_maskslit = wavecal.extract_arcs()

    binspec, binspat = parse.parse_binning(spec.get_meta_value(msarc.head0['F1'], 'binning'))

    # Launch the identify window
    arcfitter = gui_identify.initialise(arccen, slit=int(args.slit), par=par, wv_calib_all=wv_calib)
    final_fit = arcfitter.get_results()

    # Ask the user if they wish to store the result in PypeIt calibrations
    ans = ''
    while ans != 'y' and ans != 'n':
        ans = input("Would you like to store this wavelength solution in the archive? (y/n):")
    if ans == 'y' and final_fit['rms'] < 0.1:
        gratname = fits.getheader(msarc.head0['F1'])[spec.meta['dispname']['card']].replace("/", "_")
        dispangl = "UNKNOWN"
        templates.pypeit_identify_record(final_fit, binspec, specname, gratname, dispangl, outdir=mdir)
        print("Your wavelength solution has been stored")
        print("Please consider sending your solution to the PypeIt team!")
Ejemplo n.º 11
0
def load_kast_blue_masters(aimg=False,
                           tslits=False,
                           tilts=False,
                           datasec=False,
                           wvcalib=False):
    """
    Load up the set of shane_kast_blue master frames

    Args:
        get_spectrograph:
        aimg:
        tslits:
        tilts:
        datasec:
        wvcalib:

    Returns:

    """

    spectrograph = load_spectrograph('shane_kast_blue')
    spectrograph.naxis = (2112, 350)  # Image shape with overscan

    master_dir = os.path.join(os.getenv('PYPEIT_DEV'), 'Cooked',
                              'Shane_Kast_blue')
    #    master_dir = root_path+'_'+spectrograph.spectrograph

    reuse_masters = True

    # Load up the Masters
    ret = []

    #    if get_spectrograph:
    #        ret.append(spectrograph)

    master_key = 'A_1_01'
    if aimg:
        AImg = arcimage.ArcImage(spectrograph,
                                 master_key=master_key,
                                 master_dir=master_dir,
                                 reuse_masters=reuse_masters)
        msarc = AImg.load()
        ret.append(msarc)

    if tslits:
        trace_file = os.path.join(
            master_dir, MasterFrame.construct_file_name('Trace', master_key))
        tslits_dict, mstrace = traceslits.TraceSlits.load_from_file(trace_file)
        ret.append(tslits_dict)
        ret.append(mstrace)

    if tilts:
        tilts_file = os.path.join(
            master_dir, MasterFrame.construct_file_name('Tilts', master_key))
        tilts_dict = wavetilts.WaveTilts.load_from_file(tilts_file)
        ret.append(tilts_dict)

    if datasec:
        datasec_img = spectrograph.get_datasec_img(data_path('b1.fits.gz'), 1)
        ret.append(datasec_img)

    if wvcalib:
        calib_file = os.path.join(
            master_dir,
            MasterFrame.construct_file_name('WaveCalib',
                                            master_key,
                                            file_format='json'))
        wv_calib = waveio.load_wavelength_calibration(calib_file)
        ret.append(wv_calib)

    # Return
    return ret