def test_exp_cov_matrix():
    df = get_data()
    S = risk_models.exp_cov(df)
    assert S.shape == (20, 20)
    assert S.index.equals(df.columns)
    assert S.index.equals(S.columns)
    assert S.notnull().all().all()
    S2 = risk_models.exp_cov(df, frequency=2)
    pd.testing.assert_frame_equal(S / 126, S2)
def test_exp_cov_limits():
    df = get_data()
    sample_cov = risk_models.sample_cov(df)
    S = risk_models.exp_cov(df)
    assert not np.allclose(sample_cov, S)

    # As span gets larger, it should tend towards sample covariance
    S2 = risk_models.exp_cov(df, span=1e20)
    assert np.abs(S2 - sample_cov).max().max() < 1e-3
Ejemplo n.º 3
0
def test_exp_cov_matrix():
    df = get_data()
    S = risk_models.exp_cov(df)
    assert S.shape == (20, 20)
    assert S.index.equals(df.columns)
    assert S.index.equals(S.columns)
    assert S.notnull().all().all()
    S2 = risk_models.exp_cov(df, frequency=2)
    pd.testing.assert_frame_equal(S / 126, S2)
Ejemplo n.º 4
0
def test_exp_cov_limits():
    df = get_data()
    sample_cov = risk_models.sample_cov(df)
    S = risk_models.exp_cov(df)
    assert not np.allclose(sample_cov, S)

    # As span gets larger, it should tend towards sample covariance
    S2 = risk_models.exp_cov(df, span=1e20)
    assert np.abs(S2 - sample_cov).max().max() < 1e-3
Ejemplo n.º 5
0
def test_exp_cov_matrix():
    df = get_data()
    S = risk_models.exp_cov(df)
    assert S.shape == (20, 20)
    assert S.index.equals(df.columns)
    assert S.index.equals(S.columns)
    assert S.notnull().all().all()
    assert risk_models._is_positive_semidefinite(S)
    S2 = risk_models.exp_cov(df, frequency=2)
    pd.testing.assert_frame_equal(S / 126, S2)
    # Cover that it works on np.ndarray, with a warning
    with pytest.warns(RuntimeWarning):
        S2_np = risk_models.exp_cov(df.to_numpy(), frequency=2)
        np.testing.assert_equal(S2_np, S2.to_numpy())
    # Too short a span causes a warning.
    with pytest.warns(UserWarning):
        risk_models.exp_cov(df, frequency=2, span=9)
def portfolio_optimization():
    optimal_path = "optimal_weights.txt"
    if not os.path.exists(optimal_path):
        data_path = os.path.join("tickers_data", "all_data.csv")
        if not os.path.exists(data_path):
            data = get_data.load_data(
            )  # [["Ticker", "close"]].groupby(["Ticker"]).T
        else:
            data = pd.read_csv(data_path)

        data_series = pd.pivot_table(data,
                                     index="datetime",
                                     columns="Ticker",
                                     values="close")
        # print(data_series.head())
        mu = expected_returns.ema_historical_return(data_series)
        cov = risk_models.exp_cov(data_series)
        # plotting.plot_covariance(cov, plot_correlation=True)
        # print(mu, cov)
        ef = efficient_frontier.EfficientFrontier(mu,
                                                  cov,
                                                  weight_bounds=(0, 1))
        ef.add_objective(objective_functions.L2_reg, gamma=1)
        ef.max_sharpe(0.02)
        weights_portfolio = ef.weights

        # ef.max_sharpe(risk_free_rate=0.002)
        # ef.max_sharpe()
        dict_keys = data_series.columns.values.tolist()
        # print(dict_keys)

        weights = {}
        for key, value in zip(dict_keys, weights_portfolio):
            # print(f"{key} - {value}")
            weights[key] = value

        # print("SORTED WEIGHTS")
        sorted_weights = dict(
            sorted(weights.items(), key=lambda item: item[1], reverse=True))
        '''for key in sorted_weights.keys():
            print(f"{key} - {sorted_weights[key]}")
        '''
        cleaned_weights = {
            k: v
            for k, v in sorted_weights.items() if v > 10e-4
        }
        with open(optimal_path, "w") as file:
            file.write(json.dumps(cleaned_weights))
        # plt.pie(cleaned_weights.values(), labels=cleaned_weights.keys())
        # plt.show()
    else:
        with open(optimal_path, "r") as file:
            cleaned_weights = json.loads(file.read())

    return cleaned_weights
Ejemplo n.º 7
0
def test_cla_custom_bounds():
    bounds = [(0.01, 0.13), (0.02, 0.11)] * 10
    cla = CLA(*setup_cla(data_only=True), weight_bounds=bounds)
    df = get_data()
    cla.cov_matrix = risk_models.exp_cov(df).values
    w = cla.min_volatility()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(cla.tickers)
    np.testing.assert_almost_equal(cla.weights.sum(), 1)
    assert (0.01 <= cla.weights[::2]).all() and (cla.weights[::2] <=
                                                 0.13).all()
    assert (0.02 <= cla.weights[1::2]).all() and (cla.weights[1::2] <=
                                                  0.11).all()
    # Test polymorphism of the weight_bounds param.
    bounds2 = ([bounds[0][0], bounds[1][0]] * 10,
               [bounds[0][1], bounds[1][1]] * 10)
    cla2 = CLA(*setup_cla(data_only=True), weight_bounds=bounds2)
    cla2.cov_matrix = risk_models.exp_cov(df).values
    w2 = cla2.min_volatility()
    assert dict(w2) == dict(w)
Ejemplo n.º 8
0
def test_cla_max_sharpe_exp_cov():
    df = get_data()
    cla = setup_cla()
    cla.cov_matrix = risk_models.exp_cov(df).values
    w = cla.max_sharpe()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(cla.tickers)
    np.testing.assert_almost_equal(cla.weights.sum(), 1)
    np.testing.assert_allclose(
        cla.portfolio_performance(),
        (0.32971891062187103, 0.17670121760851704, 1.7527831149871063),
    )
Ejemplo n.º 9
0
def test_ef_plot():
    df = get_data()
    rets = expected_returns.mean_historical_return(df)
    S = risk_models.exp_cov(df)
    cla = CLA(rets, S)

    ax = Plotting.plot_efficient_frontier(cla, showfig=False)
    assert len(ax.findobj()) == 137
    ax = Plotting.plot_efficient_frontier(cla,
                                          show_assets=False,
                                          showfig=False)
    assert len(ax.findobj()) == 149
Ejemplo n.º 10
0
def test_cla_min_volatility_exp_cov_short():
    cla = CLA(*setup_cla(data_only=True), weight_bounds=(-1, 1))
    df = get_data()
    cla.cov_matrix = risk_models.exp_cov(df).values
    w = cla.min_volatility()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(cla.tickers)
    np.testing.assert_almost_equal(cla.weights.sum(), 1)
    np.testing.assert_allclose(
        cla.portfolio_performance(),
        (0.23215576461823062, 0.1325959061825329, 1.6000174569958052),
    )
Ejemplo n.º 11
0
def test_cla_plot_ax():
    plt.figure()
    df = get_data()
    rets = expected_returns.mean_historical_return(df)
    S = risk_models.exp_cov(df)
    cla = CLA(rets, S)

    fig, ax = plt.subplots(figsize=(12, 10))
    plotting.plot_efficient_frontier(cla, ax=ax)
    assert len(ax.findobj()) == 143
    plt.close()
    plt.close()
Ejemplo n.º 12
0
def test_cla_min_volatility_exp_cov_short():
    cla = CLA(*setup_cla(data_only=True), weight_bounds=(-1, 1))
    df = get_data()
    cla.cov_matrix = risk_models.exp_cov(df).values
    w = cla.min_volatility()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(cla.tickers)
    np.testing.assert_almost_equal(cla.weights.sum(), 1)
    np.testing.assert_allclose(
        cla.portfolio_performance(),
        (0.2634735528776959, 0.13259590618253303, 1.8362071642131053),
    )
Ejemplo n.º 13
0
def test_cla_max_sharpe_exp_cov():
    df = get_data()
    cla = setup_cla()
    cla.cov_matrix = risk_models.exp_cov(df).values
    w = cla.max_sharpe()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(cla.tickers)
    np.testing.assert_almost_equal(cla.weights.sum(), 1)
    np.testing.assert_allclose(
        cla.portfolio_performance(),
        (0.3619453128519127, 0.1724297730592084, 1.9830990135009723),
    )
Ejemplo n.º 14
0
def test_max_sharpe_exp_cov():
    df = get_data()
    ef = setup_efficient_frontier()
    ef.cov_matrix = risk_models.exp_cov(df)
    w = ef.max_sharpe()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(ef.tickers)
    assert set(w.keys()) == set(ef.expected_returns.index)
    np.testing.assert_almost_equal(ef.weights.sum(), 1)
    assert all([i >= 0 for i in w.values()])
    np.testing.assert_allclose(
        ef.portfolio_performance(),
        (0.3678835305574766, 0.17534146043561463, 1.9840346355802103))
Ejemplo n.º 15
0
def test_cla_custom_bounds():
    bounds = [(0.01, 0.13), (0.02, 0.11)] * 10
    cla = CLA(*setup_cla(data_only=True), weight_bounds=bounds)
    df = get_data()
    cla.cov_matrix = risk_models.exp_cov(df).values
    w = cla.min_volatility()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(cla.tickers)
    np.testing.assert_almost_equal(cla.weights.sum(), 1)
    assert (0.01 <= cla.weights[::2]).all() and (cla.weights[::2] <=
                                                 0.13).all()
    assert (0.02 <= cla.weights[1::2]).all() and (cla.weights[1::2] <=
                                                  0.11).all()
def test_max_sharpe_exp_cov():
    df = get_data()
    ef = setup_efficient_frontier()
    ef.cov_matrix = risk_models.exp_cov(df)
    w = ef.max_sharpe()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(ef.tickers)
    np.testing.assert_almost_equal(ef.weights.sum(), 1)
    assert all([i >= 0 for i in w.values()])
    np.testing.assert_allclose(
        ef.portfolio_performance(),
        (0.3678817256187322, 0.1753405505478982, 1.9840346373481956),
    )
def test_max_sharpe_exp_cov():
    df = get_data()
    ef = setup_efficient_frontier()
    ef.cov_matrix = risk_models.exp_cov(df)
    w = ef.max_sharpe()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(ef.tickers)
    np.testing.assert_almost_equal(ef.weights.sum(), 1)
    assert all([i >= 0 for i in w.values()])
    np.testing.assert_allclose(
        ef.portfolio_performance(),
        (0.33700887443850647, 0.1807332515488447, 1.7540152225548384),
    )
Ejemplo n.º 18
0
def optimMarkowitz(datatrain, datatest, pmin, pmax, optimmodel, returnmodel,
                   riskmodel, Gam, rf):

    try:
        if returnmodel == 'historical':
            mu = expected_returns.mean_historical_return(datatrain)
        elif returnmodel == 'emahistorical':
            mu = expected_returns.ema_historical_return(datatrain)

        if riskmodel == 'historicalcov':
            S = risk_models.sample_cov(datatrain)
        elif riskmodel == 'exphistoricalcov':
            S = risk_models.exp_cov(datatrain)

        ef = EfficientFrontier(mu, S, weight_bounds=(pmin, pmax))

        #gamma>0 permet de forcer l'optimiseur à utiliser plus de titres
        ef.add_objective(objective_functions.L2_reg, gamma=Gam)

        if optimmodel == 'min_volatility':
            ef.min_volatility()
        elif optimmodel == 'max_sharpe':
            ef.max_sharpe(risk_free_rate=rf)

        cleaned_weights = ef.clean_weights()  #round and clean ...
        ef.save_weights_to_file(
            '/Users/Maxime/AMUNDI/PortMgmnt/ModulePyPortfolioOpt/OptimiseurProjet/weights.csv'
        )  # save to file
        perf = ef.portfolio_performance(verbose=True, risk_free_rate=rf)
        weightsfinal = pd.read_csv(
            '/Users/Maxime/AMUNDI/PortMgmnt/ModulePyPortfolioOpt/OptimiseurProjet/weights.csv',
            header=None)

        #For the following chart
        poids = weightsfinal.to_numpy()
        poids = poids[:, 1]
        RankedDataFrame = pd.DataFrame(index=datatest.index)

        for i, rows in weightsfinal.iterrows():
            RankedDataFrame[rows[0]] = datatest[rows[0]]
        weightsfinal.rename(columns={
            0: ' Asset Class',
            1: 'Poids'
        },
                            inplace=True)
        weightsfinal['Poids'] = round(weightsfinal['Poids'] * 100, 4)

    except ValueError:
        print('Le modèle spécifié est incorrect')

    return poids, RankedDataFrame, cleaned_weights, S, mu, perf
def test_min_volatility_exp_cov_L2_reg():
    df = get_data()
    ef = setup_efficient_frontier()
    ef.add_objective(objective_functions.L2_reg)
    ef.cov_matrix = risk_models.exp_cov(df)
    w = ef.min_volatility()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(ef.tickers)
    np.testing.assert_almost_equal(ef.weights.sum(), 1)
    assert all([i >= 0 for i in w.values()])
    np.testing.assert_allclose(
        ef.portfolio_performance(),
        (0.2434082300792007, 0.17835412793427002, 1.2526103694192867),
    )
Ejemplo n.º 20
0
def test_min_volatility_exp_cov_L2_reg():
    df = get_data()
    ef = setup_efficient_frontier()
    ef.gamma = 1
    ef.cov_matrix = risk_models.exp_cov(df)
    w = ef.min_volatility()
    assert isinstance(w, dict)
    assert set(w.keys()) == set(ef.tickers)
    assert set(w.keys()) == set(ef.expected_returns.index)
    np.testing.assert_almost_equal(ef.weights.sum(), 1)
    assert all([i >= 0 for i in w.values()])
    np.testing.assert_allclose(
        ef.portfolio_performance(),
        (0.24340406492258035, 0.17835396894670616, 1.2525881326999546))
Ejemplo n.º 21
0
def test_efficient_risk_exp_cov_market_neutral():
    df = get_data()
    ef = EfficientFrontier(*setup_efficient_frontier(data_only=True),
                           weight_bounds=(-1, 1))
    ef.cov_matrix = risk_models.exp_cov(df)
    w = ef.efficient_risk(0.19, market_neutral=True)
    assert isinstance(w, dict)
    assert set(w.keys()) == set(ef.tickers)
    assert set(w.keys()) == set(ef.expected_returns.index)
    np.testing.assert_almost_equal(ef.weights.sum(), 0)
    assert (ef.weights < 1).all() and (ef.weights > -1).all()
    np.testing.assert_allclose(ef.portfolio_performance(),
                               (0.39089308906686077, 0.19, 1.9520670176494717),
                               atol=1e-6)
def test_efficient_risk_exp_cov_market_neutral():
    df = get_data()
    ef = EfficientFrontier(*setup_efficient_frontier(data_only=True),
                           weight_bounds=(-1, 1))
    ef.cov_matrix = risk_models.exp_cov(df)
    w = ef.efficient_risk(0.19, market_neutral=True)
    assert isinstance(w, dict)
    assert set(w.keys()) == set(ef.tickers)
    np.testing.assert_almost_equal(ef.weights.sum(), 0)
    assert (ef.weights < 1).all() and (ef.weights > -1).all()
    np.testing.assert_allclose(
        ef.portfolio_performance(),
        (0.3934093962620499, 0.18999999989011893, 1.9653126130421081),
        atol=1e-6,
    )
Ejemplo n.º 23
0
def test_cla_plot():
    plt.figure()
    df = get_data()
    rets = expected_returns.mean_historical_return(df)
    S = risk_models.exp_cov(df)
    cla = CLA(rets, S)

    ax = plotting.plot_efficient_frontier(cla, showfig=False)
    assert len(ax.findobj()) == 143
    plt.clf()

    ax = plotting.plot_efficient_frontier(cla, show_assets=False, showfig=False)
    assert len(ax.findobj()) == 161
    plt.clf()
    plt.close()
def test_efficient_risk_exp_cov_market_neutral():
    df = get_data()
    ef = EfficientFrontier(*setup_efficient_frontier(data_only=True),
                           weight_bounds=(-1, 1))
    ef.cov_matrix = risk_models.exp_cov(df)
    w = ef.efficient_risk(0.19, market_neutral=True)
    assert isinstance(w, dict)
    assert set(w.keys()) == set(ef.tickers)
    np.testing.assert_almost_equal(ef.weights.sum(), 0)
    assert (ef.weights < 1).all() and (ef.weights > -1).all()
    np.testing.assert_allclose(
        ef.portfolio_performance(),
        (0.3908928033782067, 0.18999999995323363, 1.9520673866815672),
        atol=1e-6,
    )
def handle_data(context, data):
    date = data.today()
    if date in context.balance_dates:
        temp = {}
        for code in context.stocks:
            history_price = data.history_bars(code,
                                              context.expected_return_days,
                                              '1d', 'close')
            if history_price is not None:
                temp.update({code: history_price})
        history_prices = pd.DataFrame(temp)
        mu = expected_returns.mean_historical_return(history_prices)
        if context.cov_method == 'sample':
            S = risk_models.sample_cov(history_prices)
        elif context.cov_method == 'semi':
            S = risk_models.semicovariance(history_prices)
        elif context.cov_method == 'exp_cov':
            S = risk_models.exp_cov(history_prices)

        ef = EfficientFrontier(mu, S)

        if context.opt_criterion == 'max_sharpe':
            weights = ef.max_sharpe()
        elif context.opt_criterion == 'efficient_return':
            weights = ef.efficient_return(context.target_return)
        elif context.opt_criterion == 'efficient_risk':
            weights = ef.efficient_risk(context.targe_risk,
                                        context.risk_free_rate)
        elif context.opt_criterion == 'min_volatility':
            weights = ef.min_volatility()

        if context.cleaned_weights is True:
            weights = ef.clean_weights()

        weight = []
        prices = []
        for code in context.stocks:
            weight.append(weights[code])
            prices.append(data.latest_price(code, "1d"))

        data.order_target_percent(context.stocks, weight, prices)
Ejemplo n.º 26
0
def handle_bar(context, api):

    date = api.now()

    #if date in context.balance_dates:
    history_prices = {}
    for stock in context.stocks:
        history_price = api.history_bars(stock, context.expected_return_days,
                                         '1d', 'close')
        history_prices.update({stock: history_price})

    history_prices = pd.DataFrame(history_prices)
    mu = expected_returns.mean_historical_return(history_prices)
    if context.cov_method == 'sample':
        S = risk_models.sample_cov(history_prices)
    elif context.cov_method == 'semi':
        S = risk_models.semicovariance(history_prices)
    elif context.cov_method == 'exp_cov':
        S = risk_models.exp_cov(history_prices)

    ef = EfficientFrontier(mu, S)

    if context.opt_criterion == 'max_sharpe':
        weights = ef.max_sharpe()
    elif context.opt_criterion == 'efficient_return':
        weights = ef.efficient_return(context.target_return)
    elif context.opt_criterion == 'efficient_risk':
        weights = ef.efficient_risk(context.targe_risk, context.risk_free_rate)
    elif context.opt_criterion == 'min_volatility':
        weights = ef.min_volatility()

    if context.cleaned_weights is True:
        weights = ef.clean_weights()
    prices = []
    weight = []
    for stock in context.stocks:
        weight.append(weights[stock])
        prices.append(api.latest_price(stock, "1d"))
    api.order_target_percent(stocks, weight, prices)
    def get_max_sharpe_recent_weights(self, exp_span, target_return=2.0):
        mu = expected_returns.ema_historical_return(self.pf,
                                                    span=exp_span,
                                                    frequency=252)
        sigma = risk_models.exp_cov(self.pf, span=exp_span, frequency=252)
        ef = EfficientFrontier(mu, sigma)
        try:
            # ef.efficient_return(target_return)
            ef.max_sharpe()
            clean_weights_maxSR = ef.clean_weights()
            print('the optimal weights for recent max_SR portfolio is \n{}'.
                  format(clean_weights_maxSR))
            ef.portfolio_performance(verbose=True)
            out = []
            for weight in list(clean_weights_maxSR.values()):
                if weight == 0:
                    out.append(0)
                else:
                    out.append(weight)

            return out

        except:
            return [0] * len(self.stock_list)
Ejemplo n.º 28
0
# Calculate weights for the maximum Sharpe ratio portfolio
raw_weights_maxsharpe = ef.max_sharpe()
cleaned_weights_maxsharpe = ef.clean_weights()
print(raw_weights_maxsharpe, cleaned_weights_maxsharpe)

# Calculate weights for the minimum volatility portfolio
raw_weights_minvol = ef.min_volatility()
cleaned_weights_minvol = ef.clean_weights()

# Show portfolio performance
print(cleaned_weights_minvol)
ef.portfolio_performance(verbose=True)

# Define exponentially weightedSigma and mu using stock_prices
Sigma = risk_models.exp_cov(stock_prices, span=180, frequency=252)
mu = expected_returns.ema_historical_return(stock_prices,
                                            frequency=252,
                                            span=180)

# Calculate the efficient frontier
ef = EfficientFrontier(mu, Sigma)

# Calculate weights for the maximum sharpe ratio optimization
raw_weights_maxsharpe = ef.max_sharpe()

# Show portfolio performance
ef.portfolio_performance(verbose=True)

# datacamp hack
import inspect
Ejemplo n.º 29
0
def BLmain():

    #Excell Call
    sht = xw.Book.caller().sheets['Optim']
    shtdata = xw.Book.caller().sheets['Data']
    sht.range('J17').value = 'Optimizing...'

    #Clear Values
    sht.range('L23').expand().clear_contents()
    shtdata.range('A1').expand().clear_contents()
    shtdata.range('J1').expand().clear_contents()

    #Set variables from excel
    rf = sht.range('J10').value
    MinWeight = sht.range('J11').value
    MaxWeight = sht.range('J12').value
    Delta = sht.range('J13').value
    Tau = sht.range('J14').value
    Output = sht.range('J15').value
    ModelOptim = sht.range('J8').value
    RiskModel = sht.range('J9').value
    listticker = xw.Range('B3').expand().value
    indexname = sht.range('J7').value
    startdate = sht.range('J3').value
    enddate = sht.range('J6').value
    EFBool = sht.range('J16').value
    traintestdate = sht.range(
        'J4'
    ).value  #Dataset is divided in two sub: train (optimization) and test for backtest

    #Initializing
    train, test = initialize(startdate, enddate, traintestdate, listticker)
    trainindex, testindex = initializeIndex(startdate, enddate, traintestdate,
                                            indexname)  #for risk aversion

    #Black Litterman
    if RiskModel == 'historicalcov':
        S = risk_models.sample_cov(train)
    elif RiskModel == 'exphistoricalcov':
        S = risk_models.exp_cov(train)

    if Delta != None:
        delta = Delta
    else:
        delta = black_litterman.market_implied_risk_aversion(trainindex,
                                                             risk_free_rate=rf)

    s = data.get_quote_yahoo(listticker)['marketCap']
    mcaps = {tick: mcap
             for tick, mcap in zip(listticker, s)
             }  #Dictionnary of Market Cap for each stock

    #Expected returns implied from the market
    prior = black_litterman.market_implied_prior_returns(mcaps,
                                                         delta,
                                                         S,
                                                         risk_free_rate=rf)
    views, picking = createviews(listticker)
    bl = BlackLittermanModel(S, Q=views, P=picking, pi=prior, tau=Tau)
    rets = bl.bl_returns()
    cov = bl.bl_cov()

    #Two ways of displaying outputs: either using Optimizer, either returning implied weights
    if Output == 'Optimization':
        ef = EfficientFrontier(rets, S, weight_bounds=(MinWeight, MaxWeight))
        #RiskModel
        if ModelOptim == 'min_volatility':
            raw_weights = ef.min_volatility()
        elif ModelOptim == 'max_sharpe':
            raw_weights = ef.max_sharpe()
        cleaned_weights = ef.clean_weights()
        finalw = [cleaned_weights.get(i, 1) for i in listticker]
        perf = ef.portfolio_performance(verbose=True, risk_free_rate=rf)
        sht.range('H21').value = perf

    elif Output == 'Return-Implied-Weight':
        bl.bl_weights(delta)
        weights = bl.clean_weights()
        finalw = [weights.get(i, 1) for i in listticker]
    finalr = [rets.get(i, 1) for i in listticker]  #E(R) from BL

    #Display results
    sht.range('L23').options(transpose=True).value = listticker
    sht.range('M23').options(transpose=True).value = finalw
    sht.range('N23').options(transpose=True).value = finalr

    #Copy Data in Data Range
    shtdata.range((1, 1)).value = train
    shtdata.range((1, len(listticker) + 3)).value = test
    #numshares, left = getoptimprices(test, cleanW, InitialAmountInPortfolio)

    #Visualisation
    sht.charts['BLweights'].set_source_data(
        sht.range((23, 12), (22 + len(listticker), 13)))
    CorrMap(sht, 'CorrMatPrior', S, 'coolwarm')
    CorrMap(sht, 'CorrMatBL', cov, 'YlGn')
    if EFBool == "YES":
        effrontier(rets, S, sht, 'EFBL')

    #Done
    sht.range('J17').value = 'Optimization Done'
Ejemplo n.º 30
0
plt.show()
fig.savefig("Markovitz' portfolio with maximum return.png")

# Calculating weights for the minimum volatility portfolio
raw_weights_minvol = ef.min_volatility()
cleaned_weights_minvol = ef.clean_weights()

# Showing portfolio performance
print(cleaned_weights_minvol)
ef.portfolio_performance(verbose=True)
size = list(cleaned_weights_minvol.values())
print(size)
plt.pie(size, labels=l, autopct='%1.1f%%')
plt.title('Min Risk')
plt.show()

#Calculating an exponentially weighted portfolio
Sigma_ew = risk_models.exp_cov(df, span=180, frequency=252)
mu_ew = expected_returns.ema_historical_return(df, frequency=252, span=180)
# Calculate the efficient frontier
ef_ew = EfficientFrontier(mu_ew, Sigma_ew)
# Calculate weights for the maximum sharpe ratio optimization
raw_weights_maxsharpe_ew = ef_ew.max_sharpe()
# Show portfolio performance
ef_ew.portfolio_performance(verbose=True)
size = list(raw_weights_maxsharpe_ew.values())
print(size)
plt.pie(size, labels=l, autopct='%1.1f%%')
plt.title('Max Return EW')
plt.show()