Ejemplo n.º 1
0
def HIO_mode(fftmagnitude,
             g_k,
             mask,
             beta,
             steps,
             mode,
             measure=False,
             parameters=[100, 30, 1.5, 0.9, 1]):
    print(
        'Running Phase-Retrieval iterations using Hybrid Input-Output method with options'
    )
    xp = cp.get_array_module(fftmagnitude)
    t = time.time()
    error = xp.zeros(steps)
    normalization = 1 / (fftmagnitude.size * xp.linalg.norm(fftmagnitude))
    epsilon = parameters[4]

    if epsilon == 0:
        print(
            'WARNING: you are actually running ER method, if you want to get back to HIO set parammeters[4]=1'
        )

    if mode == 'normal':
        print('Normal HIO implementation with epsilon = ' + str(epsilon))

    if mode == 'shrink-wrap':
        counter = -1
        maskupdate = parameters[0]
        nupdates = -int(-steps // maskupdate)
        start_sigma = parameters[1]
        stop_sigma = parameters[2]
        print('The mask evolves using shrink-wrap rules every ' +
              str(maskupdate) + ' steps')
        print('Starting smoothing with sigma: ' + str(start_sigma))
        print('Ending smoothing with sigma: ' + str(stop_sigma))
        sigma = xp.linspace(start_sigma, stop_sigma, nupdates)
        # mask = pf.autocorrelation_maskND(g_k, 0.04)
        # g_k = pf.fouriermod2autocorrelation(fftmagnitude)

    if mode == 'sparsity':
        counter = -1
        maskupdate = parameters[0]
        nupdates = -int(-steps // maskupdate)
        # mask = pf.autocorrelation_maskND(g_k, 0.04)
        start_sparsity = xp.sum(mask) / mask.size
        end_sparsity = 0.1
        print('The mask evolves using sparsity rules every ' +
              str(maskupdate) + ' steps')
        print('Starting sparsity: ' + str(start_sparsity))
        print('End sparsity: ' + str(end_sparsity))
        sparsity = xp.linspace(start_sparsity, end_sparsity, nupdates)

    if mode == 'exponential-average':
        alpha = parameters[3]
        g_exp = g_k
        print(
            'The solution evolves using exponentially weighted average with alpha '
            + str(alpha))
        print('... it means the exponential average is done on past ' +
              str(1 / (1 - alpha)) + 'estimates')

    # iteration starts here
    for k in range(0, steps):
        t = algorithmStatus(t, k, steps)

        # phase retrieval four-iterations, this sequence minimize memory usage
        gp_k = xp.fft.rfftn(g_k)  # alias for G_k
        gp_k = xp.angle(gp_k)  # alias for Phi_k
        gp_k = xp.exp(1j * gp_k)  # alias for Gp_k
        gp_k = fftmagnitude * gp_k  # alias for Gp_k
        gp_k = xp.fft.irfftn(gp_k)  # alias for gp_k

        # 4th step - updates for elements that violate object domain constraints
        index = xp.logical_and(gp_k > 0, mask)
        g_k[index] = gp_k[index]
        index = xp.logical_not(index)
        g_k[index] = epsilon * (g_k[index] - (beta * gp_k[index]))

        # 5th step - Shrink-wrap implementation
        if mode == 'shrink-wrap':
            if (k + 1) % maskupdate == 0:
                counter = counter + 1
                print("smoothed mask with sigma = ", sigma[counter])
                gp_k = pf.my_gaussblur(g_k, sigma[counter])
                mask = pf.threshold_maskND(gp_k, 0.01)

        # 5th step - Shrink-wrap implementation
        if mode == 'sparsity':
            if (k + 1) % maskupdate == 0:
                counter = counter + 1
                print("smoothed mask with sigma = ", sparsity[counter])
                mask = pf.sparsity_maskND(g_k, 0.1)

        # update process following exponential average rules
        if mode == 'exponential-average':
            g_exp = alpha * g_exp + (1 - alpha) * g_k

        # measure the solution distance
        if measure == True:
            gp_k = xp.fft.rfftn(g_k)  # alias for G_k
            gp_k = xp.abs(gp_k)  # alias for Phi_k
            # error[k] = xp.linalg.norm(fftmagnitude - gp_k) * normalization

            error[k] = snrIntensity_db(
                fftmagnitude / fftmagnitude.sum(),
                xp.abs(fftmagnitude / fftmagnitude.sum() - gp_k / gp_k.sum()))

    if mode == 'exponential-average':
        g_k = g_exp

    return (g_k, mask, error)
def anchorUpdateSK(signal, kernel, signal_deconv=np.float32(0), iterations=10, measure=True, clip=False, verbose=True):
    
    # for code agnosticity between Numpy/Cupy
    xp = cp.get_array_module(signal)
    xps = cupyx.scipy.get_array_module(signal)

    # for performance evaluation
    start_time = time.time()
    
    if iterations<100: 
        breakcheck = iterations
    else:
        breakcheck = 100

    # normalization
    signal /= signal.sum()
    epsilon = 1e-7

    # starting guess with a flat image
    if signal_deconv.any()==0:
        # xp.random.seed(0)
        signal_deconv = xp.full(signal.shape,0.5) + 0.01*xp.random.rand(*signal.shape)
        # signal_deconv = signal.copy()
    else:
        signal_deconv = signal_deconv #+ 0.1*prior.max()*xp.random.rand(*signal.shape)
    
    # normalization
    signal_deconv = signal_deconv/signal_deconv.sum()
        
    # to measure the distance between the guess convolved and the signal
    error = None    
    if measure == True:
        error = xp.zeros(iterations)

    for i in range(iterations):
        # I use this property to make computation faster
        kernel_update = xps.ndimage.gaussian_filter(signal_deconv, sigma)
        # kernel_update = xps.ndimage.fourier_gaussian(signal_deconv, sigma)
        
        kernel_mirror = (kernel_update)
        
        relative_blur = my_correlation(signal_deconv, kernel_update)
        
        # compute the measured distance metric if given
        if measure==True:
            # error[i] = xp.linalg.norm(signal/signal.sum()-relative_blur/relative_blur.sum())
            error[i] = snrIntensity_db(signal/signal.sum(), xp.abs(signal/signal.sum()-relative_blur/relative_blur.sum()))
            if (error[i] < error[i-breakcheck]) and i > breakcheck:
                break

        if verbose==True and (i % 100)==0 and measure==False:
            print('Iteration ' + str(i))
        elif verbose==True and (i % 100)==0 and measure==True:
            print('Iteration ' + str(i) + ' - noise level: ' + str(error[i]))

        relative_blur = signal / relative_blur

        # avoid errors due to division by zero or inf
        relative_blur[xp.isinf(relative_blur)] = epsilon
        relative_blur = xp.nan_to_num(relative_blur)

        # multiplicative update, for the full model
        signal_deconv *= 0.5 * (my_convolution(relative_blur, kernel_mirror) + my_correlation(axisflip(relative_blur), kernel_mirror))
        # signal_deconv *= (my_convolution(relative_blur, kernel_mirror) + my_correlation(relative_blur,kernel_mirror))


        # multiplicative update, for the Anchor Update approximation
        # signal_deconv *= my_convolution(kernel_mirror, relative_blur)

        # multiplicative update, remaining term. This gives wrong reconstructions
        # signal_deconv *= my_correlation(axisflip(relative_blur), kernel_mirror)
                
    if clip:
        signal_deconv[signal_deconv > +1] = +1
        signal_deconv[signal_deconv < -1] = -1

    print("\n\n Algorithm finished. Performance:")
    print("--- %s seconds ----" % (time.time() - start_time))
    print("--- %s sec/step ---" % ((time.time() - start_time)/iterations))
    return signal_deconv, error #,kernel_update
Ejemplo n.º 3
0
def schulzSnyder(correlation,
                 prior=np.float32(0),
                 iterations=10,
                 measure=True,
                 clip=False,
                 verbose=True):
    """
    De-AutoCorrelation protocol implemented by Schultz-Snyder. It needs to be 
    checked to assess the working procedure.

    Parameters
    ----------
    correlation : TYPE
        DESCRIPTION.
    prior : TYPE, optional
        DESCRIPTION. The default is np.float32(0).
    iterations : TYPE, optional
        DESCRIPTION. The default is 10.
    measure : TYPE, optional
        DESCRIPTION. The default is True.
    clip : TYPE, optional
        DESCRIPTION. The default is True.
    verbose : TYPE, optional
        DESCRIPTION. The default is True.

    Returns
    -------
    signal_decorr : TYPE
        DESCRIPTION.
    error : TYPE
        DESCRIPTION.

    """

    xp = pyb.get_array_module(correlation)

    # for performance evaluation
    start_time = time.time()

    epsilon = 1e-7

    if iterations < 10:
        breakcheck = iterations
    else:
        breakcheck = 10

    # starting guess with a flat image
    if prior.any() == 0:
        signal_decorr = xp.full(
            correlation.shape, 0.5) + 0.01 * xp.random.rand(*correlation.shape)
    else:
        signal_decorr = prior.copy(
        )  #+ 0.1*prior.max()*xp.random.rand(*signal.shape)

    R_0 = signal_decorr.sum()
    signal_decorr = signal_decorr / R_0
    relative_corr = xp.zeros_like(signal_decorr)

    # to measure the distance between the guess convolved and the signal
    error = None
    if measure == True:
        error = xp.zeros(iterations)

    for i in range(iterations):
        relative_corr = my_correlation(signal_decorr, signal_decorr)

        if measure == True:
            # error[i] = xp.linalg.norm(correlation/correlation.sum()-relative_corr/relative_corr.sum())
            error[i] = snrIntensity_db(
                correlation / correlation.sum(),
                xp.abs(correlation / correlation.sum() -
                       relative_corr / relative_corr.sum()))
            if (error[i] < error[i - breakcheck]) and i > breakcheck:
                break

        if verbose == True and (i % 100) == 0 and measure == False:
            print('Iteration ' + str(i))
        elif verbose == True and (i % 100) == 0 and measure == True:
            print('Iteration ' + str(i) + ' - noise level: ' + str(error[i]))

        # relative_corr = 0.5*(correlation + axisflip(correlation)) / relative_corr
        relative_corr = (correlation) / relative_corr

        # avoid errors due to division by zero or inf
        relative_corr[xp.isinf(relative_corr)] = epsilon
        relative_corr = xp.nan_to_num(relative_corr)

        # multiplicative update
        # signal_decorr *= my_correlation(axisflip(signal_decorr), (relative_corr)) / R_0
        # signal_decorr *= my_correlation((relative_corr), (signal_decorr)) / R_0
        # signal_decorr *= (my_correlation(relative_corr, signal_decorr) + my_correlation(relative_corr, axisflip(signal_decorr))) / R_0
        signal_decorr *= (my_correlation(relative_corr, signal_decorr) +
                          my_convolution(relative_corr, signal_decorr)) / R_0

    if clip:
        signal_decorr[signal_decorr > +1] = +1
        signal_decorr[signal_decorr < -1] = -1

    print("\n\n Algorithm finished. Performance:")
    print("--- %s seconds ----" % (time.time() - start_time))
    print("--- %s sec/step ---" % ((time.time() - start_time) / iterations))

    return signal_decorr, error
Ejemplo n.º 4
0
def anchorUpdateZ(signal,
                  kernel,
                  signal_deconv=np.float32(0),
                  kerneltype='B',
                  iterations=10,
                  measure=True,
                  clip=False,
                  verbose=True):
    """
    Reconstruction of signal_deconv from its auto-correlation signal, via a 
    RichardsonLucy-like multiplicative procedure. At the same time, the kernel 
    psf is deconvolved from the reconstruction so that the iteration converges
    corr(conv(signal_deconv, kernel), conv(signal_deconv, kernel),) -> signal.

    Parameters
    ----------
    signal : ndarray, either numpy or cupy. 
        The auto-correlation to be inverted
    kernel : ndarray, either numpy or cupy.
        Point spread function that blurred the signal. It must be 
        signal.shape == kernel.shape.
    signal_deconv : ndarray, either numpy or cupy or 0. It must be signal.shape == signal_deconv.shape.
        The de-autocorrelated signal deconvolved with kernel at ith iteration. The default is np.float32(0).
    kerneltype : string.
        Type of kernel update used for the computation choosing from blurring 
        directly the autocorrelation 'A', blurring the signal that is then 
        autocorrelated 'B' and the window applied in fourier domain 'C'. 
        The default is 'B'.
    iterations : int, optional
        Number of iteration to be done. The default is 10.
    measure : boolean, optional
        If true computes the euclidean distance between signal and the 
        auto-correlation of signal_deconv. The default is True.
    clip : boolean, optional
        Clip the results within the range -1 to 1. Useless for the moment. The default is False.
    verbose : boolean, optional
        Print current step value. The default is True.

    Returns
    -------
    signal_deconv : ndarray, either numpy or cupy.
        The de-autocorrelated signal deconvolved with kernel at ith iteration..
    error : vector.
        Euclidean distance between signal and the auto-correlation of signal_deconv.
        Last implementation returns the SNR instead of euclidean distance.

    """

    # for code agnosticity between Numpy/Cupy
    xp = pyb.get_array_module(signal)

    # for performance evaluation
    start_time = time.time()

    if iterations < 100:
        breakcheck = iterations
    else:
        breakcheck = 100

    # normalization
    signal /= signal.sum()
    kernel /= kernel.sum()
    epsilon = 1e-7

    # starting guess with a flat image
    if signal_deconv.any() == 0:
        # xp.random.seed(0)
        signal_deconv = xp.full(signal.shape,
                                0.5) + 0.01 * xp.random.rand(*signal.shape)
        # signal_deconv = signal.copy()
    else:
        signal_deconv = signal_deconv  #+ 0.1*prior.max()*xp.random.rand(*signal.shape)

    # normalization
    signal_deconv = signal_deconv / signal_deconv.sum()

    # to measure the distance between the guess convolved and the signal
    error = None
    if measure == True:
        error = xp.zeros(iterations)

    for i in range(iterations):
        # I use this property to make computation faster
        K = my_convolution(signal_deconv, my_correlation(kernel, kernel))

        relative_blur = my_correlation(K, signal_deconv)

        # compute the measured distance metric if given
        if measure == True:
            #error[i] = xp.linalg.norm(signal/signal.sum()-relative_blur/relative_blur.sum())
            error[i] = snrIntensity_db(
                signal / signal.sum(),
                xp.abs(signal / signal.sum() -
                       relative_blur / relative_blur.sum()))
            if (error[i] < error[i - breakcheck]) and i > breakcheck:
                break

        if verbose == True and (i % 100) == 0 and measure == False:
            print('Iteration ' + str(i))
        elif verbose == True and (i % 100) == 0 and measure == True:
            print('Iteration ' + str(i) + ' - noise level: ' + str(error[i]))

        relative_blur = signal / relative_blur

        # avoid errors due to division by zero or inf
        relative_blur[xp.isinf(relative_blur)] = epsilon
        relative_blur = xp.nan_to_num(relative_blur)

        # multiplicative update, for the full model
        # signal_deconv *= 0.5 * (my_convolution(relative_blur, kernel_mirror) + my_correlation(axisflip(relative_blur), kernel_mirror))
        # signal_deconv *= (my_convolution(kernel_mirror,relative_blur) + my_correlation(relative_blur, kernel_mirror))

        # multiplicative update, for the Anchor Update approximation
        signal_deconv *= my_correlation((relative_blur), (K))
        # signal_deconv *= (my_correlation(relative_blur, K) + my_convolution(relative_blur, K))

        # multiplicative update, remaining term. This gives wrong reconstructions
        # signal_deconv *= my_correlation(axisflip(relative_blur), kernel_mirror)

    if clip:
        signal_deconv[signal_deconv > +1] = +1
        signal_deconv[signal_deconv < -1] = -1

    print("\n\n Algorithm finished. Performance:")
    print("--- %s seconds ----" % (time.time() - start_time))
    print("--- %s sec/step ---" % ((time.time() - start_time) / iterations))
    return signal_deconv, error  #,kernel_update
Ejemplo n.º 5
0
def richardsonLucy(signal,
                   kernel,
                   prior=np.float32(0),
                   iterations=10,
                   measure=True,
                   clip=False,
                   verbose=True):
    """
    Deconvolution using the Richardson Lucy algorithm.

    Parameters
    ----------
    signal : ndarray, either numpy or cupy. 
        The signal to be deblurred.
    kernel : ndarray, either numpy or cupy. 
        Point spread function that blurred the signal. It must be 
        signal.shape == kernel.shape.
    prior : ndarray, either numpy or cupy, optional
        the prior information to start the reconstruction. The default is np.float32(0).
    iterations : integer, optional
        Number of iteration to be done. The default is 10.
    measure : boolean, optional
        If true computes the euclidean distance between signal and the auto-correlation of signal_deconv. The default is True.
    clip : boolean, optional
        Clip the results within the range -1 to 1. The default is False.
    verbose : boolean, optional
        Print current step value. The default is True.

    Returns
    -------
    signal_deconv : ndarray, either numpy or cupy.
        The deconvolved signal with respect the given kernel at ith iteration.
    error : one dimensional ndarray.
        Euclidean distance between signal and the auto-correlation of signal_deconv.

    """
    xp = pyb.get_array_module(signal)
    start_time = time.time()

    if iterations < 100:
        breakcheck = iterations
    else:
        breakcheck = 100

    epsilon = 1e-7

    # starting guess with a flat image
    if prior.any() == 0:
        signal_deconv = xp.full(signal.shape,
                                0.5) + 0.01 * xp.random.rand(*signal.shape)
    else:
        signal_deconv = prior  #+ 0.1*prior.max()*xp.random.rand(*signal.shape)

    kernel_mirror = axisflip(kernel)

    error = None
    if measure == True:
        error = xp.zeros(iterations)

    for i in range(iterations):
        if verbose == True and (i % 100) == 0:
            print('Iteration ' + str(i))

        relative_blur = my_convolution(signal_deconv, kernel)

        if measure == True:
            # error[i] = xp.linalg.norm(signal/signal.sum()-relative_blur/relative_blur.sum())
            error[i] = snrIntensity_db(
                signal / signal.sum(),
                xp.abs(signal / signal.sum() -
                       relative_blur / relative_blur.sum()))
            if (error[i] < error[i - breakcheck]) and i > breakcheck:
                break

        relative_blur = signal / relative_blur

        # avoid errors due to division by zero or inf
        relative_blur[xp.isinf(relative_blur)] = epsilon
        relative_blur = xp.nan_to_num(relative_blur)

        # multiplicative update
        signal_deconv *= my_convolution(relative_blur, kernel_mirror)

    if clip:
        signal_deconv[signal_deconv > +1] = +1
        signal_deconv[signal_deconv < -1] = -1

    print("\n\n Algorithm finished. Performance:")
    print("--- %s seconds ----" % (time.time() - start_time))
    print("--- %s sec/step ---" % ((time.time() - start_time) / iterations))
    return signal_deconv, error