Ejemplo n.º 1
0
 def test_next(self):
     # Test basic use of next.
     next = compat23.next
     it = iter([1, 'a'])
     self.assertEqual(next(it), 1)
     self.assertEqual(next(it), 'a')
     self.assertRaises(StopIteration, next, it)
Ejemplo n.º 2
0
 def test_next(self):
     # Test basic use of next.
     next = compat23.next
     it = iter([1, 'a'])
     self.assertEqual(next(it), 1)
     self.assertEqual(next(it), 'a')
     self.assertRaises(StopIteration, next, it)
Ejemplo n.º 3
0
def primes(strategy, start=None, end=None):
    """Yield primes using the given strategy function.

    See this module's docstring for specifications for the ``strategy``
    function.

    If the optional arguments ``start`` and ``end`` are given, they must be
    either None or an integer. Only primes in the half-open range ``start``
    (inclusive) to ``end`` (exclusive) are yielded. If ``start`` is None,
    the range begins at the lowest prime (namely 2), if ``end`` is None,
    the range has no upper limit.

    >>> from pyprimes.awful import turner
    >>> list(primes(turner, 6, 30))
    [7, 11, 13, 17, 19, 23, 29]

    """
    #return filter_between(gen(), start, end)
    it = strategy()
    p = next(it)
    if start is not None:
        # Drop the primes below start as fast as possible, then yield.
        while p < start:
            p = next(it)
    assert start is None or p >= start
    if end is not None:
        while p < end:
            yield p
            p = next(it)
    else:
        while True:
            yield p
            p = next(it)
Ejemplo n.º 4
0
 def test_next_default(self):
     # Test next with a default argument.
     next = compat23.next
     it = iter([2, 'b'])
     self.assertEqual(next(it, -99), 2)
     self.assertEqual(next(it, -99), 'b')
     self.assertEqual(next(it, -99), -99)
     self.assertRaises(TypeError, next, it, -1, -2)
Ejemplo n.º 5
0
 def test_next_default(self):
     # Test next with a default argument.
     next = compat23.next
     it = iter([2, 'b'])
     self.assertEqual(next(it, -99), 2)
     self.assertEqual(next(it, -99), 'b')
     self.assertEqual(next(it, -99), -99)
     self.assertRaises(TypeError, next, it, -1, -2)
Ejemplo n.º 6
0
 def test_moderate_composites(self):
     # Test is_probable_prime with moderate-sized composites.
     for i in range(10):
         # We should not run out of primes here. If we do, it's a bug
         # in the test.
         p, q = next(self.primes), next(self.primes)
         n = p*q
         assert n < 2**60, "n not in deterministic range for i_p_p"
         self.assertEqual(probabilistic.is_probable_prime(n), 0)
Ejemplo n.º 7
0
 def test_moderate_composites(self):
     # Test is_probable_prime with moderate-sized composites.
     for i in range(10):
         # We should not run out of primes here. If we do, it's a bug
         # in the test.
         p, q = next(self.primes), next(self.primes)
         n = p * q
         assert n < 2**60, "n not in deterministic range for i_p_p"
         self.assertEqual(probabilistic.is_probable_prime(n), 0)
Ejemplo n.º 8
0
 def test_prime_sum(self):
     # Test the prime_sum function by comparing it to prime_partial_sums.
     it = pyprimes.prime_partial_sums()
     for i in range(100):
         expected = next(it)
         actual = pyprimes.prime_sum(i)
         self.assertEqual(actual, expected)
Ejemplo n.º 9
0
def turner():
    """Generate prime numbers very slowly using Euler's sieve.

    >>> p = turner()
    >>> [next(p) for _ in range(10)]
    [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

    The function is named for David Turner, who developed this implementation
    in a paper in 1975. Due to its simplicity, it has become very popular,
    particularly in Haskell circles where it is usually implemented as some
    variation of::

        primes = sieve [2..]
        sieve (p : xs) = p : sieve [x | x <- xs, x `mod` p > 0]

    This algorithm is sometimes wrongly described as the Sieve of
    Eratosthenes, but it is not, it is a version of Euler's Sieve.

    Although simple, it is extremely slow and inefficient, with
    asymptotic behaviour of O(N**2/(log N)**2) which is worse than
    trial division, and only marginally better than ``primes0``.

    In her paper http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf
    O'Neill calls this the "Sleight on Eratosthenes".
    """
    # See also:
    #   http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    #   http://en.literateprograms.org/Sieve_of_Eratosthenes_(Haskell)
    #   http://www.haskell.org/haskellwiki/Prime_numbers
    nums = itertools.count(2)
    while True:
        prime = next(nums)
        yield prime
        nums = filter(lambda v, p=prime: (v % p) != 0, nums)
Ejemplo n.º 10
0
def sieve():
    """Yield prime integers using the Sieve of Eratosthenes.

    This recursive algorithm is modified to generate the primes lazily
    rather than the traditional version which operates on a fixed size
    array of integers.
    """
    # This is based on a paper by Melissa E. O'Neill, with an implementation
    # given by Gerald Britton:
    # http://mail.python.org/pipermail/python-list/2009-January/1188529.html
    innersieve = sieve()
    prevsq = 1
    table  = {}
    i = 2
    while True:
        # This explicit test is slightly faster than using
        # prime = table.pop(i, None) and testing for None.
        if i in table:
            prime = table[i]
            del table[i]
            nxt = i + prime
            while nxt in table:
                nxt += prime
            table[nxt] = prime
        else:
            yield i
            if i > prevsq:
                j = next(innersieve)
                prevsq = j**2
                table[prevsq] = j
        i += 1
Ejemplo n.º 11
0
 def test_prime_sum(self):
     # Test the prime_sum function by comparing it to prime_partial_sums.
     it = pyprimes.prime_partial_sums()
     for i in range(100):
         expected = next(it)
         actual = pyprimes.prime_sum(i)
         self.assertEqual(actual, expected)
Ejemplo n.º 12
0
def sieve():
    """Yield prime integers using the Sieve of Eratosthenes.

    This recursive algorithm is modified to generate the primes lazily
    rather than the traditional version which operates on a fixed size
    array of integers.
    """
    # This is based on a paper by Melissa E. O'Neill, with an implementation
    # given by Gerald Britton:
    # http://mail.python.org/pipermail/python-list/2009-January/1188529.html
    innersieve = sieve()
    prevsq = 1
    table = {}
    i = 2
    while True:
        # This explicit test is slightly faster than using
        # prime = table.pop(i, None) and testing for None.
        if i in table:
            prime = table[i]
            del table[i]
            nxt = i + prime
            while nxt in table:
                nxt += prime
            table[nxt] = prime
        else:
            yield i
            if i > prevsq:
                j = next(innersieve)
                prevsq = j**2
                table[prevsq] = j
        i += 1
Ejemplo n.º 13
0
 def test_primes_start(self):
     # Test the prime generator with start argument only.
     expected = [211, 223, 227, 229, 233, 239, 241, 251,
                 257, 263, 269, 271, 277, 281, 283, 293]
     assert len(expected) == 16
     it = pyprimes.primes(200)
     values = [next(it) for _ in range(16)]
     self.assertEqual(values, expected)
Ejemplo n.º 14
0
 def test_primes_start(self):
     # Test the prime generator with start argument only.
     expected = [
         211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
         281, 283, 293
     ]
     assert len(expected) == 16
     it = pyprimes.primes(200)
     values = [next(it) for _ in range(16)]
     self.assertEqual(values, expected)
Ejemplo n.º 15
0
def trial(generator, count, repeat=1):
    timer = Stopwatch()
    best = YEAR100
    for i in range(repeat):
        it = generator()
        timer.reset()
        timer.start()
        # Go to the count-th prime as fast as possible.
        p = next(islice(it, count - 1, count))
        timer.stop()
        best = min(best, timer.elapsed)
    return best
Ejemplo n.º 16
0
 def test_prime_partial_sums(self):
     it = pyprimes.prime_partial_sums()
     self.assertTrue(it is iter(it))
     # Table of values from http://oeis.org/A007504
     expected = [
         0, 2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281, 328,
         381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264,
         1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747,
         2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888
     ]
     actual = [next(it) for _ in range(len(expected))]
     self.assertEqual(actual, expected)
Ejemplo n.º 17
0
def trial(generator, count, repeat=1):
    timer = Stopwatch()
    best = YEAR100
    for i in range(repeat):
        it = generator()
        timer.reset()
        timer.start()
        # Go to the count-th prime as fast as possible.
        p = next(islice(it, count-1, count))
        timer.stop()
        best = min(best, timer.elapsed)
    return best
Ejemplo n.º 18
0
 def test_prime_partial_sums(self):
     it = pyprimes.prime_partial_sums()
     self.assertTrue(it is iter(it))
     # Table of values from http://oeis.org/A007504
     expected = [
         0, 2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281,
         328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161,
         1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427,
         2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227,
         4438, 4661, 4888]
     actual = [next(it) for _ in range(len(expected))]
     self.assertEqual(actual, expected)
Ejemplo n.º 19
0
def nth_prime(n):
    """nth_prime(n) -> int

    Return the nth prime number, starting counting from 1. Equivalent to
    p[n] (p subscript n) in standard maths notation.

    >>> nth_prime(1)  # First prime is 2.
    2
    >>> nth_prime(5)
    11
    >>> nth_prime(50)
    229

    """
    # http://oeis.org/A000040
    if n < 1:
        raise ValueError('argument must be a positive integer')
    return next(itertools.islice(primes(), n-1, n))
Ejemplo n.º 20
0
 def test_primes_end_none(self):
     # Check that None is allowed as an end argument.
     it = pyprimes.primes(end=None)
     self.assertEqual(next(it), 2)
Ejemplo n.º 21
0
 def test_primes_start_is_inclusive(self):
     # Start argument to primes() is inclusive.
     n = 211
     assert pyprimes.is_prime(n)
     it = pyprimes.primes(start=n)
     self.assertEqual(next(it), n)
Ejemplo n.º 22
0
 def check_against_known_prime_list(self, prime_maker):
     """Check that generator produces the first 100 primes."""
     it = prime_maker()
     primes = [next(it) for _ in range(100)]
     self.assertEqual(primes, PRIMES)
Ejemplo n.º 23
0
 def check_against_known_prime_list(self, prime_maker):
     """Check that generator produces the first 100 primes."""
     it = prime_maker()
     primes = [next(it) for _ in range(100)]
     self.assertEqual(primes, PRIMES)
Ejemplo n.º 24
0
 def test_primes_end_none(self):
     # Check that None is allowed as an end argument.
     it = pyprimes.primes(end=None)
     self.assertEqual(next(it), 2)
Ejemplo n.º 25
0
 def test_primes_start_is_inclusive(self):
     # Start argument to primes() is inclusive.
     n = 211
     assert pyprimes.is_prime(n)
     it = pyprimes.primes(start=n)
     self.assertEqual(next(it), n)