Ejemplo n.º 1
0
    def updateTillEnd(self, estimOver=1000, t0=None, Tsave=None, Fname=None):
        if t0 is None:
            t0 = tic(ret=True)

        if type(self.dur) == str:
            self.dur = timeToSteps(self.dur, self.evaMod.dt)

        for i in xrange(estimOver):
            self.update()
            estimAndPercent(self.rtime, self.dur, avg=estimOver, t0=t0)

        if self.rtime == estimOver:
            try:
                bar = ProgBar(self.dur - estimOver, stream=1)
            except:
                pass

        for i in xrange(estimOver, self.dur):
            self.update()
            try:
                bar.update()
            except:
                pass

            if (Tsave != None) and (Fname != None):
                if not self.rtime % Tsave:
                    array2data(self.out, Fname + '%i.npy' % self.iFile)
                    self.iFile += 1
                    for k in self.out.keys():
                        del self.out[k][:]
Ejemplo n.º 2
0
def check_classifier(vect: HashingVectorizer) -> None:
    if not clf_path.is_file():
        print('Classifier was not found, creating...')

        clf = SGDClassifier(loss='log', random_state=1)
        ds = DocStream('./movie_data.csv')
        pbar = ProgBar(45)

        classes = np.array([0, 1])

        for _ in range(45):
            x_train, y_train = ds.get_minibatch(1000)

            if not x_train:
                break

            x_train = vect.transform(x_train)
            clf.partial_fit(x_train, y_train, classes)
            pbar.update()

        print('Training completed...')

        x_test, y_test = ds.get_minibatch(5000)
        x_test = vect.transform(x_test)

        print(f'Score: {clf.score(x_test, y_test)}')

        clf = clf.partial_fit(x_test, y_test)

        dump(clf, clf_path, protocol=4)
Ejemplo n.º 3
0
def extract_weather_data(url, api_key, target_date, days):
    """Call Wunderground API to extract weather data."""
    records = []
    bar = ProgBar(days)
    for _ in range(days):
        request = BASE_URL.format(API_KEY, target_date.strftime('%Y%m%d'))
        response = requests.get(request)
        if response.status_code == 200:
            data = response.json()['history']['dailysummary'][0]
            records.append(
                DailySummary(date=target_date,
                             meantempm=data['meantempm'],
                             meandewptm=data['meandewptm'],
                             meanpressurem=data['meanpressurem'],
                             maxhumidity=data['maxhumidity'],
                             minhumidity=data['minhumidity'],
                             maxtempm=data['maxtempm'],
                             mintempm=data['mintempm'],
                             maxdewptm=data['maxdewptm'],
                             mindewptm=data['mindewptm'],
                             maxpressurem=data['maxpressurem'],
                             minpressurem=data['minpressurem'],
                             precipm=data['precipm']))
        time.sleep(6)
        bar.update()
        target_date += timedelta(days=1)
    return records
Ejemplo n.º 4
0
    def download_data(self):
        if not self.is_connected():
            return
        if self.total_logs < self.min_logs:
            self.log_print("Not enough logs to start download, {} logs found but minimum logs is set to {}".
                           format(self.total_logs, self.min_logs))
            return

        self.requester.max_logs = self.total_logs
        self.requester.print_step = self.requester.max_logs // 100
        self.start_time = datetime.now()
        self.full_fname = self.fname + '_%s.dat' % self.mac_address.replace(':', '') + self.start_time.strftime("_%m-%d-%y_%H-%M-%S")
        self.log_print("Writing data to file: {}".format(self.full_fname))
        self.requester.file = open(self.full_fname, 'w+')
        self.requester.file.write("raw\n" if self.raw else "compressed\n")
        self.requester.file.write("start_time: " + str(self.start_time) + '\n')
        self.requester.file.write("sample_period: " + str(self.sample_period) + '\n')
        self.start_broadcast()
        bar = ProgBar(100, width=70, stream=self.log_stream)
        last_check = self.start_time
        timed_out = False
        try:
            while not timed_out and not self.requester.done and not self.stopped:
                if (datetime.now() - last_check).seconds > 30:
                    self.stop_broadcast()
                    self.read_status(update=True)
                    self.print_status()
                    last_check = datetime.now()
                    self.start_broadcast()
                self.received.clear()
                timed_out = not self.received.wait(30)
                bar.update()
            if self.requester.done:
                while bar.cnt < bar.max_iter:
                    bar.update()
                self.log_print("Download Complete")
            else:
                self.log_print("")
                self.log_print("Download Interrupted")

        except (KeyboardInterrupt, SystemExit):
            self.log_print("")
            self.log_print("Download Interrupted")

        finally:
            self.received.clear()
            if not timed_out:
                self.log_print("Stopping device from broadcasting ....")
                self.stop_broadcast()
                self.log_print("Waiting for all notifications to get handled ....")
                time.sleep(2)
            self.log_print("Closing File ....")
            self.requester.file.close()
Ejemplo n.º 5
0
def store_raw_images(paths, links):
    global pic_num
    for link, path in zip(links, paths):
        print(u"Processing path {}".format(path))
        if not os.path.exists(path):
            os.makedirs(path)
        result = requests.get(link)
        image_urls = result.text.split('\n')

        pool = Pool(processes=128)
        inputs = zip(itertools.repeat(path), image_urls,
                     itertools.count(pic_num))
        bar = ProgBar(len(inputs), stream=sys.stdout)
        for i in pool.imap(load_image, inputs):
            bar.update()
Ejemplo n.º 6
0
def main():
    labels: Dict[str, int] = {'neg': 0, 'pos': 1}
    dataset_path: Path = Path(
        __file__).parent.parent / 'data' / 'movie_data.csv'

    np.random.seed(0)

    pbar: ProgBar = ProgBar(DOCS_NUM)
    df: pd.DataFrame = pd.DataFrame()

    for subset in ('test', 'train'):
        for label in ('pos', 'neg'):
            path: Path = Path(__file__).parent / 'aclImdb' / subset / label

            for file in path.iterdir():
                with open(path / file, 'r', encoding='utf-8') as inp:
                    txt: str = inp.read()

                df = df.append([[txt, labels[label]]], ignore_index=True)
                pbar.update()

    df.columns = ['review', 'sentiment']

    df = df.reindex(np.random.permutation(df.index))
    df.to_csv(dataset_path, index=False)
Ejemplo n.º 7
0
    def __new__(cls, iterable=None, desc=None, total=None, leave=True,
                backend=None, verbose=True):
        if backend is None:
            backend = Progressbar.backend

        if not verbose:
            backend = "hide"

        if backend == "tqdm":
            from tqdm import tqdm
            return tqdm(iterable=iterable, desc=desc, total=total, leave=leave,
                        ascii=True, ncols=80, file=sys.stdout,
                        bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed"
                                   "}<{remaining}{postfix}]") # remove rate_fmt
        elif backend == "tqdm_notebook":
            from tqdm import tqdm_notebook
            return tqdm_notebook(iterable=iterable, desc=desc, total=total,
                                 leave=leave)
        elif backend == "pyprind":
            from pyprind import ProgBar, prog_bar
            ProgBar._adjust_width = lambda self: None  # keep constant width
            if iterable is None:
                return ProgBar(total, title=desc, stream=1)
            else:
                return prog_bar(iterable, title=desc, stream=1,
                                iterations=total)
        elif backend == "hide":
            return NoProgressbar(iterable=iterable)
        else:
            raise NotImplementedError("unknown backend")
Ejemplo n.º 8
0
def etlFeature(post, img_list, h5filename):

    # 迭代方式,提取特征值写入h5文件
    bar = ProgBar(len(img_list),
                  monitor=True,
                  title="提取图片特征,Image Total:%d" % len(img_list))
    for i, img_path in enumerate(img_list):
        norm_feat = extract_feat(img_path)
        img_name = os.path.split(img_path)[1]
        names = []
        names.append(img_name)
        feats2 = np.array(norm_feat)
        try:
            wH5FileData(i + post, feats2, names, h5filename)
        except:
            print("Feats Write Error")
            return 1
        bar.update()
        # print ("提取图片特征!进度: %d/%d" % ((i + 1), len (img_list)))
    print(bar)
    return 0
Ejemplo n.º 9
0
 async def cmd_update(self, message):
     channel = message.channel
     await self.send_typing(channel)
     msgs = [
         elem async for elem in channel.history(
             limit=None).filter(self.play_search_predicate)
     ]
     bar = ProgBar(len(msgs))
     for msg in msgs:
         if "```" not in msg.content and msg.author.name != 'Neurofonix':
             self.msg_list.append(
                 msg.content.replace('-play ', '').replace('!play', ''))
         # if msg.author.name not in messages.keys():
         #     messages[msg.author.name] = []
         # messages[msg.author.name].append(msg.content)
         bar.update()
     json.dump(self.msg_list,
               open('neurofonix/msgs.json', 'w+'),
               sort_keys=True,
               indent=4)
     self.train(self.msg_list)
     await message.channel.send("Updated.")
Ejemplo n.º 10
0
def extract_weather_data(darksky_api_key, gps_coords, target_date, days):
    records = []
    bar = ProgBar(days)
    for _ in range(days):
        url_time = str(int(target_date.timestamp()))
        request = "https://api.darksky.net/forecast/" + darksky_api_key + "/" + gps_coords + "," + url_time + "?units=si&exclude=currently,minutely,hourly,alerts,flags"
        response = requests.get(request, [])
        if response.status_code == 200:
            try:
                data = response.json()['daily']['data'][0]
                records.append(
                    DailySummary(
                        date=target_date,
                        moonPhase=data['moonPhase'],
                        precipIntensity=data['precipIntensity'],
                        precipIntensityMax=data['precipIntensityMax'],
                        precipProbability=data['precipProbability'],
                        temperatureHigh=data['temperatureHigh'],
                        temperatureLow=data['temperatureLow'],
                        apparentTemperatureHigh=data[
                            'apparentTemperatureHigh'],
                        apparentTemperatureLow=data['apparentTemperatureLow'],
                        dewPoint=data['dewPoint'],
                        humidity=data['humidity'],
                        windSpeed=data['windSpeed'],
                        windGust=data['windGust'],
                        windBearing=data['windBearing'],
                        cloudCover=data['cloudCover'],
                        uvIndex=data['uvIndex'],
                        visibility=data['visibility'],
                        temperatureMax=data['temperatureMax'],
                        temperatureMin=data['temperatureMin'],
                        apparentTemperatureMax=data['apparentTemperatureMax'],
                        apparentTemperatureMin=data['apparentTemperatureMin']))
            except KeyError:
                bar.update()
                target_date += timedelta(days=1)
                continue

        #time.sleep(6)
        bar.update()
        target_date += timedelta(days=1)
    return records
Ejemplo n.º 11
0
    def obtain_samples(self, log=False, log_prefix='', test=False):

        print("total_samples:",self.total_samples)
        print("meta_batch_size:", self.meta_batch_size)
        print("max_path_length:" ,self.max_path_length)

        print("--------------obtaining", self.total_samples//self.meta_batch_size//self.max_path_length,
              "rollouts_per_task, for", self.meta_batch_size, "tasks..--------------")

        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger

        Returns: 
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        paths = OrderedDict()
        for i in range(self.meta_batch_size):
            paths[i] = []

        n_samples = 0

        running_paths = [_get_empty_running_paths_dict() for _ in range(self.vec_env.num_envs)]
        print("                runnng_paths length:", len(running_paths))

        pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy

        # initial reset of envs
        obses = self.vec_env.reset()
        
        while n_samples < self.total_samples:
            # execute policy
            t = time.time()
            obs_per_task = np.split(np.asarray(obses), self.meta_batch_size)
            actions, agent_infos = policy.get_actions(obs_per_task)
            policy_time += time.time() - t

            # step environments
            t = time.time()
            actions = np.concatenate(actions) # stack meta batch
            next_obses, rewards, dones, env_infos = self.vec_env.step(actions)
            env_time += time.time() - t

            #  stack agent_infos and if no infos were provided (--> None) create empty dicts
            agent_infos, env_infos = self._handle_info_dicts(agent_infos, env_infos)

            new_samples = 0
            for idx, observation, action, reward, env_info, agent_info, done in zip(itertools.count(), obses, actions,
                                                                                    rewards, env_infos, agent_infos,
                                                                                    dones):
                # append new samples to running paths
                running_paths[idx]["observations"].append(observation)
                running_paths[idx]["actions"].append(action)
                running_paths[idx]["rewards"].append(reward)
                running_paths[idx]["env_infos"].append(env_info)
                running_paths[idx]["agent_infos"].append(agent_info)

                # if running path is done, add it to paths and empty the running path
                if done:
                    paths[idx // self.envs_per_task].append(dict(
                        observations=np.asarray(running_paths[idx]["observations"]),
                        actions=np.asarray(running_paths[idx]["actions"]),
                        rewards=np.asarray(running_paths[idx]["rewards"]),
                        env_infos=utils.stack_tensor_dict_list(running_paths[idx]["env_infos"]),
                        agent_infos=utils.stack_tensor_dict_list(running_paths[idx]["agent_infos"]),
                    ))
                    new_samples += len(running_paths[idx]["rewards"])
                    running_paths[idx] = _get_empty_running_paths_dict()

            pbar.update(new_samples)
            n_samples += new_samples
            obses = next_obses

        pbar.stop()

        if not test:
            self.total_timesteps_sampled += self.total_samples
            print("------------self.total_timesteps_sampled:", self.total_timesteps_sampled, "-----------------")
        else:
            print("------------tested on:", self.total_samples // self.max_path_length, " rollouts-----------------")

        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        return paths
Ejemplo n.º 12
0
    def obtain_samples(self, log=False, log_prefix='', random=False):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger
            random (boolean): whether the actions are random

        Returns:
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        paths = []

        n_samples = 0
        running_paths = _get_empty_running_paths_dict()

        pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy
        policy.reset(dones=[True])

        # initial reset of meta_envs
        obs = np.asarray(self.env.reset())

        ts = 0

        while n_samples < self.total_samples:

            # execute policy
            t = time.time()
            if random:
                action = self.env.action_space.sample()
                agent_info = {}
            else:
                action, agent_info = policy.get_action(obs)
                if action.ndim == 2:
                    action = action[0]
            policy_time += time.time() - t

            # step environments
            t = time.time()
            next_obs, reward, done, env_info = self.env.step(action)

            ts += 1
            done = done or ts >= self.max_path_length
            if done:
                next_obs = self.env.reset()
                ts = 0

            env_time += time.time() - t

            new_samples = 0

            # append new samples to running paths
            if isinstance(reward, np.ndarray):
                reward = reward[0]
            running_paths["observations"].append(obs)
            running_paths["actions"].append(action)
            running_paths["rewards"].append(reward)
            running_paths["dones"].append(done)
            running_paths["env_infos"].append(env_info)
            running_paths["agent_infos"].append(agent_info)

            # if running path is done, add it to paths and empty the running path
            if done:
                paths.append(
                    dict(
                        observations=np.asarray(running_paths["observations"]),
                        actions=np.asarray(running_paths["actions"]),
                        rewards=np.asarray(running_paths["rewards"]),
                        dones=np.asarray(running_paths["dones"]),
                        env_infos=utils.stack_tensor_dict_list(
                            running_paths["env_infos"]),
                        agent_infos=utils.stack_tensor_dict_list(
                            running_paths["agent_infos"]),
                    ))
                new_samples += len(running_paths["rewards"])
                running_paths = _get_empty_running_paths_dict()

            pbar.update(new_samples)
            n_samples += new_samples
            obs = next_obs
        pbar.stop()

        self.total_timesteps_sampled += self.total_samples
        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        return paths
Ejemplo n.º 13
0
img_remaining = remaining[list(valid.isin(['.jpg', '.gif' ,'.png', '.jpeg','.JPG']))] # what we keep
print("Remaining after unvalid extensions removed :" + str(len(remaining)))


# In[141]:

img_remaining


# ##  Downloading images
# 

# In[142]:

# TODO: Download images with a minimum width or height
bar = ProgBar(len(remaining), monitor=True)
unfetchables = []
timeouts = []
urlerrors = []
large_names = []

for i, image_name in enumerate(remaining):
    bar.update(item_id = image_name, force_flush=True)
    img =  None
    try:
        img = urlopen(image_name, None, 0.5).read()
    except (URLError, requests.exceptions.SSLError, ssl.SSLError) as e:
        urlerrors.append((image_name,e))
        print("URLError:   ",e ,image_name)
        continue
    except socket.timeout as e:
Ejemplo n.º 14
0
from get_minibatch import get_minibatch
import sys

sys.path.append("..")
from tokenizer import tokenizer
from vectorizer import vect
from sklearn.linear_model import SGDClassifier
from pyprind import ProgBar
import os
import pickle

clf = SGDClassifier(loss='log', random_state=1, max_iter=1)

classes = np.array([0, 1])
doc_stream = stream_docs('movie_data.csv')
pbar = ProgBar(45)

for _ in range(45):
    X_train, y_train = get_minibatch(doc_stream, 1000)
    if not X_train:
        break
    X_train = vect.transform(X_train)
    clf.partial_fit(X_train, y_train, classes=classes)
    pbar.update()

X_test, y_test = get_minibatch(doc_stream, 5000)
X_test = vect.transform(X_test)

print("Accuracy: %.3f" % clf.score(X_test, y_test))
clf.partial_fit(X_test, y_test, classes=classes)
Ejemplo n.º 15
0
    def obtain_samples(self,
                       log=False,
                       log_prefix='',
                       random=False,
                       advance_curriculum=False,
                       policy=None,
                       teacher_dict={},
                       max_action=False):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger
            random (boolean): whether the actions are random

        Returns: 
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        paths = OrderedDict()
        for i in range(self.meta_batch_size):
            paths[i] = []

        n_samples = 0
        running_paths = [
            _get_empty_running_paths_dict()
            for _ in range(self.vec_env.num_envs)
        ]

        total_paths = self.rollouts_per_meta_task * self.meta_batch_size * self.envs_per_task
        pbar = ProgBar(total_paths)
        policy_time, env_time = 0, 0

        if policy is None:
            policy = self.policy
        policy.reset(dones=[True] * self.meta_batch_size)
        if self.reward_predictor is not None:
            self.reward_predictor.reset(dones=[True] * self.meta_batch_size)
        if self.supervised_model is not None:
            self.supervised_model.reset(dones=[True] * self.meta_batch_size)
        # initial reset of meta_envs
        if advance_curriculum:
            self.vec_env.advance_curriculum()
        self.update_tasks()

        obses = self.vec_env.reset()

        num_paths = 0
        itrs = 0
        while num_paths < total_paths:
            print("Loop", num_paths, total_paths, itrs)
            itrs += 1
            t = time.time()
            obses = self.obs_preprocessor(obses, teacher_dict)
            if random:
                actions = np.stack([[self.env.action_space.sample()]
                                    for _ in range(len(obses))],
                                   axis=0)
                agent_infos = [[{
                    'mean':
                    np.zeros_like(self.env.action_space.sample()),
                    'log_std':
                    np.zeros_like(self.env.action_space.sample())
                }] * self.envs_per_task] * self.meta_batch_size
            else:
                actions, agent_infos = policy.get_actions_t(obses)
                if max_action:  # TODO: double check this still works
                    assert False, "We haven't checked this still works with the new model; if it does, feel free to delete."
                    original_action_shape = actions.shape
                    actions = [[[np.argmax(d['probs'])] for d in agent_info]
                               for agent_info in agent_infos]
                    actions = np.array(actions, dtype=np.int32)
                    if not actions.shape == original_action_shape:
                        assert False, (actions.shape, original_action_shape)

            policy_time += time.time() - t

            # step environments
            t = time.time()
            next_obses, rewards, dones, env_infos = self.vec_env.step(actions)
            env_time += time.time() - t

            new_samples = 0
            new_paths = 0
            for idx, observation, action, reward, env_info, agent_info, done in zip(
                    itertools.count(), obses, actions, rewards, env_infos,
                    agent_infos, dones):
                # append new samples to running paths
                if isinstance(reward, np.ndarray):
                    reward = reward[0]
                running_paths[idx]["observations"].append(observation)
                running_paths[idx]["actions"].append(action)
                running_paths[idx]["rewards"].append(reward)
                running_paths[idx]["dones"].append(done)
                running_paths[idx]["env_infos"].append(env_info)
                running_paths[idx]["agent_infos"].append(agent_info)

                # if running path is done, add it to paths and empty the running path
                if done:
                    curr_path = paths[idx // self.envs_per_task]
                    if len(curr_path) >= self.rollouts_per_meta_task:
                        continue
                    paths[idx // self.envs_per_task].append(
                        dict(
                            observations=np.asarray(
                                running_paths[idx]["observations"]),
                            actions=np.asarray(running_paths[idx]["actions"]),
                            rewards=np.asarray(running_paths[idx]["rewards"]),
                            dones=np.asarray(running_paths[idx]["dones"]),
                            env_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["env_infos"]),
                            agent_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["agent_infos"]),
                        ))
                    num_paths += 1
                    new_paths += 1
                    new_samples += len(running_paths[idx]["rewards"])
                    running_paths[idx] = _get_empty_running_paths_dict()

            pbar.update(new_paths)
            n_samples += new_samples
            obses = next_obses
        pbar.stop()

        self.total_timesteps_sampled += n_samples
        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        return paths
Ejemplo n.º 16
0
    data['min_host_leafs'] = min_host_leafs
    data['max_host_leafs'] = max_host_leafs
    data['min_guest_leafs'] = min_guest_leafs
    data['max_guest_leafs'] = max_guest_leafs
    data['duplication_rate'] = duplication_rate
    data['loss_rate'] = loss_rate
    data['switch_rate'] = switch_rate
    data['k'] = k
    data['theta'] = theta

    with open(prefix + '/' + 'data.csv', 'w') as f:
        f.write(','.join(data.keys()) + '\n')
        f.write(','.join(map(str, data.values())))


p = ProgBar(args.N, title='simulating trees...', monitor=True, width=30)
p.update()

if args.config:
    config = json.load(open(args.config))

    # host tree parameters
    run_dir = config['run_dir']
    N = config['N']
    birth_rate = config['birth_rate']
    death_rate = config['death_rate']
    min_host_leafs = config['min_host_leafs']
    max_host_leafs = config['max_host_leafs']

    # guest tree parameters
    duplication_rate = config['duplication_rate']
Ejemplo n.º 17
0
    def obtain_samples(self, log=False, log_prefix=''):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger

        Returns:
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        paths = []

        n_samples = 0
        running_paths = dict()

        pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy

        # initial reset of envs
        obses = self.env.reset()

        while n_samples < self.total_samples:
            # execute policy
            t = time.time()
            obs_per_task = np.array(obses)

            actions, logits, values = policy.get_actions(obs_per_task)
            policy_time += time.time() - t

            # step environments
            t = time.time()
            next_obses, rewards, dones, env_infos = self.env.step(actions)

            env_time += time.time() - t

            #  stack agent_infos and if no infos were provided (--> None) create empty dicts
            new_samples = 0
            for observation, action, logit, reward, value, finish_time in zip(
                    obses, actions, logits, rewards, values, env_infos):
                running_paths["observations"] = observation
                running_paths["actions"] = action
                running_paths["logits"] = logit
                running_paths["rewards"] = reward
                running_paths["values"] = value
                running_paths["finish_time"] = finish_time
                # handling

                paths.append(
                    dict(
                        observations=np.squeeze(
                            np.asarray(running_paths["observations"])),
                        actions=np.squeeze(np.asarray(
                            running_paths["actions"])),
                        logits=np.squeeze(np.asarray(running_paths["logits"])),
                        rewards=np.squeeze(np.asarray(
                            running_paths["rewards"])),
                        values=np.squeeze(np.asarray(running_paths["values"])),
                        finish_time=np.squeeze(
                            np.asarray(running_paths["finish_time"]))))

                # if running path is done, add it to paths and empty the running path
                new_samples += len(running_paths["rewards"])
                running_paths = _get_empty_running_paths_dict()

            pbar.update(new_samples)
            n_samples += new_samples
            obses = next_obses
        pbar.stop()

        self.total_timesteps_sampled += self.total_samples
        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)
        return paths
Ejemplo n.º 18
0
    def obtain_samples(self, itr, log=True, log_prefix='', show_pbar=True):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger
            show_pbar (boolean): whether to show progress bar

        Returns: 
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        paths = OrderedDict()
        for i in range(self.meta_batch_size):
            paths[i] = []

        n_samples = 0
        running_paths = [_get_empty_running_paths_dict() for _ in range(self.vec_env.num_envs)]

        if show_pbar:
            pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy

        # initial reset of envs
        obses = self.vec_env.reset()
        
        while n_samples < self.total_samples:
            
            # execute policy
            t = time.time()
            obs_per_task = np.split(np.asarray(obses), self.meta_batch_size)

            actions, agent_infos = policy.get_actions(obs_per_task)
            policy_time += time.time() - t

            # step environments
            t = time.time()
            actions = np.concatenate(actions) # stack meta batch
            next_obses, rewards, dones, env_infos = self.vec_env.step(actions)
            env_time += time.time() - t

            #  stack agent_infos and if no infos were provided (--> None) create empty dicts
            agent_infos, env_infos = self._handle_info_dicts(agent_infos, env_infos)

            new_samples = 0
            for idx, observation, action, reward, env_info, agent_info, done in zip(itertools.count(), obses, actions,
                                                                                    rewards, env_infos, agent_infos,
                                                                                    dones):
                # append new samples to running paths
                running_paths[idx]["observations"].append(observation)
                running_paths[idx]["actions"].append(action)
                running_paths[idx]["rewards"].append(reward)
                running_paths[idx]["dones"].append(int(done))
                running_paths[idx]["env_infos"].append(env_info)
                running_paths[idx]["agent_infos"].append(agent_info)

                # if running path is done, add it to paths and empty the running path
                if done:
                    paths[idx // self.envs_per_task].append(dict(
                        observations=np.asarray(running_paths[idx]["observations"]),
                        actions=np.asarray(running_paths[idx]["actions"]),
                        rewards=np.asarray(running_paths[idx]["rewards"]),
                        dones=np.asarray(running_paths[idx]["dones"], dtype=np.float),
                        env_infos=utils.stack_tensor_dict_list(running_paths[idx]["env_infos"]),
                        agent_infos=utils.stack_tensor_dict_list(running_paths[idx]["agent_infos"]),
                    ))
                    new_samples += len(running_paths[idx]["rewards"])
                    running_paths[idx] = _get_empty_running_paths_dict()
            if show_pbar:
                pbar.update(new_samples)
            n_samples += new_samples
            obses = next_obses
        if show_pbar:
            pbar.stop()

        self.total_timesteps_sampled += self.total_samples
        if log:
            tabular.record(log_prefix + "PolicyExecTime", policy_time)
            tabular.record(log_prefix + "EnvExecTime", env_time)

        return paths
Ejemplo n.º 19
0
    def obtain_samples(self,
                       log=False,
                       log_prefix='',
                       random=False,
                       deterministic=False,
                       eval=False,
                       multiple_trajectory=1,
                       dynamics_model=None):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger
            random (boolean): whether the actions are random

        Returns:
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        multiple_trajectories = []

        for _ in range(multiple_trajectory):
            paths = []
            n_samples = 0
            running_paths = _get_empty_running_paths_dict()

            if log: pbar = ProgBar(self.total_samples)
            policy_time, env_time = 0, 0

            policy = self.policy
            policy.reset(dones=[True])

            # initial reset of meta_envs
            obs = np.asarray(self.env.reset())

            ts = 0

            while n_samples < self.total_samples:

                # execute policy
                t = time.time()
                if eval:
                    H = self.mpc.horizon
                    mean_list = []
                    std_list = []
                    observation = obs
                    for t in range(H + 1):
                        action, agent_info = policy.get_action(observation)
                        action = agent_info['mean']
                        mean_list.append(action)
                        std_list.append(agent_info['log_std'])
                        if self.policy.squashed:
                            action = np.tanh(action)
                        if observation.ndim == 1:
                            observation = observation[None]
                        if action.ndim == 1:
                            action = action[None]
                        observation = dynamics_model.predict(
                            observation, action)
                        observation = observation.reshape((-1))
                    action, _ = self.mpc.get_actions(obs[None], mean_list,
                                                     std_list)
                    if action.ndim == 2:
                        action = action[0]
                else:
                    obs = obs.reshape((-1))
                    if random:
                        action = self.env.action_space.sample()
                        agent_info = {}
                    elif deterministic:
                        action, agent_info = policy.get_action(obs)
                        action = agent_info['mean']
                        if self.policy.squashed:
                            action = np.tanh(action)
                    else:
                        action, agent_info = policy.get_action(obs)
                        if action.ndim == 2:
                            action = action[0]
                    policy_time += time.time() - t

                # step environments
                t = time.time()
                next_obs, reward, done, env_info = self.env.step(action)

                ts += 1

                env_time += time.time() - t

                new_samples = 0

                # append new samples to running paths
                if isinstance(reward, np.ndarray):
                    reward = reward[0]
                running_paths["observations"].append(obs)
                running_paths["actions"].append(action)
                running_paths["rewards"].append(reward)
                running_paths["dones"].append(done)
                running_paths["env_infos"].append(env_info)
                running_paths["agent_infos"].append(agent_info)

                # if running path is done, add it to paths and empty the running path
                if done or ts >= self.max_path_length:
                    paths.append(
                        dict(
                            observations=np.asarray(
                                running_paths["observations"]),
                            actions=np.asarray(running_paths["actions"]),
                            rewards=np.asarray(running_paths["rewards"]),
                            dones=np.asarray(running_paths["dones"]),
                            env_infos=[],
                            agent_infos=[],
                            # env_infos=utils.stack_tensor_dict_list(running_paths["env_infos"]),
                            # agent_infos=utils.stack_tensor_dict_list(running_paths["agent_infos"]),
                        ))
                    new_samples += len(running_paths["rewards"])
                    running_paths = _get_empty_running_paths_dict()

                if done or ts >= self.max_path_length:
                    next_obs = self.env.reset()
                    ts = 0

                if log: pbar.update(new_samples)
                n_samples += new_samples
                obs = next_obs
            multiple_trajectories.append(paths)
        if log: pbar.stop()

        self.total_timesteps_sampled += self.total_samples
        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        return multiple_trajectories
Ejemplo n.º 20
0
def main():
    parser = argparse.ArgumentParser(
        description="Create epubs from Reddit")
    parser.add_argument('config_file',
                        help="The file containing the links, formatted in YAML")
    parser.add_argument('output_directory')
    args = parser.parse_args()

    config_file = args.config_file
    directory = args.output_directory

    # Disable warnings due to a bug in praw
    warnings.filterwarnings("ignore")

    reader = praw.Reddit(user_agent="reddit2ebook")
    config = read_config_file(config_file)
    # We have to use xhtml here for Epubs
    renderer = mistune.Renderer(use_xhtml=True, escape=True)
    markdown = mistune.Markdown(renderer=renderer)

    for bookname in config.keys():
        book = epub.EpubBook()
        # The epub standard requires an unique identifier, this is normally
        # the ISBN, but since we dont have one we generate an UUID
        book.set_identifier(uuid.uuid4().hex)

        chapter_number = 1
        chapters = []

        if "links" in config[bookname]:
            bar = ProgBar(
                len(config[bookname]["links"]),
                title="Creating ebook " + bookname + ".epub",
                bar_char='█')

            links = config[bookname]["links"]

            if "cover" in config[bookname]:
                convert_to_jpeg(config[bookname]["cover"])
                with open("cover.jpg", 'rb') as f:
                    book.set_cover("cover.jpg", f.read())
                os.remove("cover.jpg")

            if "author" in config[bookname]:
                book.add_author(config[bookname]["author"])

            if "lang" in config[bookname]:
                book.set_language(config[bookname]["lang"])
            else:
                book.set_language('en')

            if "title" in config[bookname]:
                book.set_title(config[bookname]["title"])
            else:
                book.set_title(bookname)

        else:
            links = config[bookname]
            book.set_language('en')
            book.set_title(bookname)
            bar = ProgBar(len(config[bookname]),
                          title="Creating ebook " + bookname + ".epub",
                          bar_char='█')

        for url in links:
            bar.update()
            # Check if the link is a comment or a submission
            # Submissions have a trailing slash
            if url.split('/')[-1] == '':
                submission = get_submission_text(reader, url)
                chapter = create_chapter(
                    body=markdown(submission[1]),
                    title=submission[0],
                    filename="chapter" + str(chapter_number) + ".xhtml"
                )
            else:
                comment = get_comment_text(reader, url)
                chapter = create_chapter(
                    body=markdown(comment[1]),
                    title="Comment by " + comment[0],
                    filename="chapter" + str(chapter_number) + ".xhtml"
                )

            chapters.append(chapter)

            book.add_item(chapter)

            chapter_number += 1

        book.toc = chapters
        book.add_item(epub.EpubNcx())
        book.add_item(epub.EpubNav())

        style = load_css()
        default_css = epub.EpubItem(
            uid="style_default",
            file_name="style/default.css",
            media_type="text/css",
            content=style)
        book.add_item(default_css)

        nav_css = epub.EpubItem(
            uid="style_nav",
            file_name="style/nav.css",
            media_type="text/css",
            content=style)
        book.add_item(nav_css)

        spine = ['cover', 'nav'] + chapters

        book.spine = spine

        epub.write_epub(os.path.join(directory, bookname + ".epub"), book, {})

        print("Finished writing " + bookname + ".epub\n")
def get_switches(road_length=300,
                 n_iterations=250,
                 p_slow=0.1,
                 vmax=5,
                 prog_bar=False):
    """Convenience functon to obtain the average number of lane switches at a given density

    Parameters
    ----------
    road_length: int
        length of road object to be instaited
    n_iterations: int
        number of times the system is evolved
    p_slow: float, 0 <= p_slow < 1
        probability of random deceleration
    vmax: int
        maximum speed of road
    prog_bar: boolean
        if set to True, a progress bar is included. Note that this requires the pyprind module to be installed and hence defaults to False

    """

    car_counts = [i for i in range(1, road_length)]
    densities = [count / road_length for count in car_counts]

    if prog_bar:
        from pyprind import ProgBar
        prog = ProgBar(len(densities))

    # the number of switches is stored in a dataframe

    switches = pd.DataFrame(np.zeros(len(densities)),
                            dtype=float,
                            columns=['Avg Number of Switches'],
                            index=densities)
    switches.index.name = 'Density'

    for density, count in zip(densities, car_counts):

        # a road object is instantiated for each density value

        M1 = v4.Road(L=road_length,
                     car_count=count * 2,
                     vmax=vmax,
                     p_slow=p_slow,
                     random_state=3)

        # the data is then gathered via the get_data() function

        data, top_speeds, avg_speeds, switch_count = get_data(
            M1, n_iterations=n_iterations)

        switch_count = np.array(switch_count)

        # the average number of switches is then stored at the corresponding density value

        switches.loc[density] = np.mean(switch_count)

        if prog_bar:

            prog.update()

    return switches
Ejemplo n.º 22
0
    def obtain_samples(self, log=False, log_prefix='', random=False):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger
            random (boolean): whether the actions are random

        Returns: 
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        paths = OrderedDict()
        for i in range(self.meta_batch_size):
            paths[i] = []

        running_paths = _get_empty_running_paths_dict()

        pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy

        for idx in range(self.meta_batch_size):
            ts = 0
            n_samples = 0

            init_obs = np.expand_dims(self.env.reset(), 0).copy()
            obses = [init_obs for _ in range(self.meta_batch_size)]
            policy.reset(dones=[True] * self.meta_batch_size)
            while n_samples < self.samples_per_task:
                # execute policy
                t = time.time()

                if random:
                    actions = np.stack([[self.env.action_space.sample()]
                                        for _ in range(len(obses))],
                                       axis=0)
                    agent_infos = [[{
                        'mean':
                        np.zeros_like(self.env.action_space.sample()),
                        'log_std':
                        np.zeros_like(self.env.action_space.sample())
                    }] * self.envs_per_task] * self.meta_batch_size
                else:
                    actions, agent_infos = policy.get_actions(obses)

                policy_time += time.time() - t

                # step environments
                t = time.time()
                action, agent_info = actions[idx][0], agent_infos[idx][0]
                observation = obses[idx][0].copy()

                next_obs, reward, done, env_info = self.env.step(action)

                ts += 1
                done = done or ts >= self.max_path_length
                if done:
                    next_obs = self.env.reset()
                    # time.sleep(1)
                    ts = 0

                env_time += time.time() - t

                new_samples = 0
                # append new samples to running paths
                if isinstance(reward, np.ndarray):
                    reward = reward[0]
                running_paths["observations"].append(observation)
                running_paths["actions"].append(action)
                running_paths["rewards"].append(reward)
                running_paths["dones"].append(done)
                running_paths["env_infos"].append(env_info)
                running_paths["agent_infos"].append(agent_info)

                # if running path is done, add it to paths and empty the running path
                if done:
                    paths[idx].append(
                        dict(
                            observations=np.asarray(
                                running_paths["observations"]),
                            actions=np.asarray(running_paths["actions"]),
                            rewards=np.asarray(running_paths["rewards"]),
                            dones=np.asarray(running_paths["dones"]),
                            env_infos=utils.stack_tensor_dict_list(
                                running_paths["env_infos"]),
                            agent_infos=utils.stack_tensor_dict_list(
                                running_paths["agent_infos"]),
                        ))
                    new_samples += len(running_paths["rewards"])
                    running_paths = _get_empty_running_paths_dict()

                pbar.update(new_samples)
                n_samples += new_samples
                obses[idx][0] = next_obs

            self.total_timesteps_sampled += n_samples

        pbar.stop()
        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        return paths
Ejemplo n.º 23
0
    def mix_data(self, nevents, isUnbalanced=False):
        sr = self.sr
        audio_path = '../aed_data/freesound/audio/'
        audio_names = os.listdir(audio_path)
        # random.seed(33)
        random.shuffle(audio_names)
        if nevents == 5:
            nsamples = 2000
        elif nevents == 10:
            nsamples = 3000
        elif nevents == 15:
            nsamples = 4000
        elif nevents == 20:
            nsamples = 6000
        else:
            nsamples = 0
        audio_names = audio_names[:nevents]
        if isUnbalanced:
            print('The first five events are:', audio_names)
            print('Now the inefficient category is:', audio_names[0])
        datas = []
        labels = []
        count = 0
        pb = ProgBar(nsamples)
        for i in range(nsamples):
            min_len = 1000000
            mixed_data = np.zeros((min_len, ))
            class_label = []
            for j in range(nevents):
                if isUnbalanced:
                    if j == 0:  # let first event unbalanced
                        if count >= 25000:
                            tag = 0
                        else:
                            tag = random.randint(0, 1)
                    else:
                        tag = random.randint(0, 1)
                else:
                    tag = random.randint(0, 1)
                audio_files = os.listdir(audio_path + audio_names[j])
                audio_file = random.sample(audio_files, 1)[0]
                wav_data, _ = lrs.load(audio_path + audio_names[j] + '/' +
                                       audio_file,
                                       sr=sr)
                class_label.append(tag)
                if min_len > len(wav_data):
                    min_len = len(wav_data)
                mixed_data = mixed_data[:min_len] + wav_data[:min_len] * tag
            mixed_data = self.signal_norm(mixed_data)
            noise_files = os.listdir('../aed_data/freesound/noise/')
            noise_file = random.sample(noise_files, 1)[0]
            n_data, _ = lrs.load('../aed_data/freesound/noise/' + noise_file,
                                 sr=sr)
            dB = random.sample(list(range(6, 12)), 1)[0]
            if len(n_data) < len(mixed_data):
                mixed_data = mixed_data[:len(n_data)]
            else:
                n_data = n_data[:len(mixed_data)]

            k = self.SNR2K(mixed_data, n_data, dB)

            mixed_data += k * n_data[:len(mixed_data)]
            # lrs.output.write_wav('test.wav', mixed_data, sr=sr)

            s = self.__emphasize__(mixed_data)
            frames, nframe = self.__enframe__(s)
            if class_label[0] == 1:
                count += nframe
            frames = self.__windowing__(frames)
            mfccs_list = []
            labels_list = []
            for frame in frames:
                if np.max(np.abs(frame)) < 0.03:
                    class_label = [0] * nevents
                mfcc = lrs.feature.mfcc(frame,
                                        sr=sr,
                                        n_fft=256,
                                        n_mfcc=24,
                                        n_mels=24,
                                        center=False,
                                        norm=None)
                mfcc_delt = lrs.feature.delta(mfcc, width=3)
                mfcc_delt2 = lrs.feature.delta(mfcc, order=2, width=3)
                mfccs = np.concatenate([mfcc, mfcc_delt, mfcc_delt2], axis=1)
                mfccs = np.reshape(mfccs, (np.size(mfccs), ))
                mfccs_list.append(mfccs)
                labels_list.append(class_label)
            datas.append(self.normalize(np.array(mfccs_list)))
            labels.append(np.array(labels_list))
            pb.update()
        ziped = list(zip(datas, labels))
        random.shuffle(ziped)
        datas[:], labels[:] = zip(*ziped)
        if isUnbalanced:
            with open(
                    '../aed_data/freesound/mfccs/datas/DA_mfccs_' +
                    str(nevents) + '.pkl', 'wb') as f:
                pkl.dump(datas, f)
            with open(
                    '../aed_data/freesound/mfccs/labels/DA_labels_' +
                    str(nevents) + '.pkl', 'wb') as f:
                pkl.dump(labels, f)

        else:
            with open(
                    '../aed_data/freesound/mfccs/datas/mfccs_' + str(nevents) +
                    '.pkl', 'wb') as f:
                pkl.dump(datas, f)
            with open(
                    '../aed_data/freesound/mfccs/labels/labels_' +
                    str(nevents) + '.pkl', 'wb') as f:
                pkl.dump(labels, f)
        print()
        print('Mixing audios with {} nevents and {} nsamples DONE.'.format(
            nevents, nsamples))
Ejemplo n.º 24
0
 def __init__(self, iterations, track_time=True, width=30, bar_char='#', stream=stream_writer(), 
             title='', monitor=False, update_interval=None):
     # super(ProgBar, self).__init__(iterations=iterations, track_time=track_time, width=width, bar_char=bar_char, 
     #                                 stream=stream, title=title, monitor=monitor, update_interval=update_interval)
     Pb.__init__(self, iterations=iterations, track_time=track_time, width=width, bar_char=bar_char, 
                                     stream=stream, title=title, monitor=monitor, update_interval=update_interval)
Ejemplo n.º 25
0
def flash(serial_port, force, low_speed):
    # init
    stat_image_file = stat(IMG_FILE)
    p_bar = ProgBar(stat_image_file.st_size)

    def clear_buffer():
        serial_port.reset_output_buffer()
        serial_port.reset_input_buffer()

    def read_with_bar(data, timeout=0):
        return serial_port.read(data)

    def write_with_bar(data, timeout=0):
        write_with_bar.current += len(data)
        p_bar.title = "%d / %d" % (write_with_bar.current,
                                   stat_image_file.st_size)
        p_bar.update(len(data))
        ret = serial_port.write(data)
        sleep(0.001)
        return ret

    write_with_bar.current = 0

    # go to flash
    mode = goto_flash_mode(serial_port)
    if mode == False:
        return False

    if mode == 'C':
        image_file = IMG_FILE

        mac = ''
        get_mac_cmd = bytes.fromhex('210600ea2d38000000')
        serial_port.timeout = 3
        sleep(0.1)
        serial_port.write(get_mac_cmd)
        mac = (serial_port.read_until())
        pos = mac.find(b'MAC:')
        if pos >= 0:
            mac = mac[pos + 4:len(mac) - 1].decode("ascii")

            print('MAC Address: %s' % mac)

            if isfile(FLASH_SIGNAL) and not force:
                with open(FLASH_SIGNAL, 'rt') as f:
                    if f.read().strip() == mac:
                        print(
                            "this device already flash this program! skip flash. (--force to overwrite)"
                        )
                        clear_buffer()
                        control_reset(serial_port)
                        return True
        else:
            print(
                'bootloader not response MAC address, seems level 1 running.')
            mode = 'P'

    if mode == 'P':
        image_file = FLS_FILE

    # up speed
    def switch_baudrate(br):
        clear_buffer()
        serial_port.baudrate = br

    if not low_speed:
        print('switching to 2M baudrate...')
        sleep(0.2)
        speed_magic = bytes.fromhex('210a00ef2a3100000080841e00')
        serial_port.write(speed_magic)
        sleep(0.01)
        switch_baudrate(2000000)
        serial_port.timeout = 0.3
        sleep(0.01)
        wront_cnt = 0
        while True:
            c_in = serial_port.read(1)
            # print('got: "%s"' % c_in)
            if c_in == b'C' or c_in == b'P':
                break
            if c_in == b'\x00':
                continue
            elif wront_cnt >= 10:
                print('retry...')
                wront_cnt = 0
                switch_baudrate(115200)
                serial_port.write(speed_magic)
                switch_baudrate(2000000)
                sleep(0.01)
            else:
                wront_cnt += 1
        print('high speed mode!')
    serial_port.timeout = None

    print('sending file:', image_file)
    stream = open(image_file, 'rb')

    clear_buffer()
    modem = XMODEM(getc=read_with_bar, putc=write_with_bar)
    print("please wait for download....")
    result = modem.send(stream)
    print('')
    if result:
        print("download image success!")
        if mode == 'C':
            with open(FLASH_SIGNAL, 'wt') as f:
                f.write(mac)
        else:
            control_reset(serial_port)
    else:
        print("download image fail!")
        return False

    stream.close()

    clear_buffer()
    return True
    def obtain_samples(self, log=False, log_prefix=''):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger

        Returns:
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        paths = OrderedDict()
        for i in range(self.meta_batch_size):
            paths[i] = []

        n_samples = 0
        running_paths = [
            _get_empty_running_paths_dict()
            for _ in range(self.vec_env.num_envs)
        ]

        pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy

        # initial reset of envs
        obses = self.vec_env.reset()

        while n_samples < self.total_samples:
            # execute policy
            t = time.time()
            # obs_per_task = np.split(np.asarray(obses), self.meta_batch_size)
            obs_per_task = np.array(obses)

            actions, logits, values = policy.get_actions(obs_per_task)
            policy_time += time.time() - t

            # step environments
            t = time.time()
            # actions = np.concatenate(actions)

            next_obses, rewards, dones, env_infos = self.vec_env.step(actions)

            # print("rewards shape is: ", np.array(rewards).shape)
            # print("finish time shape is: ", np.array(env_infos).shape)

            env_time += time.time() - t

            #  stack agent_infos and if no infos were provided (--> None) create empty dicts
            new_samples = 0
            for idx, observation, action, logit, reward, value, done, task_finish_times in zip(
                    itertools.count(), obses, actions, logits, rewards, values,
                    dones, env_infos):
                # append new samples to running paths

                # handling
                for single_ob, single_ac, single_logit, single_reward, single_value, single_task_finish_time \
                        in zip(observation, action, logit, reward, value, task_finish_times):
                    running_paths[idx]["observations"] = single_ob
                    running_paths[idx]["actions"] = single_ac
                    running_paths[idx]["logits"] = single_logit
                    running_paths[idx]["rewards"] = single_reward
                    running_paths[idx]["finish_time"] = single_task_finish_time
                    running_paths[idx]["values"] = single_value

                    paths[idx // self.envs_per_task].append(
                        dict(observations=np.squeeze(
                            np.asarray(running_paths[idx]["observations"])),
                             actions=np.squeeze(
                                 np.asarray(running_paths[idx]["actions"])),
                             logits=np.squeeze(
                                 np.asarray(running_paths[idx]["logits"])),
                             rewards=np.squeeze(
                                 np.asarray(running_paths[idx]["rewards"])),
                             finish_time=np.squeeze(
                                 np.asarray(
                                     running_paths[idx]["finish_time"])),
                             values=np.squeeze(
                                 np.asarray(running_paths[idx]["values"]))))

                    # if running path is done, add it to paths and empty the running path
                    new_samples += len(running_paths[idx]["rewards"])
                    running_paths[idx] = _get_empty_running_paths_dict()

            pbar.update(new_samples)
            n_samples += new_samples
            obses = next_obses
        pbar.stop()

        self.total_timesteps_sampled += self.total_samples
        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)
        return paths
Ejemplo n.º 27
0
        msg += "Trying with passwords in list...\n"
        print(msg)

        dict_file = codecs.open(
            args['<DICT>'],
            'rb', encoding='utf-8',
            errors='ignore'
        )

        psswd_count = dict_file.read().count('\n')
        dict_file.seek(0)
        items = 0

        progress_bar = ProgBar(
            psswd_count,
            stream=1,
            title='MKBRUTUS Bruteforce Attack'
        )

        for password in dict_file.readlines():
            password = password.strip('\n\r ')
            items += 1
            if args['--verbose']:
                alert = "[-] Trying {} of {} passwords".format(
                    str(items), str(psswd_count))
                print alert + " - current: " + password

            try:
                connect(args['<TARGET>'], args['--user'], password)
                alert = "\n[+] Login successful!!! "
                alert += "User: "******", Password: " + password
Ejemplo n.º 28
0
    def obtain_samples(self, log=False, log_prefix='', random=False):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger
            random (boolean): whether the actions are random

        Returns:
            (list): A list of dicts with the samples
        """

        # initial setup / preparation
        paths = []

        n_samples = 0
        num_envs = self.vec_env.num_envs
        running_paths = [
            _get_empty_running_paths_dict() for _ in range(num_envs)
        ]

        pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy
        policy.reset(dones=[True] * self.vec_env.num_envs)

        # initial reset of meta_envs
        obses = np.asarray(self.vec_env.reset())

        while n_samples < self.total_samples:

            # execute policy
            t = time.time()
            if random:
                actions = np.stack(
                    [self.env.action_space.sample() for _ in range(num_envs)],
                    axis=0)
                agent_infos = {}
            else:
                a_bs = self.adapt_batch_size
                if a_bs is not None and len(
                        running_paths[0]['observations']) > a_bs + 1:
                    adapt_obs = [
                        np.stack(running_paths[idx]['observations'][-a_bs -
                                                                    1:-1])
                        for idx in range(num_envs)
                    ]
                    adapt_act = [
                        np.stack(running_paths[idx]['actions'][-a_bs - 1:-1])
                        for idx in range(num_envs)
                    ]
                    adapt_next_obs = [
                        np.stack(running_paths[idx]['observations'][-a_bs:])
                        for idx in range(num_envs)
                    ]
                    policy.dynamics_model.switch_to_pre_adapt()
                    policy.dynamics_model.adapt(adapt_obs, adapt_act,
                                                adapt_next_obs)
                actions, agent_infos = policy.get_actions(obses)
            policy_time += time.time() - t

            # step environments
            t = time.time()
            next_obses, rewards, dones, env_infos = self.vec_env.step(actions)
            env_time += time.time() - t

            #  stack agent_infos and if no infos were provided (--> None) create empty dicts
            agent_infos, env_infos = self._handle_info_dicts(
                agent_infos, env_infos)

            new_samples = 0
            for idx, observation, action, reward, env_info, agent_info, done in zip(
                    itertools.count(), obses, actions, rewards, env_infos,
                    agent_infos, dones):
                # append new samples to running paths
                if isinstance(reward, np.ndarray):
                    reward = reward[0]
                running_paths[idx]["observations"].append(observation)
                running_paths[idx]["actions"].append(action)
                running_paths[idx]["rewards"].append(reward)
                running_paths[idx]["dones"].append(done)
                running_paths[idx]["env_infos"].append(env_info)
                running_paths[idx]["agent_infos"].append(agent_info)

                # if running path is done, add it to paths and empty the running path
                if done:
                    paths.append(
                        dict(
                            observations=np.asarray(
                                running_paths[idx]["observations"]),
                            actions=np.asarray(running_paths[idx]["actions"]),
                            rewards=np.asarray(running_paths[idx]["rewards"]),
                            dones=np.asarray(running_paths[idx]["dones"]),
                            env_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["env_infos"]),
                            agent_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["agent_infos"]),
                        ))
                    new_samples += len(running_paths[idx]["rewards"])
                    running_paths[idx] = _get_empty_running_paths_dict()

            pbar.update(self.vec_env.num_envs)
            n_samples += new_samples
            obses = next_obses
        pbar.stop()

        self.total_timesteps_sampled += self.total_samples
        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        return paths
Ejemplo n.º 29
0
    def obtain_samples(self, log=False, log_prefix='', random=False):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger
            random (boolean): whether the actions are random

        Returns:
            (list): A list of dicts with the samples
        """

        # initial setup / preparation
        paths = []

        n_samples = 0
        num_envs = self.vec_env.num_envs
        running_paths = [
            _get_empty_running_paths_dict() for _ in range(num_envs)
        ]

        pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy
        if self.use_cem:
            for i in range(num_envs):
                self.reset_cem(i)

        # initial reset of meta_envs
        obses = np.asarray(self.vec_env.reset())
        state_counts = [0] * self.vec_env.num_envs

        # history
        self.obs_dim = obses.shape[1]
        history_state = np.zeros(
            (obses.shape[0], self.obs_dim * self.history_length))
        history_act = np.zeros(
            (obses.shape[0], self.act_dim * self.history_length))

        while n_samples < self.total_samples:

            # execute policy
            t = time.time()
            if random:
                actions = np.stack(
                    [self.env.action_space.sample() for _ in range(num_envs)],
                    axis=0)
                agent_infos = {}
            else:
                if self.use_cem:
                    if self.context:
                        cem_solutions, agent_infos = policy.get_actions(
                            obses,
                            init_mean=self.prev_sol,
                            init_var=self.init_var,
                            cp_obs=history_state,
                            cp_act=history_act)
                    else:
                        cem_solutions, agent_infos = policy.get_actions(
                            obses,
                            init_mean=self.prev_sol,
                            init_var=self.init_var)
                    self.prev_sol[:, :-1] = cem_solutions[:, 1:].copy()
                    self.prev_sol[:, -1:] = 0.
                    actions = cem_solutions[:, 0].copy()
                else:
                    if self.context:
                        actions, agent_infos = policy.get_actions(
                            obses, cp_obs=history_state, cp_act=history_act)
                    else:
                        actions, agent_infos = policy.get_actions(obses)
                if len(self.env.action_space.shape) == 0:
                    actions = actions.reshape(-1)

            policy_time += time.time() - t

            # step environments
            t = time.time()
            next_obses, rewards, dones, env_infos = self.vec_env.step(actions)
            env_time += time.time() - t

            #  stack agent_infos and if no infos were provided (--> None) create empty dicts
            agent_infos, env_infos = self._handle_info_dicts(
                agent_infos, env_infos)

            new_samples = 0
            for idx, observation, action, reward, env_info, agent_info, done in zip(
                    itertools.count(), obses, actions, rewards, env_infos,
                    agent_infos, dones):
                if len(self.env.action_space.shape) == 0:
                    action = np.eye(self.act_dim)[action]
                else:
                    if action.ndim == 0:
                        action = np.expand_dims(action, 0)
                assert action.ndim == 1, (action, action.shape)

                # append new samples to running paths
                if isinstance(reward, np.ndarray):
                    reward = reward[0]
                running_paths[idx]["observations"].append(observation)
                running_paths[idx]["actions"].append(action)
                running_paths[idx]["rewards"].append(reward)
                running_paths[idx]["dones"].append(done)
                running_paths[idx]["env_infos"].append(env_info)
                running_paths[idx]["agent_infos"].append(agent_info)
                running_paths[idx]["cp_obs"].append(history_state[idx].copy())
                running_paths[idx]["cp_act"].append(history_act[idx].copy())

                # making a history buffer
                if state_counts[idx] < self.history_length:
                    if self.state_diff:
                        history_state[idx][state_counts[idx] * self.obs_dim:(
                            state_counts[idx] +
                            1) * self.obs_dim] = next_obses[idx] - observation
                    else:
                        history_state[idx][state_counts[idx] *
                                           self.obs_dim:(state_counts[idx] +
                                                         1) *
                                           self.obs_dim] = observation
                    history_act[idx][state_counts[idx] *
                                     self.act_dim:(state_counts[idx] + 1) *
                                     self.act_dim] = action
                else:
                    history_state[idx][:-self.obs_dim] = history_state[idx][
                        self.obs_dim:]
                    if self.state_diff:
                        history_state[idx][
                            -self.obs_dim:] = next_obses[idx] - observation
                    else:
                        history_state[idx][-self.obs_dim:] = observation
                    history_act[idx][:-self.
                                     act_dim] = history_act[idx][self.act_dim:]
                    history_act[idx][-self.act_dim:] = action

                # if running path is done, add it to paths and empty the running path
                if done:
                    paths.append(
                        dict(
                            observations=np.asarray(
                                running_paths[idx]["observations"]),
                            actions=np.asarray(running_paths[idx]["actions"]),
                            rewards=np.asarray(running_paths[idx]["rewards"]),
                            dones=np.asarray(running_paths[idx]["dones"]),
                            env_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["env_infos"]),
                            agent_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["agent_infos"]),
                            cp_obs=np.asarray(running_paths[idx]["cp_obs"]),
                            cp_act=np.asarray(running_paths[idx]["cp_act"]),
                        ))
                    new_samples += len(running_paths[idx]["rewards"])
                    running_paths[idx] = _get_empty_running_paths_dict()
                    if not random and self.use_cem:
                        self.reset_cem(idx)

                    state_counts[idx] = 0
                    history_state[idx] = np.zeros(
                        (self.obs_dim * self.history_length))
                    history_act[idx] = np.zeros(
                        (self.act_dim * self.history_length))
                else:
                    state_counts[idx] += 1
            pbar.update(self.vec_env.num_envs)
            n_samples += new_samples
            obses = next_obses
        pbar.stop()

        self.total_timesteps_sampled += self.total_samples
        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        return paths
Ejemplo n.º 30
0
import gym
import ecl_gym
from random import randint
from pyprind import ProgBar

env = gym.make('ecl-v0')
n_steps = 100
bar = ProgBar(n_steps, bar_char='█')
for i_episode in range(1):
    ## reinitialize the environment 
    observation = env.reset()
    ## the simulation for n_steps timesteps
    for t in range(n_steps):
        ##  value, is_rate, is_producer, is_open         
        actions_inje = [[randint(410,430), False, False, True] for _ in range(8)]
        actions_prod = [[randint(220,250), False, True, True] for _ in range(4)]
        ## Advance the simulation forward 
        observation, reward, done, observation_full = \
            env.step(actions_inje + actions_prod)  
        # print (reward) 
        bar.update()
        if done.any():
            print("Episode finished after {} timesteps".format(t+1))
            break
env.close()

Ejemplo n.º 31
0
    def obtain_samples(self,
                       log=False,
                       log_prefix='',
                       random=False,
                       deterministic=False,
                       sinusoid=False,
                       verbose=False):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger
            random (boolean): whether the actions are random

        Returns:
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        paths = []

        n_samples = 0
        running_paths = [
            _get_empty_running_paths_dict()
            for _ in range(self.vec_env.num_envs)
        ]

        if verbose: pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy
        policy.reset(dones=[True] * self.vec_env.num_envs)

        # initial reset of meta_envs
        obses = np.asarray(self.vec_env.reset())

        while n_samples < self.total_samples:

            # execute policy
            t = time.time()
            if self.vae is not None:
                obses = np.array(obses)
                obses = self.vae.encode(obses)
            if random:
                actions = np.stack([
                    self.env.action_space.sample()
                    for _ in range(self.vec_env.num_envs)
                ],
                                   axis=0)
                agent_infos = {}
            elif deterministic:
                actions, agent_infos = policy.get_actions(obses)
                actions = [a_i['mean'] for a_i in agent_infos]
            elif sinusoid:
                action_space = self.env.action_space.shape[0]
                num_envs = self.vec_env.num_envs
                actions = np.stack([
                    policy.get_sinusoid_actions(action_space,
                                                t / policy.horizon * 2 * np.pi)
                    for _ in range(num_envs)
                ],
                                   axis=0)
                agent_infos = dict()
            else:
                obses = np.array(obses)
                actions, agent_infos = policy.get_actions(obses)
            policy_time += time.time() - t

            # step environments
            t = time.time()
            next_obses, rewards, dones, env_infos = self.vec_env.step(actions)
            env_time += time.time() - t

            #  stack agent_infos and if no infos were provided (--> None) create empty dicts
            agent_infos, env_infos = self._handle_info_dicts(
                agent_infos, env_infos)

            new_samples = 0
            for idx, observation, action, reward, env_info, agent_info, done in zip(
                    itertools.count(), obses, actions, rewards, env_infos,
                    agent_infos, dones):
                # append new samples to running paths
                if isinstance(reward, np.ndarray):
                    reward = reward[0]
                running_paths[idx]["observations"].append(observation)
                running_paths[idx]["actions"].append(action)
                running_paths[idx]["rewards"].append(reward)
                running_paths[idx]["dones"].append(done)
                running_paths[idx]["env_infos"].append(env_info)
                running_paths[idx]["agent_infos"].append(agent_info)

                # if running path is done, add it to paths and empty the running path
                if done:
                    paths.append(
                        dict(
                            observations=np.asarray(
                                running_paths[idx]["observations"]),
                            actions=np.asarray(running_paths[idx]["actions"]),
                            rewards=np.asarray(running_paths[idx]["rewards"]),
                            dones=np.asarray(running_paths[idx]["dones"]),
                            env_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["env_infos"]),
                            agent_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["agent_infos"]),
                        ))
                    new_samples += len(running_paths[idx]["rewards"])
                    running_paths[idx] = _get_empty_running_paths_dict()

            if verbose: pbar.update(self.vec_env.num_envs)
            n_samples += new_samples
            obses = next_obses
        if verbose: pbar.stop()

        self.total_timesteps_sampled += self.total_samples
        if log:
            logger.logkv(log_prefix + "TimeStepsCtr",
                         self.total_timesteps_sampled)
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        return paths
Ejemplo n.º 32
0
    def obtain_samples(self, log=False, log_prefix='', random=False):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger
            random (boolean): whether the actions are random

        Returns: 
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        paths = OrderedDict()
        for i in range(self.meta_batch_size):
            paths[i] = []

        n_samples = 0
        running_paths = [
            _get_empty_running_paths_dict()
            for _ in range(self.vec_env.num_envs)
        ]

        pbar = ProgBar(self.total_samples)
        policy_time, env_time = 0, 0

        policy = self.policy
        policy.reset(dones=[True] * self.meta_batch_size)

        # initial reset of meta_envs
        obses = self.vec_env.reset()

        while n_samples < self.total_samples:

            # execute policy
            t = time.time()
            obs_per_task = np.split(np.asarray(obses), self.meta_batch_size)
            if random:
                actions = np.stack([[self.env.action_space.sample()]
                                    for _ in range(len(obses))],
                                   axis=0)
                agent_infos = [[{
                    'mean':
                    np.zeros_like(self.env.action_space.sample()),
                    'log_std':
                    np.zeros_like(self.env.action_space.sample())
                }] * self.envs_per_task] * self.meta_batch_size
            else:
                actions, agent_infos = policy.get_actions(obs_per_task)
            policy_time += time.time() - t

            # step environments
            t = time.time()
            actions = np.concatenate(actions)  # stack meta batch
            next_obses, rewards, dones, env_infos = self.vec_env.step(actions)
            env_time += time.time() - t

            #  stack agent_infos and if no infos were provided (--> None) create empty dicts
            agent_infos, env_infos = self._handle_info_dicts(
                agent_infos, env_infos)

            new_samples = 0
            for idx, observation, action, reward, env_info, agent_info, done in zip(
                    itertools.count(), obses, actions, rewards, env_infos,
                    agent_infos, dones):
                # append new samples to running paths
                if isinstance(reward, np.ndarray):
                    reward = reward[0]
                running_paths[idx]["observations"].append(observation)
                running_paths[idx]["actions"].append(action)
                running_paths[idx]["rewards"].append(reward)
                running_paths[idx]["dones"].append(done)
                running_paths[idx]["env_infos"].append(env_info)
                running_paths[idx]["agent_infos"].append(agent_info)

                # if running path is done, add it to paths and empty the running path
                if done:
                    paths[idx // self.envs_per_task].append(
                        dict(
                            observations=np.asarray(
                                running_paths[idx]["observations"]),
                            actions=np.asarray(running_paths[idx]["actions"]),
                            rewards=np.asarray(running_paths[idx]["rewards"]),
                            dones=np.asarray(running_paths[idx]["dones"]),
                            env_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["env_infos"]),
                            agent_infos=utils.stack_tensor_dict_list(
                                running_paths[idx]["agent_infos"]),
                        ))
                    new_samples += len(running_paths[idx]["rewards"])
                    running_paths[idx] = _get_empty_running_paths_dict()

            pbar.update(new_samples)
            n_samples += new_samples
            obses = next_obses
        pbar.stop()

        self.total_timesteps_sampled += self.total_samples
        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        return paths
Ejemplo n.º 33
0
    def obtain_samples(self, log=False, log_prefix='', buffer=None):
        """
        Collect batch_size trajectories from each task

        Args:
            log (boolean): whether to log sampling times
            log_prefix (str) : prefix for logger

        Returns: 
            (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length)
        """

        # initial setup / preparation
        pbar = ProgBar(self.max_path_length)
        policy_time, env_time = 0, 0

        policy = self.policy
        policy.reset(dones=[True] * self.vec_env.num_envs)

        # initial reset of meta_envs
        obses = self.vec_env.reset(buffer)
        time_step = 0
        list_observations = []
        list_actions = []
        list_rewards = []
        list_dones = []
        mask = np.ones((self.vec_env.num_envs, ))

        while time_step < self.max_path_length:

            # Execute policy
            t = time.time()
            if self.vae is not None:
                obses = np.array(obses)
                obses = self.vae.encode(obses)
                obses = np.split(obses, self.vec_env.num_envs, axis=0)
            if self.dynamics_model is not None:
                actions, agent_infos = policy.get_actions_batch(
                    obses, update_filter=False)
            else:
                obses = np.array(obses)
                actions, agent_infos = policy.get_actions_batch(
                    obses, update_filter=True)
            policy_time += time.time() - t

            # Step environments
            t = time.time()
            next_obses, rewards, dones, _ = self.vec_env.step(actions)
            next_obses, rewards, dones = np.array(next_obses), np.array(
                rewards), np.array(dones)

            rewards *= mask
            dones = dones + (1 - mask)
            mask *= (1 - dones)

            env_time += time.time() - t

            list_observations.append(obses)
            list_actions.append(actions)
            list_rewards.append(rewards)
            list_dones.append(dones)

            time_step += 1
            obses = next_obses
            pbar.update(1)
        pbar.stop()
        self.total_timesteps_sampled += np.sum(1 - np.array(list_dones))

        if log:
            logger.logkv(log_prefix + "PolicyExecTime", policy_time)
            logger.logkv(log_prefix + "EnvExecTime", env_time)

        samples_data = dict(observations=np.array(list_observations),
                            actions=np.array(list_actions),
                            rewards=np.array(list_rewards),
                            returns=np.sum(list_rewards, axis=0),
                            dones=np.array(list_dones))

        return samples_data