Ejemplo n.º 1
0
    def test_C_viewiterator_step(self):
        #iteration in C order with #contiguous layout => strides[-1] is 1
        #skip less than the shape
        start = 0
        shape = [3, 5]
        strides = [5, 1]
        backstrides = [x * (y - 1) for x, y in zip(strides, shape)]
        assert backstrides == [10, 4]
        i = ViewIterator(start, strides, backstrides, shape)
        i = i.next_skip_x(2, 2)
        i = i.next_skip_x(2, 2)
        i = i.next_skip_x(2, 2)
        assert i.offset == 6
        assert not i.done()
        assert i.indices == [1, 1]
        #And for some big skips
        i = i.next_skip_x(2, 5)
        assert i.offset == 11
        assert i.indices == [2, 1]
        i = i.next_skip_x(2, 5)
        # Note: the offset does not overflow but recycles,
        # this is good for broadcast
        assert i.offset == 1
        assert i.indices == [0, 1]
        assert i.done()

        #Now what happens if the array is transposed? strides[-1] != 1
        # therefore layout is non-contiguous
        strides = [1, 3]
        backstrides = [x * (y - 1) for x, y in zip(strides, shape)]
        assert backstrides == [2, 12]
        i = ViewIterator(start, strides, backstrides, shape)
        i = i.next_skip_x(2, 2)
        i = i.next_skip_x(2, 2)
        i = i.next_skip_x(2, 2)
        assert i.offset == 4
        assert i.indices == [1, 1]
        assert not i.done()
        i = i.next_skip_x(2, 5)
        assert i.offset == 5
        assert i.indices == [2, 1]
        assert not i.done()
        i = i.next_skip_x(2, 5)
        assert i.indices == [0, 1]
        assert i.offset == 3
        assert i.done()
Ejemplo n.º 2
0
    def test_C_viewiterator_step(self):
        #iteration in C order with #contiguous layout => strides[-1] is 1
        #skip less than the shape
        start = 0
        shape = [3, 5] 
        strides = [5, 1]
        backstrides = [x * (y - 1) for x,y in zip(strides, shape)]
        assert backstrides == [10, 4]
        i = ViewIterator(start, strides, backstrides, shape)
        i = i.next_skip_x(2,2)
        i = i.next_skip_x(2,2)
        i = i.next_skip_x(2,2)
        assert i.offset == 6
        assert not i.done()
        assert i.indices == [1,1]
        #And for some big skips
        i = i.next_skip_x(2,5)
        assert i.offset == 11
        assert i.indices == [2,1]
        i = i.next_skip_x(2,5)
        # Note: the offset does not overflow but recycles,
        # this is good for broadcast
        assert i.offset == 1
        assert i.indices == [0,1]
        assert i.done()

        #Now what happens if the array is transposed? strides[-1] != 1
        # therefore layout is non-contiguous
        strides = [1, 3]
        backstrides = [x * (y - 1) for x,y in zip(strides, shape)]
        assert backstrides == [2, 12]
        i = ViewIterator(start, strides, backstrides, shape)
        i = i.next_skip_x(2,2)
        i = i.next_skip_x(2,2)
        i = i.next_skip_x(2,2)
        assert i.offset == 4
        assert i.indices == [1,1]
        assert not i.done()
        i = i.next_skip_x(2,5)
        assert i.offset == 5
        assert i.indices == [2,1]
        assert not i.done()
        i = i.next_skip_x(2,5)
        assert i.indices == [0,1]
        assert i.offset == 3
        assert i.done()
Ejemplo n.º 3
0
    def test_C_viewiterator(self):
        #Let's get started, simple iteration in C order with
        #contiguous layout => strides[-1] is 1
        start = 0
        shape = [3, 5]
        strides = [5, 1]
        backstrides = [x * (y - 1) for x, y in zip(strides, shape)]
        assert backstrides == [10, 4]
        i = ViewIterator(start, strides, backstrides, shape)
        i = i.next(2)
        i = i.next(2)
        i = i.next(2)
        assert i.offset == 3
        assert not i.done()
        assert i.indices == [0, 3]
        #cause a dimension overflow
        i = i.next(2)
        i = i.next(2)
        assert i.offset == 5
        assert i.indices == [1, 0]

        #Now what happens if the array is transposed? strides[-1] != 1
        # therefore layout is non-contiguous
        strides = [1, 3]
        backstrides = [x * (y - 1) for x, y in zip(strides, shape)]
        assert backstrides == [2, 12]
        i = ViewIterator(start, strides, backstrides, shape)
        i = i.next(2)
        i = i.next(2)
        i = i.next(2)
        assert i.offset == 9
        assert not i.done()
        assert i.indices == [0, 3]
        #cause a dimension overflow
        i = i.next(2)
        i = i.next(2)
        assert i.offset == 1
        assert i.indices == [1, 0]
Ejemplo n.º 4
0
    def test_C_viewiterator(self):
        #Let's get started, simple iteration in C order with
        #contiguous layout => strides[-1] is 1
        start = 0
        shape = [3, 5] 
        strides = [5, 1]
        backstrides = [x * (y - 1) for x,y in zip(strides, shape)]
        assert backstrides == [10, 4]
        i = ViewIterator(start, strides, backstrides, shape)
        i = i.next(2)
        i = i.next(2)
        i = i.next(2)
        assert i.offset == 3
        assert not i.done()
        assert i.indices == [0,3]
        #cause a dimension overflow
        i = i.next(2)
        i = i.next(2)
        assert i.offset == 5
        assert i.indices == [1,0]

        #Now what happens if the array is transposed? strides[-1] != 1
        # therefore layout is non-contiguous
        strides = [1, 3]
        backstrides = [x * (y - 1) for x,y in zip(strides, shape)]
        assert backstrides == [2, 12]
        i = ViewIterator(start, strides, backstrides, shape)
        i = i.next(2)
        i = i.next(2)
        i = i.next(2)
        assert i.offset == 9
        assert not i.done()
        assert i.indices == [0,3]
        #cause a dimension overflow
        i = i.next(2)
        i = i.next(2)
        assert i.offset == 1
        assert i.indices == [1,0]
Ejemplo n.º 5
0
def multidim_dot(space, left, right, result, dtype, right_critical_dim):
    ''' assumes left, right are concrete arrays
    given left.shape == [3, 5, 7],
          right.shape == [2, 7, 4]
    then
     result.shape == [3, 5, 2, 4]
     broadcast shape should be [3, 5, 2, 7, 4]
     result should skip dims 3 which is len(result_shape) - 1
        (note that if right is 1d, result should 
                  skip len(result_shape))
     left should skip 2, 4 which is a.ndims-1 + range(right.ndims)
          except where it==(right.ndims-2)
     right should skip 0, 1
    '''
    broadcast_shape = left.shape[:-1] + right.shape
    shapelen = len(broadcast_shape)
    left_skip = [len(left.shape) - 1 + i for i in range(len(right.shape))
                                         if i != right_critical_dim]
    right_skip = range(len(left.shape) - 1)
    result_skip = [len(result.shape) - (len(right.shape) > 1)]
    _r = calculate_dot_strides(result.strides, result.backstrides,
                                  broadcast_shape, result_skip)
    outi = ViewIterator(result.start, _r[0], _r[1], broadcast_shape)
    _r = calculate_dot_strides(left.strides, left.backstrides,
                                  broadcast_shape, left_skip)
    lefti = ViewIterator(left.start, _r[0], _r[1], broadcast_shape)
    _r = calculate_dot_strides(right.strides, right.backstrides,
                                  broadcast_shape, right_skip)
    righti = ViewIterator(right.start, _r[0], _r[1], broadcast_shape)
    while not outi.done():
        dot_driver.jit_merge_point(left=left,
                                   right=right,
                                   shapelen=shapelen,
                                   lefti=lefti,
                                   righti=righti,
                                   outi=outi,
                                   result=result,
                                   dtype=dtype,
                                  )
        lval = left.getitem(lefti.offset).convert_to(dtype) 
        rval = right.getitem(righti.offset).convert_to(dtype) 
        outval = result.getitem(outi.offset).convert_to(dtype) 
        v = dtype.itemtype.mul(lval, rval)
        value = dtype.itemtype.add(v, outval).convert_to(dtype)
        result.setitem(outi.offset, value)
        outi = outi.next(shapelen)
        righti = righti.next(shapelen)
        lefti = lefti.next(shapelen)
    return result