Ejemplo n.º 1
0
def pyq2_dft(atomtuples=[(2,0,0,0)],basis = '6-31G**',maxit=10,xcname='svwn'):
    import pyquante2 as pyq2
    print ("pyq2 DFT run")
    geo = pyq2.molecule(atomtuples)
    bfs = pyq2.basisset(geo,name=basis)
    i1 = pyq2.onee_integrals(bfs,geo)
    i2 = pyq2.twoe_integrals(bfs)
    grid = pyq2.grid(geo)
    h = i1.T + i1.V
    orbe,orbs = pyq2.geigh(h,i1.S)
    eold = 0
    grid.setbfamps(bfs)
    E0 = geo.nuclear_repulsion()

    for i in range(maxit):
        D = pyq2.dmat(orbs,geo.nocc())
        E1 = 2*pyq2.trace2(h,D)

        J = i2.get_j(D)
        Ej = 2*pyq2.trace2(J,D)

        Exc,Vxc = pyq2.get_xc(grid,0.5*D,xcname=xcname)

        energy = E0+E1+Ej+Exc
        F = h+2*J+Vxc

        orbe,orbs = pyq2.geigh(F,i1.S)

        print (i,energy,E1,Ej,Exc,E0)
        if np.isclose(energy,eold):
            break
        eold = energy
    return energy
Ejemplo n.º 2
0
def pyq2_rohf(atomtuples=[(2, 0, 0, 0)],
              basis='6-31G**',
              maxit=10,
              xcname='svwn',
              mult=3):
    import pyquante2 as pyq2
    print("pyq2 ROHF run")
    geo = pyq2.molecule(atomtuples, multiplicity=mult)
    bfs = pyq2.basisset(geo, name=basis)
    i1 = pyq2.onee_integrals(bfs, geo)
    i2 = pyq2.twoe_integrals(bfs)
    h = i1.T + i1.V
    orbe, orbs = pyq2.geigh(h, i1.S)
    eold = 0
    E0 = geo.nuclear_repulsion()
    nalpha, nbeta = geo.nup(), geo.ndown()
    norbs = len(bfs)

    for i in range(maxit):
        Da = pyq2.dmat(orbs, nalpha)
        Db = pyq2.dmat(orbs, nbeta)
        E1 = 0.5 * pyq2.trace2(Da + Db, h)
        Ja, Ka = i2.get_j(Da), i2.get_k(Da)
        Jb, Kb = i2.get_j(Db), i2.get_k(Db)
        Fa = h + Ja + Jb - Ka
        Fb = h + Ja + Jb - Kb
        E2 = 0.5 * (pyq2.trace2(Fa, Da) + pyq2.trace2(Fb, Db))
        energy = E0 + E1 + E2
        print(energy, E1, E2, E0)

        Fa = pyq2.utils.simx(Fa, orbs)
        Fb = pyq2.utils.simx(Fb, orbs)

        F = 0.5 * (Fa + Fb)
        K = Fb - Fa
        # Make explicit slice objects to simplify this
        do = slice(0, nbeta)
        so = slice(nbeta, nalpha)
        uo = slice(nalpha, norbs)
        F[do, do] -= K[do, do]
        F[uo, uo] += K[uo, uo]
        F[do, so] += 0.5 * K[do, so]
        F[so, do] += 0.5 * K[so, do]
        F[so, uo] -= 0.5 * K[so, uo]
        F[uo, so] -= 0.5 * K[uo, so]

        E, cmo = np.linalg.eigh(F)
        orbs = np.dot(orbs, cmo)

    return
Ejemplo n.º 3
0
def pyq2_dft(atomtuples=[(2, 0, 0, 0)],
             basis='6-31G**',
             maxit=10,
             xcname='svwn'):
    import pyquante2 as pyq2
    print("pyq2 DFT run")
    geo = pyq2.molecule(atomtuples)
    bfs = pyq2.basisset(geo, name=basis)
    i1 = pyq2.onee_integrals(bfs, geo)
    i2 = pyq2.twoe_integrals(bfs)
    grid = pyq2.grid(geo)
    h = i1.T + i1.V
    orbe, orbs = pyq2.geigh(h, i1.S)
    eold = 0
    grid.setbfamps(bfs)
    E0 = geo.nuclear_repulsion()

    for i in range(maxit):
        D = pyq2.dmat(orbs, geo.nocc())
        E1 = 2 * pyq2.trace2(h, D)

        J = i2.get_j(D)
        Ej = 2 * pyq2.trace2(J, D)

        Exc, Vxc = pyq2.get_xc(grid, 0.5 * D, xcname=xcname)

        energy = E0 + E1 + Ej + Exc
        F = h + 2 * J + Vxc

        orbe, orbs = pyq2.geigh(F, i1.S)

        print(i, energy, E1, Ej, Exc, E0)
        if np.isclose(energy, eold):
            break
        eold = energy
    return energy
Ejemplo n.º 4
0
def pyq2_rohf(atomtuples=[(2,0,0,0)],basis = '6-31G**',maxit=10,xcname='svwn',
              mult=3):
    import pyquante2 as pyq2
    print ("pyq2 ROHF run")
    geo = pyq2.molecule(atomtuples,multiplicity=mult)
    bfs = pyq2.basisset(geo,name=basis)
    i1 = pyq2.onee_integrals(bfs,geo)
    i2 = pyq2.twoe_integrals(bfs)
    h = i1.T + i1.V
    orbe,orbs = pyq2.geigh(h,i1.S)
    eold = 0
    E0 = geo.nuclear_repulsion()
    nalpha,nbeta = geo.nup(),geo.ndown()
    norbs = len(bfs)

    for i in range(maxit):
        Da = pyq2.dmat(orbs,nalpha)
        Db = pyq2.dmat(orbs,nbeta)
        E1 = 0.5*pyq2.trace2(Da+Db,h)
        Ja,Ka = i2.get_j(Da),i2.get_k(Da)
        Jb,Kb = i2.get_j(Db),i2.get_k(Db)
        Fa = h + Ja + Jb - Ka
        Fb = h + Ja + Jb - Kb
        E2 = 0.5*(pyq2.trace2(Fa,Da)+pyq2.trace2(Fb,Db))
        energy = E0+E1+E2
        print (energy,E1,E2,E0)

        Fa = pyq2.utils.simx(Fa,orbs)
        Fb = pyq2.utils.simx(Fb,orbs)

        F = 0.5*(Fa+Fb)
        K = Fb-Fa
        # Make explicit slice objects to simplify this
        do = slice(0,nbeta)
        so = slice(nbeta,nalpha)
        uo = slice(nalpha,norbs)
        F[do,do] -= K[do,do]
        F[uo,uo] += K[uo,uo]
        F[do,so] += 0.5*K[do,so]
        F[so,do] += 0.5*K[so,do]
        F[so,uo] -= 0.5*K[so,uo]
        F[uo,so] -= 0.5*K[uo,so]

        E,cmo = np.linalg.eigh(F)
        orbs = np.dot(orbs,cmo)

    return