Ejemplo n.º 1
0
    print(" -- Derive the Flux calibration --")
    gmos.gsstandard.unlearn()
    sensFlags = {
        'fl_inter': 'yes',
        'starname': 'l9239',
        'caldir': 'onedstds$ctionewcal/',
        'observatory': 'Gemini-South',
        'extinction': 'onedstds$ctioextinct.dat',
        'function': 'chebyshev',
        'order': 9,
        'verbose': 'no',
        'logfile': 'gsstdLog.txt'
    }
    gmos.gsstandard('estLTT9239',
                    sfile='std.txt',
                    sfunction='sens',
                    **sensFlags)

    # Process the science targets.
    # Use a dictionary to associate science targets with Arcs and sky regions.
    sciTargets = {
        'AM2306-721_a': {
            'arc': 'gsS20070623S0071',
            'sky': '520:720'
        },
        'AM2306-72_b': {
            'arc': 'gsS20070623S0081',
            'sky': '670:760,920:1020'
        },
        'AM2306-721_c': {
            'arc': 'gsS20070623S0091',
Ejemplo n.º 2
0
def gmos_ls_proc2(
        sciTargets,
        stdTarget,
        dbFile='./raw/obsLog.sqlite3',
        qd_full={
            'use_me': 1,
            'Instrument': 'GMOS-S',
            'CcdBin': '2 4',
            'RoI': 'Full',
            'Disperser': 'B600+_%',
            'CentWave': 485.0,
            'AperMask': '1.0arcsec',
            'Object': 'AM2306-72%',
            'DateObs': '2007-06-05:2007-07-07'
        },
        qd_censp={
            'use_me': 1,
            'Instrument': 'GMOS-S',
            'CcdBin': '2 4',
            'RoI': 'CenSp',
            'Disperser': 'B600+_%',
            'CentWave': 485.0,
            'AperMask': '1.0arcsec',
            'Object': 'LTT9239',
            'DateObs': '2007-06-05:2007-07-07'
        },
        biasFlags={
            'logfile': 'biasLog.txt',
            'rawpath': './raw/',
            'fl_vardq': 'yes',
            'verbose': 'no'
        },
        flatFlags={
            'fl_over': 'yes',
            'fl_trim': 'yes',
            'fl_bias': 'yes',
            'fl_dark': 'no',
            'fl_fixpix': 'no',
            'fl_oversize': 'no',
            'fl_vardq': 'yes',
            'fl_fulldq': 'yes',
            'rawpath': './raw',
            'fl_inter': 'no',
            'fl_detec': 'yes',
            'function': 'spline3',
            'order': '13,11,28',
            'logfile': 'gsflatLog.txt',
            'verbose': 'no'
        },
        sciFlags={
            'fl_over': 'yes',
            'fl_trim': 'yes',
            'fl_bias': 'yes',
            'fl_gscrrej': 'no',
            'fl_dark': 'no',
            'fl_flat': 'yes',
            'fl_gmosaic': 'yes',
            'fl_fixpix': 'no',
            'fl_gsappwave': 'yes',
            'fl_oversize': 'no',
            'fl_vardq': 'yes',
            'fl_fulldq': 'yes',
            'rawpath': './raw',
            'fl_inter': 'no',
            'logfile': 'gsreduceLog.txt',
            'verbose': 'no'
        },
        waveFlags={
            'coordlist': 'gmos$data/CuAr_GMOS.dat',
            'fwidth': 6,
            'nsum': 50,
            'function': 'chebyshev',
            'order': 5,
            'fl_inter': 'no',
            'logfile': 'gswaveLog.txt',
            'verbose': 'no'
        },
        sciCombFlags={
            'combine': 'average',
            'reject': 'ccdclip',
            'fl_vardq': 'yes',
            'fl_dqprop': 'yes',
            'logfile': 'gemcombineLog.txt',
            'verbose': 'no'
        },
        transFlags={
            'fl_vardq': 'yes',
            'interptype': 'linear',
            'fl_flux': 'yes',
            'logfile': 'gstransLog.txt'
        },
        skyFlags={
            'fl_oversize': 'no',
            'fl_vardq': 'yes',
            'logfile': 'gsskysubLog.txt'
        },
        extrFlags={
            'apwidth': 3.,
            'fl_inter': 'yes',
            'find': 'yes',
            'trace': 'yes',
            'tfunction': 'chebyshev',
            'torder': '6',
            'tnsum': 20,
            'background': 'fit',
            'bfunction': 'chebyshev',
            'border': 2,
            'fl_vardq': 'no',
            'logfile': 'gsextrLog.txt'
        },
        calibFlags={
            'extinction': 'onedstds$ctioextinct.dat',
            'fl_ext': 'yes',
            'fl_scale': 'no',
            'sfunction': 'sens',
            'fl_vardq': 'yes',
            'logfile': 'gscalibrateLog.txt'
        },
        skip_wavecal=True,
        clean_files=False):
    """
    Parameters
    ----------
    dbFile : str
        Filename containing the SQL sqlite3 database created by obslog.py
        It must be placed in the ./raw/ directory
        Default is `./raw/obsLog.sqlite3`

    sciTargets : dict
        Dictionary with the associations of science targets and its associated ARC for wavelength calibration
        as well as the regions defining the sky along the slit.
        e.g. sciTargetd = {'AM2306-721_a': {'arc': 'gsS20070623S0071', 'sky': '520:720'},
                           'AM2306-72_b': {'arc': 'gsS20070623S0081', 'sky': '670:760,920:1020'}}
        Note that there could be more than one target defined this way.

    stdTarget : dict
        Dictionary with the associations of standard star targets and its associated ARC for wavelength calibration
        as well as the regions defining the sky along the slit.
        e.g. stdTarget = {'LTT1788': {'arc': 'S20180711S0281', 'sky': '170:380,920:1080'}}

    qd_full : dictionary
        Query Dictionary of essential parameter=value pairs for Full RoI. Meant for science object.

    qd_censp : dictionary
        Query Dictionary of essential parameter=value pairs for CenSp RoI. Meant for standard star.

    biasFlags : dict
        Dictionary for the keyword flags of gmos.gbias() function

    flatFlags : dict
        Dictionary for the keyword flags of gmos.gsflat() function

    sciFlags : dict
        Dictionary for the keyword flags of gmos.gsreduce() function
        Based on these flags a set of arcFlags and stdFlags dictionaries will be created
        for basic processing.

    waveFlags : dict
        Dictionary for the keyword flags of gmos.gswavelength() function

    sciCombFlags : dict
        Dictionary for the keyword flags of gemtools.gemcombine() function
        Based on these flags a set of stdCombFlags dictionary will be created for the standard advanced processing.

    transFlags : dict
        Dictionary for the keyword flags of gmos.gstransform() function.
        xxx

    skyFlags : dict
        Dictionary for the keyword flags of gmos.gsskysub() function

    extrFlags : dict
        Dictionary for the keywords flags of gmos.gsextract() function

    calibFlags : dict
        XXX

    skip_wavecal : bool
        Whether to skip interactive wavelength calibration.
        Useful when this is already done.


    Returns
    -------

    """

    print("### Begin Processing GMOS/Longslit Images ###")
    print("###")
    print("=== Creating MasterCals ===")

    # From the work_directory:
    # Create the query dictionary of essential parameter=value pairs for Full and CenSp RoIs
    qd = {'Full': qd_full, 'CenSp': qd_censp}

    print(" --Creating Bias MasterCal--")

    # Set the task parameters.
    gemtools.gemextn.unlearn()  # Disarm a bug in gbias
    gmos.gbias.unlearn()

    regions = ['Full', 'CenSp']
    for r in regions:
        # The following SQL generates the list of full-frame files to process.
        SQL = fs.createQuery('bias', qd[r])
        biasFiles = fs.fileListQuery(dbFile, SQL, qd[r])

        # The str.join() funciton is needed to transform a python list into a
        # comma-separated string of file names that IRAF can understand.
        if len(biasFiles) > 1:
            # NT comment: sometimes if there are too many files, gmos.gbias() raises an error.
            # import pdb; pdb.set_trace()
            gmos.gbias(','.join(str(x) for x in biasFiles), 'MCbias' + r,
                       **biasFlags)

    # Clean up
    year_obs = qd_full['DateObs'].split('-')[0]
    if clean_files:
        iraf.imdel("gS{}*.fits".format(year_obs))

    ask_user(
        "MC Bias done. Would you like to continue to proceed with GCAL Spectral Master Flats? (y/n): ",
        ['y', 'yes'])

    print(" -- Creating GCAL Spectral Flat-Field MasterCals --")
    # Set the task parameters.
    qd['Full'].update({'DateObs': '*'})
    qd['CenSp'].update({'DateObs': '*'})
    gmos.gireduce.unlearn()
    gmos.gsflat.unlearn()
    # Normalize the spectral flats per CCD.
    # The response fitting should be done interactively.
    if flatFlags['fl_inter'] != 'yes':
        print(
            "The response fitting should be done interactively. Please set flatFlags['fl_inter'] = 'yes'."
        )
        ask_user(
            "Do you still want to proceed despite this important warning? (y/n): ",
            ['yes', 'y'])

    for r in regions:
        qr = qd[r]
        flatFiles = fs.fileListQuery(dbFile, fs.createQuery('gcalFlat', qr),
                                     qr)
        if len(flatFiles) > 0:
            gmos.gsflat(','.join(str(x) for x in flatFiles),
                        'MCflat' + r,
                        bias='MCbias' + r,
                        **flatFlags)

    if clean_files:
        iraf.imdel('gS{}*.fits,gsS{}*.fits'.format(year_obs, year_obs))

    ask_user(
        "GCAL Spectral Flat-Field MasterCals done. Would you like to continue to proceed with Basic Processing? (y/n): ",
        ['y', 'yes'])

    print("=== Processing Science Files ===")
    print(" -- Performing Basic Processing --")
    # Set task parameters.
    gmos.gsreduce.unlearn()
    sciFlags = sciFlags  # redundant but put here because NT likes it
    arcFlags = copy.deepcopy(sciFlags)
    arcFlags.update({'fl_flat': 'no', 'fl_vardq': 'no', 'fl_fulldq': 'no'})
    stdFlags = copy.deepcopy(sciFlags)
    stdFlags.update({'fl_fixpix': 'yes', 'fl_vardq': 'no', 'fl_fulldq': 'no'})

    # Perform basic reductions on all exposures for science targets.
    print("  - Arc exposures -")
    for r in regions:
        qr = qd[r]
        arcFiles = fs.fileListQuery(dbFile, fs.createQuery('arc', qr), qr)
        if len(arcFiles) > 0:
            gmos.gsreduce(','.join(str(x) for x in arcFiles),
                          bias='MCbias' + r,
                          **arcFlags)

    print("  - Std star exposures -")
    r = 'CenSp'
    stdFiles = fs.fileListQuery(dbFile, fs.createQuery('std', qd[r]), qd[r])
    if len(stdFiles) > 0:
        gmos.gsreduce(','.join(str(x) for x in stdFiles),
                      bias='MCbias' + r,
                      flatim='MCflat' + r,
                      **stdFlags)

    print("  - Science exposures -")
    r = 'Full'
    sciFiles = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qd[r]),
                                qd[r])
    if len(sciFiles) > 0:
        gmos.gsreduce(','.join(str(x) for x in sciFiles),
                      bias='MCbias' + r,
                      flatim='MCflat' + r,
                      **sciFlags)

    # Clean up
    if clean_files:
        iraf.imdel('gS{}*.fits'.format(year_obs))

    ask_user(
        "Basic processing done. Would you like to continue to determine wavelength calibration? (y/n): ",
        ['y', 'yes'])

    print(" -- Determine wavelength calibration --")
    # Set task parameters
    gmos.gswavelength.unlearn()

    # The fit to the dispersion relation should be performed interactively.
    # Here we will use a previously determined result.
    if waveFlags['fl_inter'] != 'yes':
        print(
            "The fit to the dispersion relation should be performed interactively. Please set waveFlags['fl_inter'] = 'yes'."
        )
        ask_user(
            "Do you still want to proceed despite this important warning? (y/n): ",
            ['yes', 'y'])

        # Need to select specific wavecals to match science exposures.
        # NT: we do this now from the sciTargets + stdTarget input dictionaries
        # e.g.
        '''
        sciTargets = {
        'AM2306-721_a': {'arc': 'gsS20070623S0071', 'sky': '520:720'},
        'AM2306-72_b': {'arc': 'gsS20070623S0081', 'sky': '670:760,920:1020'},
        'AM2306-721_c': {'arc': 'gsS20070623S0091', 'sky': '170:380,920:1080'}
        }
        '''
    #prefix = 'gsS20070623S0'
    #for arc in ['071', '081', '091', '109']:
    #    gmos.gswavelength(prefix + arc, **waveFlags)
    prefix = 'gs'
    arc_files = []
    for key in sciTargets.keys():
        arc_files += [sciTargets[key]['arc']]
    for key in stdTarget.keys():
        arc_files += [stdTarget[key]['arc']]
    # import pdb; pdb.set_trace()
    if skip_wavecal is not True:
        for arc in arc_files:
            gmos.gswavelength(prefix + arc, **waveFlags)

    ### End of basic processing. Continue with advanced processing.
    ask_user(
        "Wavelength solution done. Would you like to continue with advanced processing? (y/n): ",
        ['y', 'yes'])

    print(" -- Performing Advanced Processing --")
    print(" -- Combine exposures, apply dispersion, subtract sky --")
    # Set task parameters.
    gemtools.gemcombine.unlearn()
    sciCombFlags = sciCombFlags
    stdCombFlags = copy.deepcopy(sciCombFlags)
    stdCombFlags.update({'fl_vardq': 'no', 'fl_dqprop': 'no'})
    gmos.gstransform.unlearn()

    # apply gtransform to standard
    # Process the Standard Star
    prefix = "gs"
    qs = qd['CenSp']
    stdFiles = fs.fileListQuery(dbFile, fs.createQuery('std', qs), qs)
    std_name = stdTarget.keys()[0]
    if len(stdFiles) == 0:
        ValueError(
            "No standard star associated. Please check parameters of search (e.g. RoI=CentSp)"
        )
    # import pdb; pdb.set_trace()
    if len(stdFiles) > 1:
        # import pdb; pdb.set_trace()
        gemtools.gemcombine(','.join(prefix + str(x) for x in stdFiles),
                            std_name, **stdCombFlags)
    else:
        os.system("cp {}.fits {}.fits".format(prefix + stdFiles[0], std_name))

    gmos.gstransform(std_name,
                     wavtraname=prefix + stdTarget[std_name]['arc'],
                     **transFlags)

    # The sky regions should be selected with care, using e.g. prows/pcols:
    #   pcols ("tAM2306b.fits[SCI]", 1100, 2040, wy1=40, wy2=320)
    print(
        "The sky regions should be selected with care, using e.g. with prows/pcols (see tutorial)."
    )
    '''
    answer = raw_input("Please provide the long_sample string to apply to gmos.gsskysub() for the standard star."
                       "e.g. '20:70,190:230' (say 'no' for using the example as the default values): ")
    if answer in ['n', 'no']:
        print("Using default long_sample set by stdTarget values {}.".format(stdTarget[std_name]['sky']))
        long_sample_std = stdTarget[std_name]['sky']
    else:
        long_sample_std = answer
    '''
    long_sample_std = stdTarget[std_name]['sky']
    ask_user(
        "Before proceeding it is important that you have set a good sky region for the standard.\n"
        "Thus far you have selected: {}\n Would you like to proceed with the current one? (y/n): "
        .format(long_sample_std), ['yes', 'y'])

    # apply sky substraction
    skyFlags = skyFlags
    gmos.gsskysub.unlearn()
    gmos.gsskysub('t{}'.format(std_name), long_sample=long_sample_std)

    # NT: make sure the process works ok until here before proceeding further. i.e. setting the sky region manually and correctly.
    # NT: seems to be working.

    print(" -- Extract Std spectrum --")
    # Extract the std spectrum using a large aperture.
    # It's important to trace the spectra interactively.
    gmos.gsextract.unlearn()

    gmos.gsextract("st" + std_name, **extrFlags)

    print(" -- Derive the Flux calibration --")
    gmos.gsstandard.unlearn()
    sensFlags = {
        'fl_inter': 'no',
        'starname': 'XXX',
        'caldir': 'onedstds$ctionewcal/',
        'observatory': 'Gemini-South',
        'extinction': 'onedstds$ctioextinct.dat',
        'function': 'chebyshev',
        'order': 9,
        'verbose': 'no',
        'logfile': 'gsstdLog.txt'
    }
    sensFlags['starname'] = stdTarget[std_name][
        'iraf_name']  # replace corresponding starname

    gmos.gsstandard('est' + std_name,
                    sfile='std.txt',
                    sfunction='sens',
                    **sensFlags)

    ask_user(
        "Sensitivity function from standard star done. Would you like to continue with reduction of science"
        " exposures? (y/n): ", ['yes', 'y'])

    # Process the science targets.
    # Use a dictionary to associate science targets with Arcs and sky regions.

    prefix = 'gs'
    extract_individuals = True
    for targ, p in sciTargets.iteritems():
        qs = qd['Full']
        qs['Object'] = p['name']
        # Fix up the target name for the output file
        sciOut = p['name_out']
        sciFiles = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qs), qs)
        all_files = ','.join(prefix + str(x) for x in sciFiles)
        gemtools.gemcombine(all_files, sciOut, **sciCombFlags)
        gmos.gstransform(sciOut, wavtraname=prefix + p['arc'], **transFlags)
        ask_user(
            "It is important to select a good sky region for substraction. Thus far you have selected {}"
            " based on the sciTargets input dictionary. Would you like to continue? (y/n): "
            .format(p['sky']), ['y', 'yes'])
        gmos.gsskysub('t' + sciOut, long_sample=p['sky'], **skyFlags)
        if extract_individuals:
            import pdb
            pdb.set_trace()
            for fname in sciFiles:
                gmos.gstransform(prefix + fname,
                                 wavtraname=prefix + p['arc'],
                                 **transFlags)
                gmos.gsskysub('t' + prefix + fname,
                              long_sample=p['sky'],
                              **skyFlags)
                gmos.gscalibrate.unlearn()
                gmos.gscalibrate('st' + prefix + fname, **calibFlags)
    # Clean up
    if clean_files:
        iraf.imdel("gsS{}*.fits".format(year_obs))

    ask_user(
        "Sky substraction done. Would you like to continue to apply sensitivity function? (y/n): ",
        ['y'])

    ## Apply the sensitivity function.
    gmos.gscalibrate.unlearn()

    gmos.gscalibrate('st' + sciOut + '*', **calibFlags)
    calibFlags.update({'fl_vardq': 'no'})
    gmos.gscalibrate('est' + std_name, **calibFlags)

    print(" -- Extract Target Spectra --")
    method = 'gsextract'
    if method == 'gsextract':
        gmos.gsextract.unlearn()
        # import pdb;pdb.set_trace()
        gmos.gsextract("cst" + sciOut, **extrFlags)

    elif method == 'sarith':
        # not implemented yet
        onedspec.nsum = 4
        onedspec.sarith('cst{}.fits[SCI]'.format(sciOut),
                        'copy',
                        '',
                        'ecst{}.ms'.format(sciOut),
                        apertures='222-346x4')

    print("=== Finished Calibration Processing ===")
Ejemplo n.º 3
0
def gmos_mos_proc():
    '''
    Modified version of the GMOS Data Reduction Cookbook companion script to the chapter:
    "Reduction of Multi-Object Spectra with IRAF"

    PyRAF script to:
    Process MOS exposures for Sculptor Dwarf field 1, in program GN-2008-B-Q-025

    The names for the relevant header keywords and their expected values are
    described in the DRC chapter entitled "Supplementary Material"

    Perform the following starting in the parent work directory:
        cd /path/to/work_directory

    Place the fileSelect.py module in your work directory. Now execute this
    script from the unix prompt:
        python gmos_img_proc.py
    '''
    print ("### Begin Processing GMOS/MOS Spectra ###")
    print (' ')
    print ("---> You must have the MDF files:")
    print ("--->    GS2008BQ025-01.fits and GS2008BQ025-02.fits")
    print ("---> in your work directory. ")
    print (' ')
    print ("=== Creating MasterCals ===")
    
    
    dbFile='raw/obsLog.sqlite3'
        
    #Create query dictionaries for the science observations at each CentWave
    # Select bias exposures within ~2 months of the target observations:     
    qdf = {'use_me':1,
           'CcdBin':'4 2',
           'DateObs':'2008-09-10:2008-12-12',
           #'DateObs':'2008-10-20:2008-11-21',
           'Instrument':'GMOS-S',
           'Disperser':'B600+_%',
           'AperMask':'GS2008BQ025-01',
           'CentWave':520.0,
           'Object':'Sculptor-field1',
           'RoI':'Full'
           }
    
    #Create query dictionaries for the standard star observation
    qd_std = copy.deepcopy(qdf)
    qd_std['AperMask'] = '1.0arcsec'
    qd_std['Object'] = 'LTT1020'
    
    print (" --Creating Bias MasterCal-- ")
    
    #Use primarily the default task parameters
    gemtools.gemextn.unlearn()    # Disarm a bug in gbias
    gmos.gbias.unlearn()
    #gmos.gbias.logfile = 'biasLog.txt'
    #gmos.gbias.rawpath = './raw/'
    #gmos.gbias.fl_vardq = 'yes'
    #gmos.gbias.verbose = 'no'
    biasFlags = {
        'logfile':'biasLog.txt','rawpath':'./raw/','fl_vardq':'yes',    
        'verbose':'no'
    }    

    #This SQL query generates the list of full-frame files to process. Note that since the std star has the 
    # same RoI, CCD binning, and CCD gain/read-out speed, we only need to make one bias file.     
    SQL = fs.createQuery('bias', qdf)
    biasFull = fs.fileListQuery(dbFile, SQL, qdf)
    
    # The join function originally used runs into problems - use this f.write
    # to make a string of comma-separated files that IRAF can understand.
    print (" --Generating MasterCal for Full-- ")
    with open('biases.lis', 'w') as f:
     [f.write(x+'\n') for x in biasFull]
    #Create the bias MasterCal
    gmos.gbias('@biases.lis', 'MCbiasFull.fits', **biasFlags)
     
    # Clean up
    #iraf.imdel('gS2008*.fits')
    	
    print (" --Creating GCAL Spectral Flat-Field MasterCals--")
    # Set the task parameters.
    gmos.gireduce.unlearn()
    gmos.gsflat.unlearn()
    gmos.gsflat.fl_vardq = 'yes'
    gmos.gsflat.fl_fulldq = 'yes'
    gmos.gsflat.fl_oversize = 'no'
    gmos.gsflat.fl_inter = 'no'
    gmos.gsflat.logfile = 'gsflatLog.txt'
    gmos.gsflat.rawpath = './raw'
    gmos.gsflat.verbose = 'no'
    call("ls Sculptor*.fits",shell=True)
    #Perform flat-field normalization for the science images
    print ("  -Full Flat (GCAL & Twi) normalization for science images, non-interactive-")
    qdf['DateObs'] = '*'
    qdf['Filter2'] = 'open2-8'
    cwf = {'B6-520':520.0, 'B6-525':525.0, 'B6-522':522.5}
    #flatType = ['gcalFlat', 'twiFlat']
    #No twilight flats were available for this observation - calibrating using only the gcal flats
    flatType = ['gcalFlat']	
    for ft in flatType:
        for tag,w in cwf.iteritems():
            qdf['Disperser'] = tag[0:2] + '00+_%'
            qdf['CentWave'] = w
            flatName = 'MC' + ft + '-M01_' + tag
            combName = 'MC' + ft + 'Comb-M01_' + tag
            flatFull = fs.fileListQuery(dbFile, fs.createQuery(ft, qdf), qdf)
            with open('flats_sci.lis', 'w') as f:
                [f.write(x+'\n') for x in flatFull]
	    print "Flatfielding for " + str(ft) + " and " + str(w)
            gmos.gsflat ('@flats_sci.lis', flatName, bias='MCbiasFull',
                         fl_keep='yes', combflat=combName, fl_usegrad='yes', 
                         fl_seprows='no', order='53')
            os.remove('flats_sci.lis')
    call("ls Sculptor*.fits",shell=True)
    #Perform flat-field normalization for the standard star. Standard star was taken at centw 415,520,625	
    print ("  -Full Flat (GCAL & Twi) normalization for the standard star, non-interactive-")
    qd_std['DateObs'] = '*'
    qd_std['Filter2'] = 'open2-8'
    cws = {'B6-415':415.0, 'B6-520':520.0, 'B6-625':625.0}
    #flatType = ['gcalFlat', 'twiFlat']
    #No twilight flats were available for this observation - calibrating using only the gcal flats
    flatType = ['gcalFlat']
    for ft in flatType:
        for tag,w in cws.iteritems():
            qd_std['Disperser'] = tag[0:2] + '00+_%'
            qd_std['CentWave'] = w
            flatName = 'MC' + ft + '-M01_' + tag
            combName = 'MC' + ft + 'Comb-M01_' + tag
            flatFull = fs.fileListQuery(dbFile, fs.createQuery(ft, qd_std), qd_std)
            with open('flats_std.lis', 'w') as f:
                [f.write(x+'\n') for x in flatFull]
            gmos.gsflat ('@flats_std.lis', flatName, bias='MCbiasFull',
                         fl_keep='yes', combflat=combName, fl_usegrad='yes', 
                         fl_seprows='no', order='53')
            os.remove('flats_std.lis')    
    call("ls Sculptor*.fits",shell=True)
    print ("=== Processing Science Files ===")
    print (" -- Performing Basic Processing --")
                 

    # Use primarily the default task parameters.
    gmos.gsreduce.unlearn()
    gmos.gsreduce.logfile = 'gsreduceLog.txt'
    gmos.gsreduce.rawpath = './raw'
    gmos.gsreduce.verbose = 'no'
    gmos.gsreduce.fl_fixpix = 'no'
    gmos.gsreduce.fl_oversize = 'no'
    #Perform single-frame CR rejection
    #gmos.gsreduce.fl_gscr = 'yes'

    print ("  - GSReducing MOS Science and Arc exposures -")
    for tag,w in cwf.iteritems():
        qdf['Disperser'] = tag[0:2] + '00+_%'
        qdf['CentWave'] = w
        flatName = 'MCgcalFlat-M01_' + tag
        gradName = 'MCgcalFlatComb-M01_' + tag
        arcFull = fs.fileListQuery(dbFile, fs.createQuery('arc', qdf), qdf)
        gmos.gsreduce (','.join(str(x) for x in arcFull), bias='MCbiasFull',
                  gradimage=gradName, fl_flat='no')
        sciFull = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qdf), qdf)
        gmos.gsreduce (','.join(str(x) for x in sciFull), bias='MCbiasFull',
                  flatim=flatName, gradimage=gradName,
                  fl_vardq='yes', fl_fulldq='yes')
    call("ls Sculptor*.fits",shell=True)
    print ("  - GSReducing Longslit Std-star and Arc exposures -")
    for tag,w in cws.iteritems():
        qd_std['Disperser'] = tag[0:2] + '00+_%'
        qd_std['CentWave'] = w
        flatName = 'MCgcalFlat-M01_' + tag
        arc_std = fs.fileListQuery(dbFile, fs.createQuery('arc', qd_std), qd_std)
        gmos.gsreduce (','.join(str(x) for x in arc_std), bias='MCbiasFull',
                  fl_flat='no')
        std_files = fs.fileListQuery(dbFile, fs.createQuery('std', qd_std), qd_std)
        gmos.gsreduce (','.join(str(x) for x in std_files), bias='MCbiasFull',
                  flatim=flatName, fl_fixpix='yes')
    call("ls Sculptor*.fits",shell=True)
    # Clean up - uncomment this eventually
    #iraf.imdel('gS2008*.fits')

    print ("=== Finished Basic Calibration Processing ===")
    print ("\n")
    print ("=== Performing cosmic-ray rejection using gemcrspec ===")
    
    #note that this construction works because there's only one exposure per position/grating/cenwave combo 
    #if you have multiple exposures, comment this block out and use gemcombine to do outlier rejection when combining images instead
    gemtools.gemcrspec.unlearn()
    gemtools.gemcrspec.xorder = '9'
    gemtools.gemcrspec.yorder = '-1'
    gemtools.gemcrspec.sigclip = '4.5'   
    gemtools.gemcrspec.sigfrac= '0.5'
    gemtools.gemcrspec.objlim = '1.0'
    gemtools.gemcrspec.verbose = 'no'
    prefix = 'gs'
    for tag,w in cwf.iteritems():
        qdf['Disperser'] = tag[0:2] + '00+_%'
        qdf['CentWave'] = w
        outFile = qdf['Object'] + '-M01_' + tag
        sciFull = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qdf), qdf)
	print sciFull
        gemtools.gemcrspec(','.join(prefix+str(x) for x in sciFull), outFile)
    # Do the same for the standard star
    for tag,w in cws.iteritems():
        qd_std['Disperser'] = tag[0:2] + '00+_%'
        qd_std['CentWave'] = w
        outFile = qd_std['Object'] + '-M01_' + tag
        stdFull = fs.fileListQuery(dbFile, fs.createQuery('std', qd_std), qd_std)
	print stdFull
        gemtools.gemcrspec(','.join(prefix+str(x) for x in stdFull), outFile)  
    call("ls Sculptor*.fits",shell=True)

    #Unused block for doing outlier rejection with multiple exposures per position/grating/cenwave combo
    '''
    # Use primarily the default task parameters.
    gemtools.gemcombine.unlearn()
    gemtools.gemcombine.logfile = 'gemcombineLog.txt'
    gemtools.gemcombine.reject = 'ccdclip'
    gemtools.gemcombine.fl_vardq = 'yes'
    gemtools.gemcombine.fl_dqprop = 'yes'
    gemtools.gemcombine.verbose = 'no'       
    prefix = 'gs'
    for tag,w in cwf.iteritems():
        qdf['Disperser'] = tag[0:2] + '00+_%'
        qdf['CentWave'] = w
        outFile = qdf['Object'] + tag
        sciFull = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qdf), qdf)
        gemtools.gemcombine (','.join(prefix+str(x) for x in sciFull), outFile)
    # Do the same for the standard star
    for tag,w in cws.iteritems():
        qdf['Disperser'] = tag[0:2] + '00+_%'
        qdf['CentWave'] = w
        outFile = qd_std['Object'] + tag
        stdFull = fs.fileListQuery(dbFile, fs.createQuery('std', qd_std), qd_std)
        gemtools.gemcombine (','.join(prefix+str(x) for x in stdFull), outFile)
    '''

    print ("=== Beginning wavelength calibration ===")
    print (" -- Deriving wavelength calibration --")
    
    # Begin with longslit Arcs.
    # The fit to the dispersion relation should be performed interactively;
    # here we will us a previously determined result.
    # There are many arcs to choose from: we only need one for each setting.

    gmos.gswavelength.unlearn()
    waveFlags = {
    	'coordlist':'gmos$data/CuAr_GMOS.dat','fwidth':6,'nsum':50,
    	'function':'chebyshev','order':5,
    	'fl_inter':'no','logfile':'gswaveLog.txt','verbose':'no'
    	}


    for seq in ['091','092','093']:
        inFile = prefix + 'S20081129S0' + seq
        gmos.gswavelength(inFile,**waveFlags)
    
    #  Now for the MOS arcs
    waveFlags.update({'order':7,'nsum':20,'step':2})
    
    for seq in ['249','250','251']:
        inFile = prefix + 'S20081120S0' + seq
        gmos.gswavelength(inFile,**waveFlags)
    call("ls Sculptor*.fits",shell=True)
    #This block is in the tutorial but it seems incorrect - it applies the calibration to non gsreduced arcs!!
    '''
    for tag,w in cwf.iteritems():
    	qdf['Disperser'] = tag[0:2] + '00+_%'
    	qdf['CentWave'] = w
    	outFile = qdf['Object'] + tag
    	arcFull = fs.fileListQuery(dbFile, fs.createQuery('arcP', qdf), qdf)
    	gmos.gswavelength (','.join(prefix+str(x) for x in arcFull),**waveFlags)
    '''
    
    print (" -- Applying wavelength calibration -- ")
    gmos.gstransform.unlearn()
    transFlags = {
    'fl_vardq':'no','interptype':'linear','fl_flux':'yes',
    'logfile':'gstransformLog.txt','verbose':'no'
    }
    
    #Construct a mapping for the wavelength calibration. Format (arc id,sci/std id,target):'filter/disperser'
    print (" -- Calibrating standard star exposures -- ")
    gmos.gstransform ('LTT1020-M01_B6-415', wavtraname='gsS20081129S0091',
                  **transFlags)
    gmos.gstransform ('LTT1020-M01_B6-520', wavtraname='gsS20081129S0092',
                  **transFlags)
    gmos.gstransform ('LTT1020-M01_B6-625', wavtraname='gsS20081129S0093',
                  **transFlags)
    call("ls Sculptor*.fits",shell=True)
    #This block seems to operate on the non CR-cleaned images! 
    '''
    transMap = {
	('091','036','LTT1020'):'B6-415',
        ('092','039','LTT1020'):'B6-520',
	('093','040','LTT1020'):'B6-625'
	}
    print (" -- Calibrating standard star exposures -- ")
    for id,tag in transMap.iteritems():
        inFile = 'gsS20081129S0' + id[1]
        wavFile = 'gsS20081129S0' + id[0]
        outFile = 't' + id[2] + '_' + tag
	gmos.gstransform(inFile,outimages=outFile,wavtraname=wavFile)
    '''
    print (" -- Calibrating MOS science exposures -- ")
    
    transFlags.update({'fl_vardq':'yes'})
    gmos.gstransform ('Sculptor-field1-M01_B6-520', wavtraname='gsS20081120S0249',
                  **transFlags)
    gmos.gstransform ('Sculptor-field1-M01_B6-522', wavtraname='gsS20081120S0250',
                  **transFlags)
    gmos.gstransform ('Sculptor-field1-M01_B6-525', wavtraname='gsS20081120S0251',
                  **transFlags)
    call("ls Sculptor*.fits",shell=True)
    #Note that our standard star is extremely bright so the signal is swamped by light from the star - this step is probably optional
    print (" == Beginning flux calibration == " )
    print (" -- Performing sky subtraction on standard star -- " )
                             
    # This will require summing the spectra along columns, e.g.:
    #   iraf.pcols("tLTT1020-M01_B6-415.fits[SCI]",400,1400,wy1=0,wy2=1000) 
    # The sky regions should be selected with care, using e.g. prows/pcols.
    gmos.gsskysub.unlearn()
    gmos.gsskysub.logfile='gsskysubLog.txt'
    gmos.gsskysub.fl_oversize = 'no'
    gmos.gsskysub.verbose = 'no'

    gmos.gsskysub ('tLTT1020-M01_*', long_sample='850:1000,1350:1500')
    call("ls Sculptor*.fits",shell=True)
    print(" -- Extracting longslit 1-D spectra of standard stars -- ")
	
    gmos.gsextract.unlearn()
    extrFlags = {
    'apwidth':3.,'fl_inter':'no','find':'yes',
    'trace':'yes','tfunction':'spline3','tnsum':20,'tstep':50,
    'weights':'none','background':'none',
    'fl_vardq':'no','verbose':'no','logfile':'gsextractLog.txt'
	}
    ordc = {'B6-415':7,'B6-520':8,'B6-625':8}
    #Perform extraction on the standard star:
    for tag,o in ordc.iteritems():
	infile = 'stLTT1020-M01_' + tag
        gmos.gsextract(infile, torder=o,**extrFlags)
    print(" -- Flux calibrating the standard star -- ")  
    gmos.gsstandard.unlearn()
    sensFlags = {
    'fl_inter':'yes','starname':'l1020','caldir':'onedstds$ctionewcal/',
    'observatory':'Gemini-South','extinction':'onedstds$ctioextinct.dat',
    'function':'spline3','order':7,'verbose':'no','logfile':'gsstdLog.txt'
	}
    gmos.gsstandard ('estLTT1020-M01_B6*', sfile='std_B6', sfunction='sens_B6',
                 **sensFlags)
    call("ls Sculptor*.fits",shell=True)
    print (" --Processing done-- ")
Ejemplo n.º 4
0
science = list('s' + x for x in list(science))

print("=== gsskysub finished ===")

print("=== Extracting spectra ===")

gmos.gsextract.unlearn()
gmos.gsextract(','.join(str(x) for x in list(science)), fl_inter='yes')

science = list('e' + x for x in list(science))

print("=== gsextract finished ===")

print("=== Create sensitivity function ===")

caldir = input("Directory containing calibration data: ")
starname = input("Standard star name in calibration list: ")

gmos.gsstandard.unlearn()
gmos.gsstandard(','.join(str(x) for x in list(science)),
                fl_inter='yes',
                extinction='onedstds$ctioextinct.dat',
                starname=starname,
                caldir=caldir,
                sfunction="../sens")

print("=== gsstandard finished ===")

print("### DONE ###")
Ejemplo n.º 5
0
def gmos_ls_proc2(
        sciTargets,
        stdTarget,
        dbFile='./raw/obsLog.sqlite3',
        qd_full={'use_me': 1, 'Instrument': 'GMOS-S', 'CcdBin': '2 4', 'RoI': 'Full', 'Disperser': 'B600+_%', 'CentWave': 485.0, 'AperMask': '1.0arcsec', 'Object': 'AM2306-72%','DateObs': '2007-06-05:2007-07-07'},
        qd_censp={'use_me': 1, 'Instrument': 'GMOS-S', 'CcdBin': '2 4', 'RoI': 'CenSp', 'Disperser': 'B600+_%', 'CentWave': 485.0, 'AperMask': '1.0arcsec', 'Object': 'LTT9239','DateObs': '2007-06-05:2007-07-07'},
        biasFlags={'logfile': 'biasLog.txt', 'rawpath': './raw/', 'fl_vardq': 'yes', 'verbose': 'no'},
        flatFlags = {'fl_over': 'yes', 'fl_trim': 'yes', 'fl_bias': 'yes', 'fl_dark': 'no', 'fl_fixpix': 'no', 'fl_oversize': 'no', 'fl_vardq': 'yes', 'fl_fulldq': 'yes','rawpath': './raw', 'fl_inter': 'no', 'fl_detec': 'yes', 'function': 'spline3', 'order': '13,11,28', 'logfile': 'gsflatLog.txt', 'verbose': 'no'},
        sciFlags = {'fl_over': 'yes', 'fl_trim': 'yes', 'fl_bias': 'yes', 'fl_gscrrej': 'no','fl_dark': 'no', 'fl_flat': 'yes', 'fl_gmosaic': 'yes', 'fl_fixpix': 'no', 'fl_gsappwave': 'yes', 'fl_oversize': 'no', 'fl_vardq': 'yes', 'fl_fulldq': 'yes', 'rawpath': './raw', 'fl_inter': 'no', 'logfile': 'gsreduceLog.txt', 'verbose': 'no'},
        waveFlags = {'coordlist': 'gmos$data/CuAr_GMOS.dat', 'fwidth': 6, 'nsum': 50, 'function': 'chebyshev', 'order': 5, 'fl_inter': 'no', 'logfile': 'gswaveLog.txt', 'verbose': 'no'},
        sciCombFlags = {'combine': 'average', 'reject': 'ccdclip', 'fl_vardq': 'yes', 'fl_dqprop': 'yes', 'logfile': 'gemcombineLog.txt', 'verbose': 'no'},
        transFlags={'fl_vardq': 'yes', 'interptype': 'linear', 'fl_flux': 'yes', 'logfile': 'gstransLog.txt'},
        skyFlags={'fl_oversize': 'no', 'fl_vardq': 'yes', 'logfile': 'gsskysubLog.txt'},
        extrFlags = {'apwidth': 3., 'fl_inter': 'yes', 'find': 'yes','trace': 'yes', 'tfunction': 'chebyshev', 'torder': '6', 'tnsum': 20, 'background': 'fit', 'bfunction': 'chebyshev', 'border': 2, 'fl_vardq': 'no', 'logfile': 'gsextrLog.txt'},
        calibFlags = {'extinction': 'onedstds$ctioextinct.dat', 'fl_ext': 'yes', 'fl_scale': 'no','sfunction': 'sens', 'fl_vardq': 'yes', 'logfile': 'gscalibrateLog.txt'},
        skip_wavecal=True,
        clean_files=False):

    """
    Parameters
    ----------
    dbFile : str
        Filename containing the SQL sqlite3 database created by obslog.py
        It must be placed in the ./raw/ directory
        Default is `./raw/obsLog.sqlite3`

    sciTargets : dict
        Dictionary with the associations of science targets and its associated ARC for wavelength calibration
        as well as the regions defining the sky along the slit.
        e.g. sciTargetd = {'AM2306-721_a': {'arc': 'gsS20070623S0071', 'sky': '520:720'},
                           'AM2306-72_b': {'arc': 'gsS20070623S0081', 'sky': '670:760,920:1020'}}
        Note that there could be more than one target defined this way.

    stdTarget : dict
        Dictionary with the associations of standard star targets and its associated ARC for wavelength calibration
        as well as the regions defining the sky along the slit.
        e.g. stdTarget = {'LTT1788': {'arc': 'S20180711S0281', 'sky': '170:380,920:1080'}}

    qd_full : dictionary
        Query Dictionary of essential parameter=value pairs for Full RoI. Meant for science object.

    qd_censp : dictionary
        Query Dictionary of essential parameter=value pairs for CenSp RoI. Meant for standard star.

    biasFlags : dict
        Dictionary for the keyword flags of gmos.gbias() function

    flatFlags : dict
        Dictionary for the keyword flags of gmos.gsflat() function

    sciFlags : dict
        Dictionary for the keyword flags of gmos.gsreduce() function
        Based on these flags a set of arcFlags and stdFlags dictionaries will be created
        for basic processing.

    waveFlags : dict
        Dictionary for the keyword flags of gmos.gswavelength() function

    sciCombFlags : dict
        Dictionary for the keyword flags of gemtools.gemcombine() function
        Based on these flags a set of stdCombFlags dictionary will be created for the standard advanced processing.

    transFlags : dict
        Dictionary for the keyword flags of gmos.gstransform() function.
        xxx

    skyFlags : dict
        Dictionary for the keyword flags of gmos.gsskysub() function

    extrFlags : dict
        Dictionary for the keywords flags of gmos.gsextract() function

    calibFlags : dict
        XXX

    skip_wavecal : bool
        Whether to skip interactive wavelength calibration.
        Useful when this is already done.


    Returns
    -------

    """

    print ("### Begin Processing GMOS/Longslit Images ###")
    print ("###")
    print ("=== Creating MasterCals ===")

    # From the work_directory:
    # Create the query dictionary of essential parameter=value pairs for Full and CenSp RoIs
    qd = {'Full': qd_full, 'CenSp': qd_censp}

    print (" --Creating Bias MasterCal--")

    # Set the task parameters.
    gemtools.gemextn.unlearn()  # Disarm a bug in gbias
    gmos.gbias.unlearn()

    regions = ['Full', 'CenSp']
    for r in regions:
        # The following SQL generates the list of full-frame files to process.
        SQL = fs.createQuery('bias', qd[r])
        biasFiles = fs.fileListQuery(dbFile, SQL, qd[r])

        # The str.join() funciton is needed to transform a python list into a
        # comma-separated string of file names that IRAF can understand.
        if len(biasFiles) > 1:
            # NT comment: sometimes if there are too many files, gmos.gbias() raises an error.
            # import pdb; pdb.set_trace()
            gmos.gbias(','.join(str(x) for x in biasFiles), 'MCbias' + r,
                       **biasFlags)

    # Clean up
    year_obs = qd_full['DateObs'].split('-')[0]
    if clean_files:
        iraf.imdel("gS{}*.fits".format(year_obs))

    ask_user("MC Bias done. Would you like to continue to proceed with GCAL Spectral Master Flats? (y/n): ",['y','yes'])

    print (" -- Creating GCAL Spectral Flat-Field MasterCals --")
    # Set the task parameters.
    qd['Full'].update({'DateObs': '*'})
    qd['CenSp'].update({'DateObs': '*'})
    gmos.gireduce.unlearn()
    gmos.gsflat.unlearn()
    # Normalize the spectral flats per CCD.
    # The response fitting should be done interactively.
    if flatFlags['fl_inter'] != 'yes':
        print("The response fitting should be done interactively. Please set flatFlags['fl_inter'] = 'yes'.")
        ask_user("Do you still want to proceed despite this important warning? (y/n): ", ['yes','y'])

    for r in regions:
        qr = qd[r]
        flatFiles = fs.fileListQuery(dbFile, fs.createQuery('gcalFlat', qr), qr)
        if len(flatFiles) > 0:
            gmos.gsflat(','.join(str(x) for x in flatFiles), 'MCflat' + r,
                        bias='MCbias' + r, **flatFlags)

    if clean_files:
        iraf.imdel('gS{}*.fits,gsS{}*.fits'.format(year_obs, year_obs))

    ask_user("GCAL Spectral Flat-Field MasterCals done. Would you like to continue to proceed with Basic Processing? (y/n): ",['y','yes'])

    print ("=== Processing Science Files ===")
    print (" -- Performing Basic Processing --")
    # Set task parameters.
    gmos.gsreduce.unlearn()
    sciFlags = sciFlags  # redundant but put here because NT likes it
    arcFlags = copy.deepcopy(sciFlags)
    arcFlags.update({'fl_flat': 'no', 'fl_vardq': 'no', 'fl_fulldq': 'no'})
    stdFlags = copy.deepcopy(sciFlags)
    stdFlags.update({'fl_fixpix': 'yes', 'fl_vardq': 'no', 'fl_fulldq': 'no'})

    # Perform basic reductions on all exposures for science targets.
    print ("  - Arc exposures -")
    for r in regions:
        qr = qd[r]
        arcFiles = fs.fileListQuery(dbFile, fs.createQuery('arc', qr), qr)
        if len(arcFiles) > 0:
            gmos.gsreduce(','.join(str(x) for x in arcFiles),
                          bias='MCbias' + r, **arcFlags)

    print ("  - Std star exposures -")
    r = 'CenSp'
    stdFiles = fs.fileListQuery(dbFile, fs.createQuery('std', qd[r]), qd[r])
    if len(stdFiles) > 0:
        gmos.gsreduce(','.join(str(x) for x in stdFiles), bias='MCbias' + r,
                      flatim='MCflat' + r, **stdFlags)

    print ("  - Science exposures -")
    r = 'Full'
    sciFiles = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qd[r]), qd[r])
    if len(sciFiles) > 0:
        gmos.gsreduce(','.join(str(x) for x in sciFiles), bias='MCbias' + r,
                      flatim='MCflat' + r, **sciFlags)

    # Clean up
    if clean_files:
        iraf.imdel('gS{}*.fits'.format(year_obs))

    ask_user("Basic processing done. Would you like to continue to determine wavelength calibration? (y/n): ",['y','yes'])

    print (" -- Determine wavelength calibration --")
    # Set task parameters
    gmos.gswavelength.unlearn()

    # The fit to the dispersion relation should be performed interactively.
    # Here we will use a previously determined result.
    if waveFlags['fl_inter'] != 'yes':
        print("The fit to the dispersion relation should be performed interactively. Please set waveFlags['fl_inter'] = 'yes'.")
        ask_user("Do you still want to proceed despite this important warning? (y/n): ", ['yes','y'])

    # Need to select specific wavecals to match science exposures.
    # NT: we do this now from the sciTargets + stdTarget input dictionaries
    # e.g.
        '''
        sciTargets = {
        'AM2306-721_a': {'arc': 'gsS20070623S0071', 'sky': '520:720'},
        'AM2306-72_b': {'arc': 'gsS20070623S0081', 'sky': '670:760,920:1020'},
        'AM2306-721_c': {'arc': 'gsS20070623S0091', 'sky': '170:380,920:1080'}
        }
        '''
    #prefix = 'gsS20070623S0'
    #for arc in ['071', '081', '091', '109']:
    #    gmos.gswavelength(prefix + arc, **waveFlags)
    prefix = 'gs'
    arc_files = []
    for key in sciTargets.keys():
        arc_files += [sciTargets[key]['arc']]
    for key in stdTarget.keys():
        arc_files += [stdTarget[key]['arc']]
    # import pdb; pdb.set_trace()
    if skip_wavecal is not True:
        for arc in arc_files:
            gmos.gswavelength(prefix + arc, **waveFlags)


    ### End of basic processing. Continue with advanced processing.
    ask_user("Wavelength solution done. Would you like to continue with advanced processing? (y/n): ",['y','yes'])

    print (" -- Performing Advanced Processing --")
    print (" -- Combine exposures, apply dispersion, subtract sky --")
    # Set task parameters.
    gemtools.gemcombine.unlearn()
    sciCombFlags = sciCombFlags
    stdCombFlags = copy.deepcopy(sciCombFlags)
    stdCombFlags.update({'fl_vardq': 'no', 'fl_dqprop': 'no'})
    gmos.gstransform.unlearn()

    # apply gtransform to standard
    # Process the Standard Star
    prefix = "gs"
    qs = qd['CenSp']
    stdFiles = fs.fileListQuery(dbFile, fs.createQuery('std', qs), qs)
    std_name = stdTarget.keys()[0]
    if len(stdFiles) == 0:
        ValueError("No standard star associated. Please check parameters of search (e.g. RoI=CentSp)")
    # import pdb; pdb.set_trace()
    if len(stdFiles) > 1:
        # import pdb; pdb.set_trace()
        gemtools.gemcombine(','.join(prefix + str(x) for x in stdFiles),
                                std_name, **stdCombFlags)
    else:
        os.system("cp {}.fits {}.fits".format(prefix + stdFiles[0], std_name))

    gmos.gstransform(std_name, wavtraname=prefix + stdTarget[std_name]['arc'], **transFlags)

    # The sky regions should be selected with care, using e.g. prows/pcols:
    #   pcols ("tAM2306b.fits[SCI]", 1100, 2040, wy1=40, wy2=320)
    print("The sky regions should be selected with care, using e.g. with prows/pcols (see tutorial).")
    '''
    answer = raw_input("Please provide the long_sample string to apply to gmos.gsskysub() for the standard star."
                       "e.g. '20:70,190:230' (say 'no' for using the example as the default values): ")
    if answer in ['n', 'no']:
        print("Using default long_sample set by stdTarget values {}.".format(stdTarget[std_name]['sky']))
        long_sample_std = stdTarget[std_name]['sky']
    else:
        long_sample_std = answer
    '''
    long_sample_std = stdTarget[std_name]['sky']
    ask_user("Before proceeding it is important that you have set a good sky region for the standard.\n"
             "Thus far you have selected: {}\n Would you like to proceed with the current one? (y/n): ".format(long_sample_std), ['yes','y'])


    # apply sky substraction
    skyFlags = skyFlags
    gmos.gsskysub.unlearn()
    gmos.gsskysub('t{}'.format(std_name), long_sample=long_sample_std)

    # NT: make sure the process works ok until here before proceeding further. i.e. setting the sky region manually and correctly.
    # NT: seems to be working.

    print (" -- Extract Std spectrum --")
    # Extract the std spectrum using a large aperture.
    # It's important to trace the spectra interactively.
    gmos.gsextract.unlearn()

    gmos.gsextract("st" + std_name, **extrFlags)


    print (" -- Derive the Flux calibration --")
    gmos.gsstandard.unlearn()
    sensFlags = {
        'fl_inter': 'no', 'starname': 'XXX', 'caldir': 'onedstds$ctionewcal/',
        'observatory': 'Gemini-South', 'extinction': 'onedstds$ctioextinct.dat',
        'function': 'chebyshev', 'order': 9, 'verbose': 'no', 'logfile': 'gsstdLog.txt'
    }
    sensFlags['starname'] = stdTarget[std_name]['iraf_name']  # replace corresponding starname

    gmos.gsstandard('est'+std_name, sfile='std.txt', sfunction='sens', **sensFlags)

    ask_user("Sensitivity function from standard star done. Would you like to continue with reduction of science"
             " exposures? (y/n): ",['yes','y'])

    # Process the science targets.
    # Use a dictionary to associate science targets with Arcs and sky regions.

    prefix = 'gs'
    extract_individuals = True
    for targ, p in sciTargets.iteritems():
        qs = qd['Full']
        qs['Object'] = p['name']
        # Fix up the target name for the output file
        sciOut = p['name_out']
        sciFiles = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qs), qs)
        all_files = ','.join(prefix + str(x) for x in sciFiles)
        gemtools.gemcombine(all_files, sciOut, **sciCombFlags)
        gmos.gstransform(sciOut, wavtraname=prefix + p['arc'], **transFlags)
        ask_user("It is important to select a good sky region for substraction. Thus far you have selected {}"
                 " based on the sciTargets input dictionary. Would you like to continue? (y/n): ".format(p['sky']),['y','yes'])
        gmos.gsskysub('t' + sciOut, long_sample=p['sky'], **skyFlags)
        if extract_individuals:
            import pdb; pdb.set_trace()
            for fname in sciFiles:
                gmos.gstransform(prefix + fname, wavtraname=prefix + p['arc'], **transFlags)
                gmos.gsskysub('t' + prefix + fname, long_sample=p['sky'], **skyFlags)
                gmos.gscalibrate.unlearn()
                gmos.gscalibrate('st'+prefix+fname, **calibFlags)
    # Clean up
    if clean_files:
        iraf.imdel("gsS{}*.fits".format(year_obs))

    ask_user("Sky substraction done. Would you like to continue to apply sensitivity function? (y/n): ",['y'])

    ## Apply the sensitivity function.
    gmos.gscalibrate.unlearn()


    gmos.gscalibrate('st'+sciOut+'*', **calibFlags)
    calibFlags.update({'fl_vardq': 'no'})
    gmos.gscalibrate('est'+std_name, **calibFlags)

    print (" -- Extract Target Spectra --")
    method = 'gsextract'
    if method == 'gsextract':
        gmos.gsextract.unlearn()
        # import pdb;pdb.set_trace()
        gmos.gsextract("cst" + sciOut, **extrFlags)

    elif method == 'sarith':
        # not implemented yet
        onedspec.nsum = 4
        onedspec.sarith('cst{}.fits[SCI]'.format(sciOut), 'copy', '', 'ecst{}.ms'.format(sciOut),
                    apertures='222-346x4')

    print ("=== Finished Calibration Processing ===")
Ejemplo n.º 6
0
    extrFlags = {
        'apwidth':3.,'fl_inter':'no','find':'yes',
        'trace':'yes','tfunction':'chebyshev','torder':'6','tnsum':20,
        'background':'fit','bfunction':'chebyshev','border':2,
        'fl_vardq':'no','logfile':'gsextrLog.txt'
    }
    gmos.gsextract ("stLTT9239", **extrFlags)

    print (" -- Derive the Flux calibration --")
    gmos.gsstandard.unlearn()
    sensFlags = {
        'fl_inter':'yes','starname':'l9239','caldir':'onedstds$ctionewcal/',
        'observatory':'Gemini-South','extinction':'onedstds$ctioextinct.dat',
        'function':'chebyshev','order':9,'verbose':'no','logfile':'gsstdLog.txt'
    }
    gmos.gsstandard ('estLTT9239', sfile='std.txt', sfunction='sens', **sensFlags)

    # Process the science targets.
    # Use a dictionary to associate science targets with Arcs and sky regions.
    sciTargets = {
        'AM2306-721_a':{'arc':'gsS20070623S0071','sky':'520:720'}, 
        'AM2306-72_b':{'arc':'gsS20070623S0081','sky':'670:760,920:1020'}, 
        'AM2306-721_c':{'arc':'gsS20070623S0091','sky':'170:380,920:1080'}
    }
    for targ,p in sciTargets.iteritems():
        qs = qd['Full']
        qs['Object'] = targ
        # Fix up the target name for the output file
        sciOut = targ.split('-')[0]+targ[-1]
        sciFiles = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qs), qs)
        gemtools.gemcombine(','.join(prefix+str(x) for x in sciFiles), 
Ejemplo n.º 7
0
def gmos_ls_proc():
    '''
    GMOS Data Reduction Cookbook companion script to the chapter:
       "Reduction of Longslit Spectra with PyRAF"

    PyRAF script to:
    Process GMOS spectra for AM2306-721, in program GS-2007A-Q-76.

    The names for the relevant header keywords and their expected values are
    described in the DRC chapter entitled "Supplementary Material"

    Perform the following starting in the parent work directory:
        cd /path/to/work_directory

    Place the fileSelect.py module in your work directory. Now execute this
    script from the unix prompt:
        python gmos_ls_proc.py
    '''

    print("### Begin Processing GMOS/Longslit Images ###")
    print("###")
    print("=== Creating MasterCals ===")

    # This whole example depends upon first having built an sqlite3 database of metadata:
    #    cd ./raw
    #    python obslog.py obsLog.sqlite3
    dbFile = './raw/obsLog.sqlite3'

    # From the work_directory:
    # Create the query dictionary of essential parameter=value pairs.
    # Select bias exposures within ~2 months of the target observations:
    qd = {
        'Full': {
            'use_me': 1,
            'Instrument': 'GMOS-S',
            'CcdBin': '2 4',
            'RoI': 'Full',
            'Disperser': 'B600+_%',
            'CentWave': 485.0,
            'AperMask': '1.0arcsec',
            'Object': 'AM2306-72%',
            'DateObs': '2007-06-05:2007-07-07'
        }
    }
    # Make another copy for the CenterSpec RoI:
    qd['CenSp'] = copy.deepcopy(qd['Full'])
    qd['CenSp'].update({'RoI': 'CentSp', 'Object': 'LTT9239'})

    print(" --Creating Bias MasterCal--")

    # Set the task parameters.
    gemtools.gemextn.unlearn()  # Disarm a bug in gbias
    gmos.gbias.unlearn()
    biasFlags = {
        'logfile': 'biasLog.txt',
        'rawpath': './raw/',
        'fl_vardq': 'yes',
        'verbose': 'no'
    }
    regions = ['Full', 'CenSp']
    for r in regions:
        # The following SQL generates the list of full-frame files to process.
        SQL = fs.createQuery('bias', qd[r])
        biasFiles = fs.fileListQuery(dbFile, SQL, qd[r])

        # The str.join() funciton is needed to transform a python list into a
        # comma-separated string of file names that IRAF can understand.
        if len(biasFiles) > 1:
            gmos.gbias(','.join(str(x) for x in biasFiles), 'MCbias' + r,
                       **biasFlags)

    # Clean up
    iraf.imdel("gS2007*.fits")

    print(" -- Creating GCAL Spectral Flat-Field MasterCals --")
    # Set the task parameters.
    qd['Full'].update({'DateObs': '*'})
    qd['CenSp'].update({'DateObs': '*'})
    gmos.gireduce.unlearn()
    gmos.gsflat.unlearn()
    # Normalize the spectral flats per CCD.
    # The response fitting should be done interactively.
    flatFlags = {
        'fl_over': 'yes',
        'fl_trim': 'yes',
        'fl_bias': 'yes',
        'fl_dark': 'no',
        'fl_fixpix': 'no',
        'fl_oversize': 'no',
        'fl_vardq': 'yes',
        'fl_fulldq': 'yes',
        'rawpath': './raw',
        'fl_inter': 'no',
        'fl_detec': 'yes',
        'function': 'spline3',
        'order': '13,11,28',
        'logfile': 'gsflatLog.txt',
        'verbose': 'no'
    }
    for r in regions:
        qr = qd[r]
        flatFiles = fs.fileListQuery(dbFile, fs.createQuery('gcalFlat', qr),
                                     qr)
        if len(flatFiles) > 0:
            gmos.gsflat(','.join(str(x) for x in flatFiles),
                        'MCflat' + r,
                        bias='MCbias' + r,
                        **flatFlags)

    iraf.imdel('gS2007*.fits,gsS2007*.fits')

    print("=== Processing Science Files ===")
    print(" -- Performing Basic Processing --")

    # Set task parameters.
    gmos.gsreduce.unlearn()
    sciFlags = {
        'fl_over': 'yes',
        'fl_trim': 'yes',
        'fl_bias': 'yes',
        'fl_gscrrej': 'no',
        'fl_dark': 'no',
        'fl_flat': 'yes',
        'fl_gmosaic': 'yes',
        'fl_fixpix': 'no',
        'fl_gsappwave': 'yes',
        'fl_oversize': 'no',
        'fl_vardq': 'yes',
        'fl_fulldq': 'yes',
        'rawpath': './raw',
        'fl_inter': 'no',
        'logfile': 'gsreduceLog.txt',
        'verbose': 'no'
    }
    arcFlags = copy.deepcopy(sciFlags)
    arcFlags.update({'fl_flat': 'no', 'fl_vardq': 'no', 'fl_fulldq': 'no'})
    stdFlags = copy.deepcopy(sciFlags)
    stdFlags.update({'fl_fixpix': 'yes', 'fl_vardq': 'no', 'fl_fulldq': 'no'})

    # Perform basic reductions on all exposures for science targets.
    print("  - Arc exposures -")
    for r in regions:
        qr = qd[r]
        arcFiles = fs.fileListQuery(dbFile, fs.createQuery('arc', qr), qr)
        if len(arcFiles) > 0:
            gmos.gsreduce(','.join(str(x) for x in arcFiles),
                          bias='MCbias' + r,
                          **arcFlags)

    print("  - Std star exposures -")
    r = 'CenSp'
    stdFiles = fs.fileListQuery(dbFile, fs.createQuery('std', qd[r]), qd[r])
    if len(stdFiles) > 0:
        gmos.gsreduce(','.join(str(x) for x in stdFiles),
                      bias='MCbias' + r,
                      flatim='MCflat' + r,
                      **stdFlags)

    print("  - Science exposures -")
    r = 'Full'
    sciFiles = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qd[r]),
                                qd[r])
    if len(sciFiles) > 0:
        gmos.gsreduce(','.join(str(x) for x in sciFiles),
                      bias='MCbias' + r,
                      flatim='MCflat' + r,
                      **sciFlags)

    # Clean up
    iraf.imdel('gS2007*.fits')

    print(" -- Determine wavelength calibration --")
    # Set task parameters
    gmos.gswavelength.unlearn()
    waveFlags = {
        'coordlist': 'gmos$data/CuAr_GMOS.dat',
        'fwidth': 6,
        'nsum': 50,
        'function': 'chebyshev',
        'order': 5,
        'fl_inter': 'no',
        'logfile': 'gswaveLog.txt',
        'verbose': 'no'
    }
    # The fit to the dispersion relation should be performed interactively.
    # Here we will use a previously determined result.
    # Need to select specific wavecals to match science exposures.
    prefix = 'gsS20070623S0'
    for arc in ['071', '081', '091', '109']:
        gmos.gswavelength(prefix + arc, **waveFlags)

    ### End of basic processing. Continue with advanced processing.

    print(" -- Performing Advanced Processing --")
    print(" -- Combine exposures, apply dispersion, subtract sky --")
    # Set task parameters.
    gemtools.gemcombine.unlearn()
    sciCombFlags = {
        'combine': 'average',
        'reject': 'ccdclip',
        'fl_vardq': 'yes',
        'fl_dqprop': 'yes',
        'logfile': 'gemcombineLog.txt.txt',
        'verbose': 'no'
    }
    stdCombFlags = copy.deepcopy(sciCombFlags)
    stdCombFlags.update({'fl_vardq': 'no', 'fl_dqprop': 'no'})
    gmos.gstransform.unlearn()
    transFlags = {
        'fl_vardq': 'yes',
        'interptype': 'linear',
        'fl_flux': 'yes',
        'logfile': 'gstransLog.txt'
    }
    # The sky regions should be selected with care, using e.g. prows/pcols:
    #   pcols ("tAM2306b.fits[SCI]", 1100, 2040, wy1=40, wy2=320)
    gmos.gsskysub.unlearn()
    skyFlags = {
        'fl_oversize': 'no',
        'fl_vardq': 'yes',
        'logfile': 'gsskysubLog.txt'
    }

    # Process the Standard Star
    prefix = "gs"
    qs = qd['CenSp']
    stdFiles = fs.fileListQuery(dbFile, fs.createQuery('std', qs), qs)
    gemtools.gemcombine(','.join(prefix + str(x) for x in stdFiles), 'LTT9239',
                        **stdCombFlags)
    gmos.gstransform('LTT9239', wavtraname='gsS20070623S0109', **transFlags)
    gmos.gsskysub('tLTT9239', long_sample='20:70,190:230')

    print(" -- Extract Std spectrum --")
    # Extract the std spectruma using a large aperture.
    # It's important to trace the spectra interactively.
    gmos.gsextract.unlearn()
    extrFlags = {
        'apwidth': 3.,
        'fl_inter': 'no',
        'find': 'yes',
        'trace': 'yes',
        'tfunction': 'chebyshev',
        'torder': '6',
        'tnsum': 20,
        'background': 'fit',
        'bfunction': 'chebyshev',
        'border': 2,
        'fl_vardq': 'no',
        'logfile': 'gsextrLog.txt'
    }
    gmos.gsextract("stLTT9239", **extrFlags)

    print(" -- Derive the Flux calibration --")
    gmos.gsstandard.unlearn()
    sensFlags = {
        'fl_inter': 'yes',
        'starname': 'l9239',
        'caldir': 'onedstds$ctionewcal/',
        'observatory': 'Gemini-South',
        'extinction': 'onedstds$ctioextinct.dat',
        'function': 'chebyshev',
        'order': 9,
        'verbose': 'no',
        'logfile': 'gsstdLog.txt'
    }
    gmos.gsstandard('estLTT9239',
                    sfile='std.txt',
                    sfunction='sens',
                    **sensFlags)

    # Process the science targets.
    # Use a dictionary to associate science targets with Arcs and sky regions.
    sciTargets = {
        'AM2306-721_a': {
            'arc': 'gsS20070623S0071',
            'sky': '520:720'
        },
        'AM2306-72_b': {
            'arc': 'gsS20070623S0081',
            'sky': '670:760,920:1020'
        },
        'AM2306-721_c': {
            'arc': 'gsS20070623S0091',
            'sky': '170:380,920:1080'
        }
    }
    for targ, p in sciTargets.iteritems():
        qs = qd['Full']
        qs['Object'] = targ
        # Fix up the target name for the output file
        sciOut = targ.split('-')[0] + targ[-1]
        sciFiles = fs.fileListQuery(dbFile, fs.createQuery('sciSpec', qs), qs)
        gemtools.gemcombine(','.join(prefix + str(x) for x in sciFiles),
                            sciOut, **sciCombFlags)
        gmos.gstransform(sciOut, wavtraname=p['arc'], **transFlags)
        gmos.gsskysub('t' + sciOut, long_sample=p['sky'], **skyFlags)

    # Clean up
    iraf.imdel("gsS2007*.fits")

    ## Apply the sensitivity function.
    gmos.gscalibrate.unlearn()
    calibFlags = {
        'extinction': 'onedstds$ctioextinct.dat',
        'fl_ext': 'yes',
        'fl_scale': 'no',
        'sfunction': 'sens',
        'fl_vardq': 'yes',
        'logfile': 'gscalibrateLog.txt'
    }
    gmos.gscalibrate('stAM2306*', **calibFlags)
    calibFlags.update({'fl_vardq': 'no'})
    gmos.gscalibrate('estLTT9239', **calibFlags)

    print(" -- Extract Target Spectra --")
    onedspec.nsum = 4
    onedspec.sarith('cstAM2306b.fits[SCI]',
                    'copy',
                    '',
                    'ecstAM2306b.ms',
                    apertures='222-346x4')

    print("=== Finished Calibration Processing ===")