Ejemplo n.º 1
0
def run_darkcombine(images, output):
    iraf.imred(_doprint=0)
    iraf.ccdred(_doprint=0)
    iraf.darkcombine(input=images, output=output, combine="average", reject="minmax", \
         ccdtype="none", process="Yes", delete="No", clobber="No", scale="exposure", \
         statsec='', nlow=0, nhigh=1, nkeep=1, mclip="Yes", lsigma=3.0, hsigma=3.0, \
         rdnoise=0., gain=1., snoise=0., pclip=-0.5, blank=0.0, mode="al")
Ejemplo n.º 2
0
def make_master(obj, file_type=None):
    """
    This routine takes the name of a file containing the raw calibration images in the **current** directory that are to
    be combined to form a master calibration image. The type of calibration images (i.e. bias, dark or flat) is specified
    by the file_type keyword; this is necessary because the type of calibration image determines how the multiple raw
    calibration images are to be combined (eg. pixel averages vs medians).
    """
    # Get the name of the master calibration file:
    if file_type=='bias':
        list_file = obj.bias_list
    elif file_type=='dark':
        list_file = obj.dark_list
    elif file_type=='flat':
        list_file = obj.flat_list
    dirpath = os.path.dirname(list_file)+'/'
    filename = 'master_'+file_type+'.fits'
    master_filename = dirpath+filename
    if os.path.exists(master_filename): os.remove(master_filename)
    # Now make the master calibration file:
    if file_type=='bias':
        iraf.zerocombine(input='@'+list_file, output=master_filename, combine='average', ccdtype='', process='no', delete='no')
        obj.master_bias = master_filename
    elif file_type=='dark':
        iraf.darkcombine(input='@'+list_file, output=master_filename, combine='average', ccdtype='', process='no', delete='no')
        obj.master_dark = master_filename
    elif file_type=='flat':
        iraf.flatcombine(input='@'+list_file, output=master_filename, combine='median', ccdtype='', process='no', delete='no')
        obj.master_flat = master_filename
    return None
Ejemplo n.º 3
0
        def darkcombine(self,
                        files,
                        output,
                        zero=None,
                        method="median",
                        rejection="minmax",
                        ccdtype="",
                        scale="exposure",
                        overwrite=True):
            """IRAF darkcombine"""
            self.logger.info("Darkcombine Started")
            try:
                iraf.ccdred.unlearn()
                iraf.ccdred.ccdproc.unlearn()
                iraf.ccdred.combine.unlearn()
                iraf.ccdred.darkcombine.unlearn()
                iraf.imred.unlearn()

                ccdred.instrument = self.instrument_path

                darks = ",".join(files)

                out_file = "{}/myraf_darks.flist".format(self.fop.tmp_dir)
                with open(out_file, "w") as f2w:
                    for i in files:
                        f2w.write("{}\n".format(i))

                darks = "@{}".format(out_file)

                if zero is not None:
                    iraf.ccdproc(images=darks,
                                 ccdtype='',
                                 fixpix='no',
                                 oversca="no",
                                 trim="no",
                                 zerocor='yes',
                                 darkcor='no',
                                 flatcor='no',
                                 zero=zero,
                                 Stdout="/dev/null")

                if self.fop.is_file(output) and overwrite:
                    self.logger.warning("Over Writing file({})".format(output))
                    self.fop.rm(output)

                iraf.darkcombine(input=darks,
                                 output=output,
                                 combine=method,
                                 reject=rejection,
                                 ccdtype=ccdtype,
                                 scale=scale,
                                 process="no",
                                 Stdout="/dev/null")

                return True
            except Exception as e:
                self.logger.error(e)
                return False
Ejemplo n.º 4
0
def createMasterdark(imagelist, output):
    _file = open('input.tmp', 'w')
    for image in imagelist:
        _file.write(image + '\n')
    _file.close()
    iraf.darkcombine.setParam('input', '@input.tmp')
    iraf.darkcombine.setParam('output', output)
    iraf.darkcombine.setParam('ccdtype', '')
    iraf.darkcombine.setParam('process', 'no')
    iraf.darkcombine()
    os.system('rm input.tmp')
Ejemplo n.º 5
0
def createMasterdark(imagelist, output):
  _file = open('input.tmp', 'w')
  for image in imagelist:
    _file.write(image+'\n')
  _file.close()
  iraf.darkcombine.setParam('input', '@input.tmp')
  iraf.darkcombine.setParam('output', output)
  iraf.darkcombine.setParam('ccdtype', '')
  iraf.darkcombine.setParam('process', 'no')
  iraf.darkcombine()
  os.system('rm input.tmp')
Ejemplo n.º 6
0
def darkcom(input_dark):
    import glob
    import os, sys
    import numpy as np    
    from pyraf import iraf
    from astropy.io import fits
    from astropy.io import ascii
    curdir = os.getcwd()
    curdate = curdir.split('/')[-1]
    #dark = ", ".join(input_dark)
    iraf.noao()
    iraf.imred()
    iraf.ccdred()
    iraf.ccdred.setinst(instrume='camera', directo='/iraf/iraf/noao/imred/ccdred/ccddb/', query='q', review='no')
    #iraf.chdir('./dark')
    #dark = glob.glob('cal*dk*.fit')
    #dark = ascii.read('dark.list', guess=True, data_start=0)
    '''
    allexptime = []
    for i in range(len(dark)) :
        hdr = fits.getheader(dark[i])
        allexptime.append(hdr['exptime'])
    expset = set(allexptime)
    exptime = list(sorted(expset))
    i=0
    for i in range(len(exptime)) :
        print('Find images with exptime of '+str(exptime[i]))
        imlist = []
        for j in range(len(dark)) :
            hdr = fits.getheader(dark[j])
            if hdr['exptime'] == exptime[i] :
                imlist.append(dark[j])
            else :
                pass
        print(imlist)
        input_name = 'dark'+str(int(exptime[i]))+'.list'
        output_name = curdate+'_dark'+str(int(exptime[i]))+'.fits'
        #input_name = output_name[:-5]+'.list'
        f=open(input_name,'w+')
        for k in range(len(imlist)) : 
            f.write(imlist[k]+'\n')
        f.close()
    '''
    #output_name = curdate+'_dark'+str(int(exptime[i]))+'.fits'
    output_name = curdate+'_'+input_dark[:-5]+'.fits'
    print('Darkcombine is running...')
    iraf.imstat(images='z@'+input_dark)
    iraf.darkcombine(input='z@'+input_dark, output=output_name, combine='median', reject='minmax', process='no', scale='none', ccdtype='' )
    #os.system('/usr/bin/cp '+output_name+' ../')
    os.system('/usr/bin/cp '+output_name+' /data1/KHAO/MDFTS/red/masterdark/')
    #os.system('/usr/bin/rm d*.list')
    #iraf.chdir('../')
    iraf.dir('.')
    print('Output master '+output_name+' is created.') 
Ejemplo n.º 7
0
 def create_dark(self):
     """Creating Combined Dark Frame"""
     self.log.debug("Running iraf.darkcombine on image list...")
     iraf.unlearn(iraf.darkcombine)
     iraf.darkcombine(self.dark.iraf.inatfile(),
         output=self.dark.iraf.outfile("Dark"),
         combine=self.config["Dark.Combine"], 
         ccdtype="dark", 
         reject=self.config["Dark.Reject"], 
         process="no", scale="exposure", nlow=0, nhigh=1, nkeep=1, mclip="yes", lsigma=3.0, hsigma=3.0, rdnoise="0.", gain ="1."
         )
     self.dark.iraf.done()
Ejemplo n.º 8
0
def makeDark(fileList='darks.lst',
             inputType=INPUT_LISTFNAME,
             output='Dark.fits',
             process=iraf.yes,
             combine='average',
             ccdtype='dark',
             reject='minmax'):
    '''create a master Dark.fits from the  darks in fileList'''
    iraf.darkcombine(_genIRAFString(fileList, inputType),
                     output=output,
                     combine=combine,
                     process=process,
                     ccdtype=ccdtype,
                     reject=reject)
Ejemplo n.º 9
0
def main(raw_dir):

    if not os.path.exists("{}/step1.tmp".format(os.getcwd())):
        print "Setting up directory"
        list_dict = setup_dir(raw_dir)

        print "OT'ing"
        iraf.ccdproc(
            "@all_raw.lst",
            output="@all_ot.lst",
            overscan=True,
            trim=True,
            zerocor=False,
            darkcor=False,
            flatcor=False,
            illumco=False,
            biassec="image",
            trimsec="image",
            zero="",
            interact=True,
            order=100,
        )

        cull_bias(list_dict["zeros"], "zeros.lst")
        os.system("touch {}/step1.tmp".format(os.getcwd()))
        return

    print "Making master bias"
    iraf.zerocombine("@zeros.lst", output="Zero.fits", combine="average", reject="crreject")
    print "Subtracting bias"
    iraf.ccdproc("@all_otz.lst", overscan=False, trim=False, zerocor=True, zero="Zero.fits")

    detect_flats(os.getcwd())
    flats_to_make = glob("dflat*.lst")
    for flat in flats_to_make:
        name = "dFlat_{}.fits".format(flat.split(".lst")[0].split("_")[1])
        print "Making flat {}".format(name)
        iraf.flatcombine("@{}".format(flat), output=name, combine="average", reject="crreject")

    try:
        print "Making master dark"
        iraf.darkcombine("@darks.lst", output="Dark.fits", combine="average", reject="crreject")
    except Exception as e:
        print "\t{}".format(e)
        print "\tNO DARK FOUND"

    print "Making master comp"
    iraf.imcombine("@comps.lst", "Comp.fits", combine="average", reject="crreject")

    return
Ejemplo n.º 10
0
def darkcom(inim_list,
            outim_list,
            combine='median',
            reject='minmax',
            scale='none'):
    import os, sys
    from pyraf import iraf
    iraf.noao()
    iraf.imred()
    iraf.ccdred()
    iraf.ccdred.setinst(instrume='camera',
                        directo='/iraf/iraf/noao/imred/ccdred/ccddb/',
                        query='q',
                        review='no')
    iraf.darkcombine(input=inim_list,
                     output=outim_list,
                     combine=combine,
                     reject=reject,
                     process='no',
                     scale=scale,
                     ccdtype='')
    print('Output masterdark is created.')
Ejemplo n.º 11
0
def createAverageFlat(flatImagesList):
    flatString = getIrafString(flatImagesList)
    iraf.darkcombine(input=flatString,process="No",output="averagedFlat")
Ejemplo n.º 12
0
def createAverageFlat(flatImagesList):
    flatString = getIrafString(flatImagesList)
    iraf.darkcombine(input=flatString, process="No", output="averagedFlat")
Ejemplo n.º 13
0
def createAverageDark(darkImagesList):
    darkString = getIrafString(darkImagesList)
    iraf.darkcombine(input=darkString, process="No", output="averagedDark")
Ejemplo n.º 14
0
    def the_darkcombine(self,
                        in_file_list,
                        out_file,
                        zero=None,
                        method="median",
                        rejection="minmax",
                        ccdtype="",
                        scale="exposure",
                        overscan="no",
                        trim="no"):
        self.etc.log(
            "Darkcombine started for {} files using combine({}), rejection({}) and scale({}) and zero({})"
            .format(len(in_file_list), method, rejection, scale, zero))
        try:
            if self.fop.is_file(out_file):
                self.fop.rm(out_file)

            files = []
            for file in in_file_list:
                if self.fit.is_fit(file):
                    files.append(file)

            if not len(files) == 0:
                darks = ",".join(files)
                # Load packages
                # Unlearn settings
                iraf.imred.unlearn()
                iraf.ccdred.unlearn()
                iraf.ccdred.ccdproc.unlearn()
                iraf.ccdred.combine.unlearn()
                iraf.ccdred.darkcombine.unlearn()

                ccdred.instrument = "ccddb$kpno/camera.dat"
                iraf.imred()
                iraf.ccdred()

                iraf.darkcombine(input=darks,
                                 output=out_file,
                                 combine=method,
                                 reject=rejection,
                                 ccdtype=ccdtype,
                                 scale=scale,
                                 process="no",
                                 Stdout="/dev/null")

                if zero is not None and self.fop.is_file(zero):
                    iraf.ccdproc(images=darks,
                                 ccdtype='',
                                 fixpix='no',
                                 oversca=overscan,
                                 trim=trim,
                                 zerocor='yes',
                                 darkcor='no',
                                 flatcor='no',
                                 zero=zero,
                                 Stdout="/dev/null")

            else:
                self.etc.log("No files to combine")
        except Exception as e:
            self.etc.log(e)
Ejemplo n.º 15
0
def preprocess(path):  #, mode='EABA'):
    """ Pipeline that applies the basic CCD reduction tasks.
    Asks for the path were all files are present, and
    performs Bias combination, Dark combination, Flat
    combination and the inherent substractions
    Works in TORITOS mode, and EABA mode, the latter using UBVRI
    filters.

    Pipeline que aplica una reducción básica a imágenes de tipo CCD
    Realiza combinación de Bias, de Darks, y Flats.
    Luego realiza las restas inherentes
    Funciona en dos modos, TORITOS y EABA, el último usando filtros UBVRI
    """
    bornpath = os.path.abspath('.')
    workdir = os.path.abspath(path)
    biasdir = os.path.join(workdir, "bias")
    flatdir = os.path.join(workdir, "flat")
    darkdir = os.path.join(workdir, "dark")
    scidir = os.path.join(workdir, "science")
    for x in [biasdir, flatdir, darkdir, scidir]:
        print "creating {} directory".format(str(x))
        mkdir(x)
    cd(workdir)
    #-------------------------------------------------------------------------#
    fitslist = []
    for root, dirs, files in os.walk(path, topdown=True):
        for name in fnmatch.filter(files, '*.fit*'):
            fitslist.append(os.path.join(root, name))
    #fitslist = glob.glob('*.fits') + glob.glob('*.fit')
    #load_ccdred()
    #-------------------------------------------------------------------------#
    imagetypes = {}
    for img in fitslist:
        imghead = fits.getheader(img)
        imgty = imghead['IMAGETYP']
        imagetypes[str(img)] = imgty
    #-------------------------------------------------------------------------#
    # now we get the image types in the dictionary imagetypes
    # now we make different lists for different image types
    #-------------------------------------------------------------------------#
    biaslist = []
    sciencelist = []
    flatlist = []
    darklist = []
    #-------------------------------------------------------------------------#
    for k, v in imagetypes.iteritems():
        print k, v
        if v.upper() == 'LIGHT' or v.upper() == 'OBJECT' or v.upper(
        ) == 'LIGHT FRAME':
            #            print str(k)+' is a '+str(v)+' file'
            sciencelist.append(str(k))
        elif v.upper() == 'BIAS' or v.upper() == 'ZERO' or v.upper(
        ) == 'BIAS FRAME':
            #            print str(k)+' is a '+str(v)+' file'
            biaslist.append(str(k))
        elif v.upper() == 'FLAT' or v.upper() == 'FLAT FRAME' or v.upper(
        ) == 'FLAT FIELD':
            #           print str(k)+' is a '+str(v)+' file'
            flatlist.append(str(k))
        elif v.upper() == 'DARK' or v.upper() == 'DARK FRAME':
            #           print str(k)+' is a '+str(v)+' file'
            darklist.append(str(k))
    #-------------------------------------------------------------------------#
    insp = raw_input("Inspeccionar imagenes de correccion con ds9? (si/NO)\n")
    if insp.upper() in ('S', 'Y', 'SI', 'YES'):
        print('\n')
        print(u"""Comienza la inspeccion visual de bias
            ante cualquier anomalia en alguna imagen se la vetará
              Starting visual inspection of Bias frames. If there exists any
              anomalies image will be discarded""")
        for idx, img in enumerate(list(biaslist)):
            I = raw_input("inspeccionar {} mediante ds9? (si/NO)\n".format(
                str(img)))
            if I.upper() in ('S', 'Y', 'SI', 'YES'):
                print(""" inspeccionando {} mediante ds9""".format(str(img)))
                print("\n")
                command = shlex.split('ds9 {}'.format(str(img)))
                subprocess.call(command)
                V = raw_input(" Vetar la imagen? (si/NO)")
                print("\n")
                if V.upper() in ('S', 'Y', 'SI', 'YES'):
                    S = raw_input('Es una imagen de ciencia? (LIGHT)  (SI/no)')
                    print("\n")
                    if S.upper() in ('S', 'Y', 'SI', 'YES'):
                        hdu = fits.open(img, mode='update')
                        hdr = hdu[0].header
                        hdr.set('IMAGETYP', 'LIGHT')
                        hdu.close()
                        sciencelist.append(img)
                    elif S.upper() in ('N', 'NO'):
                        os.rename(img, img + '.vet')
                    biaslist.remove(img)
        #-------------------------------------------------------------------------#
        print('\n')
        print(u"""Comienza la inspeccion visual de flats
            ante cualquier anomalia en alguna imagen se la vetará \n""")
        for idx, img in enumerate(list(flatlist)):
            I = raw_input("inspeccionar {} mediante ds9? (si/NO)\n".format(
                str(img)))
            if I.upper() in ('S', 'Y', 'SI', 'YES'):
                print(""" inspeccionando {} mediante ds9""".format(str(img)))
                print("\n")
                command = shlex.split('ds9 {}'.format(str(img)))
                subprocess.call(command)
                V = raw_input(" Vetar la imagen? (si/NO) ")
                print("\n")
                if V.upper() in ('S', 'Y', 'SI', 'YES'):
                    S = raw_input(
                        'Es una imagen de ciencia? (LIGHT)  (SI/no) ')
                    print("\n")
                    if S.upper() in ('S', 'Y', 'SI', 'YES'):
                        hdu = fits.open(img, mode='update')
                        hdr = hdu[0].header
                        hdr.set('IMAGETYP', 'LIGHT')
                        hdu.close()
                        sciencelist.append(img)
                    elif S.upper() in ('N', 'NO'):
                        os.rename(img, img + '.vet')
                    flatlist.remove(img)
        #-------------------------------------------------------------------------#
        print("\n")
        print(u"""Comienza la inspeccion visual de darks
            ante cualquier anomalia en alguna imagen se la vetará \n""")
        for idx, img in enumerate(list(darklist)):
            I = raw_input("inspeccionar {} mediante ds9? (si/NO)\n".format(
                str(img)))
            if I.upper() in ('S', 'Y', 'SI', 'YES'):
                print(""" inspeccionando {} mediante ds9""".format(str(img)))
                print("\n")
                command = shlex.split('ds9 {}'.format(str(img)))
                subprocess.call(command)
                V = raw_input(" Vetar la imagen? (si/NO)")
                print("\n")
                if V.upper() in ('S', 'Y', 'SI', 'YES'):
                    S = raw_input('Es una imagen de ciencia? (LIGHT)  (SI/no)')
                    print("\n")
                    if S.upper() in ('S', 'Y', 'SI', 'YES'):
                        hdu = fits.open(img, mode='update')
                        hdr = hdu[0].header
                        hdr.set('IMAGETYP', 'LIGHT')
                        hdu.close()
                        sciencelist.append(img)
                    elif S.upper() in ('N', 'NO'):
                        os.rename(img, img + '.vet')
                    darklist.remove(img)
    #-------------------------------------------------------------------------#
    #posee listas de todos los files.
    #comienzo por los bias:
    #primero creo una lista (file) para darle a zerocombine
    write_tolist(biaslist, 'lbias', biasdir)  #, workdir)
    #-------------------------------------------------------------------------#
    iraf.ccdhedit('@lbias', parameter='imagetype', value='zero')
    iraf.zerocombine.unlearn()
    iraf.zerocombine('@lbias', output='Zero.fits')
    #baseflat = [os.path.basename(x) for x  in flatlist]
    #basesci  = [os.path.basename(x) for x  in sciencelist]
    #basedark = [os.path.basename(x) for x  in darklist]
    #-------------------------------------------------------------------------#
    #ahora corrijo las imagenes de flat, dark y objetos por bias.
    load_ccdproc()
    iraf.ccdproc.zero = 'Zero.fits'
    for names in flatlist:
        iraf.ccdproc(names,
                     output=os.path.join(flatdir,
                                         'fz' + os.path.basename(names)))
    for names in darklist:
        iraf.ccdproc(names,
                     output=os.path.join(darkdir,
                                         'dz' + os.path.basename(names)))
    #-------------------------------------------------------------------------#
    #recreate lists of new corrected objects
    flatlist = []
    darklist = []
    for root, dirs, files in os.walk(path, topdown=True):
        for name in fnmatch.filter(files, 'fz*'):
            flatlist.append(os.path.join(flatdir, name))
    for root, dirs, files in os.walk(path, topdown=True):
        for name in fnmatch.filter(files, 'dz*'):
            darklist.append(os.path.join(darkdir, name))
    #-------------------------------------------------------------------------#
    #combino darks tal como hice con los bias
    #-------------------------------------------------------------------------#
    write_tolist(darklist, 'ldark')
    #write_tolist(sciencelist, 'lsci')
    iraf.darkcombine.unlearn()
    iraf.ccdhedit('@ldark', parameter='imagetype', value='dark')
    iraf.darkcombine('@ldark', output='Dark.fits')
    #-------------------------------------------------------------------------#
    # discrimino por filtro los datos. es importante esta parte!
    #.------------------------------------------------------------------------#
    #SE USARON FILTROS?
    filteruse = True
    for v in flatlist:
        try:
            hdr = fits.getheader(v)
            FILTER = hdr['FILTER']
            print 'FILTROS HALLADOS'
        except KeyError:
            filteruse = False
            print 'NO SE USARON FILTROS'
    #---------------------------IF FILTERS USED ------------------------------#
    if filteruse:
        FD = {'U': [], 'B': [], 'V': [], 'R': [], 'I': []}
        for idx, img in enumerate(list(flatlist)):
            hdr = fits.getheader(img)
            FR = hdr['FILTER']
            #creo un diccionario de filtros
            FD[str(FR)].append(img)
        print(FD)
        #-------------------------------------------------------------------------#
        #combino los flats
        #-------------------------------------------------------------------------#
        for k, v in FD.iteritems():
            if not v == []:
                print('writing to list for {} filter'.format(k))
                print(v)
                lname = str(k) + 'flat'
                #print(lname)
                write_tolist(v, lname)
                iraf.flatcombine.unlearn()
                iraf.flatcombine.combine = 'median'
                iraf.ccdhedit('@' + lname, parameter='imagetype', value='flat')
                iraf.flatcombine('@' + lname, output='Flat' + k + '.fits')
        #-------------------------------------------------------------------------#
        SD = {'U': [], 'B': [], 'V': [], 'R': [], 'I': []}
        for idx, img in enumerate(list(sciencelist)):
            hdr = fits.getheader(img)
            FR = hdr['FILTER']
            #creo un diccionario de filtros
            SD[str(FR)].append(img)
        print(SD)
        #-------------------------------------------------------------------------#
        for k, v in SD.iteritems():
            iraf.ccdproc.flatcor = 'yes'
            iraf.ccdproc.darkcor = 'yes'
            iraf.ccdproc.dark = 'Dark.fits'
            for img in v:
                if os.path.isfile('Flat' + k + '.fits'):
                    iraf.ccdproc.flat = 'Flat' + k + '.fits'
                    iraf.ccdproc(img, output='reduced_' + img)
    #----------------------IF NO FILTERS--------------------------------------#
    else:
        lname = 'flist'
        write_tolist(flatlist, lname)
        iraf.flatcombine.unlearn()
        iraf.flatcombine.combine = 'median'
        iraf.ccdhedit('@' + lname, parameter='imagetype', value='flat')
        iraf.flatcombine('@' + lname, output='Flat.fits')
        iraf.ccdproc.flatcor = 'yes'
        iraf.ccdproc.darkcor = 'yes'
        iraf.ccdproc.dark = 'Dark.fits'
        iraf.ccdproc.flat = 'Flat.fits'
        iraf.ccdproc.ccdtype = ''
        for sciname in sciencelist:
            print 'ccdproc of ', sciname, '\n', os.path.join(
                scidir, 'reduced_' + os.path.basename(sciname))
            iraf.ccdproc(sciname, output=os.path.join(scidir,\
                            'reduced_'+os.path.basename(sciname)))
    #[os.remove(x) for x in fitslist]
    aux = glob.glob('sz*.fits') + glob.glob('dz*.fits') + glob.glob('fz*.fits')
    [os.remove(x) for x in aux]
    aux = glob.glob('reduced*.fits')
    [os.rename(x, x[10:-4].upper() + x[-4:].lower()) for x in aux]
    #-------------------------------------------------------------------------#
    print(u""" Imágenes reducidas exitosamente APARENTEMENTE,
            chequea todo obsesivamente, porque ni el desarrollador de
            esto confia en que ande bien \n
            """)
    #-------------------------------------------------------------------------#
    cd(bornpath)
    #print sys.argv[:]
    return ()
Ejemplo n.º 16
0
               fields="darktime",
               value=iraf.imgets.value,
               add="no",
               addonly="yes",
               delete="no",
               verify="no",
               show="no",
               update="yes")

# creating master dark
unlearn(iraf.darkcombine)
print "> creating master dark image"
iraf.darkcombine("Dark*.fit",
                 output="master_dark.fits",
                 combine="average",
                 reject="none",
                 ccdtype="dark",
                 scale="none",
                 process="no")

# creating master flat
unlearn(iraf.flatcombine)
print "> creating master flat image"
iraf.flatcombine("Flat*.fit",
                 output="master_flat_temp.fits",
                 combine="median",
                 reject="crreject",
                 ccdtype="flat",
                 process="no",
                 delete="no",
                 scale="median")
Ejemplo n.º 17
0
def makeDark(fileList='darks.lst',inputType=INPUT_LISTFNAME,output='Dark.fits',process=iraf.yes,combine='average',ccdtype='dark',reject='minmax'):
	'''create a master Dark.fits from the  darks in fileList'''
	iraf.darkcombine(_genIRAFString(fileList,inputType), output=output, combine=combine, process=process,ccdtype=ccdtype,reject=reject)
Ejemplo n.º 18
0
def darkcom(imlist_name, camera='KL4040'):
    """
    1. Description 
    : This function makes a master dark image of KCT using Pyraf. Put dark images to 201X-XX-XX/dark/ directory. Run this code on 201XXXXX directory, then pyraf chdir task enter dark directory and makes process. Output image is darkXXX.fits (XXX is exposure time. This function will classify each exposure of dark frames!) and it will be copied on upper directory. Due to iraf.chdir task, you should reset python when this code is finished in order to make confusion of current directory between iraf and python! 

    2. Usage
    : Start on 2018-XX-XX directory. Make dark directory which contains each dark frame. Naming of each dark image should be dark*.fit. Then just use darkcom().

    >>> darkcom()

    3. History
    2018.03    Created by G.Lim.
    2018.12.20 Edited by G.Lim. Define SAO_darkcom function.
    2019.02.07 Assign archive of masterdark in each date by G. Lim
    2020.03.01 Modified for KL4040 process
    2020.03.06 Modified for KCT STX16803 process
    """
    import glob
    import os, sys
    import numpy as np
    from pyraf import iraf
    from astropy.io import fits
    savedir = '/data1/KCT/'
    curdir = os.getcwd()
    '''
    yy   = curdir.split('/')[-1].split('-')[0]
    mm   = curdir.split('/')[-1].split('-')[1]
    dd   = curdir.split('/')[-1].split('-')[2]
    curdate = yy+mm+dd
    '''
    curdate = curdir.split('/')[-1]
    iraf.noao()
    iraf.imred()
    iraf.ccdred()
    iraf.ccdred.setinst(instrume='camera',
                        directo='/iraf/iraf/noao/imred/ccdred/ccddb/',
                        query='q',
                        review='no')
    iraf.chdir('./dark')

    print('zero subtraction...')
    os.system('ls dark*.fit > dark.list')
    iraf.imarith(operand1='@dark.list',
                 op='-',
                 operand2='../*_zero.fits',
                 result='*****@*****.**')
    zdark = glob.glob('zdark*.fit')
    allexptime = []
    for i in range(len(zdark)):
        hdr = fits.getheader(zdark[i])
        allexptime.append(hdr['exptime'])
    expset = set(allexptime)
    exptime = list(sorted(expset))
    i = 0
    for i in range(len(exptime)):
        print('Find images with exptime of ' + str(exptime[i]))
        imlist = []
        for j in range(len(zdark)):
            hdr = fits.getheader(zdark[j])
            if hdr['exptime'] == exptime[i]:
                imlist.append(zdark[j])
            else:
                pass
        print(imlist)
        output_name = curdate + '_dark' + str(int(exptime[i])) + '.fits'
        input_name = output_name[:-5] + '.list'
        f = open(input_name, 'w+')
        for k in range(len(imlist)):
            f.write(imlist[k] + '\n')
        f.close()
        print('Darkcombine is running...')
        iraf.imstat('@' + input_name)
        iraf.darkcombine(input='@' + input_name,
                         output=output_name,
                         combine='median',
                         reject='minmax',
                         process='no',
                         scale='none',
                         ccdtype='')
    os.system('/usr/bin/cp ' + output_name + ' ../')
    os.system('mkdir ' + savedir + 'masterdark')
    os.system('/usr/bin/cp ' + output_name + ' ' + savedir + 'masterdark/')
    os.system('/usr/bin/rm d*.list')
    iraf.chdir('../')
    iraf.dir('.')
    print('Output master ' + output_name + ' is created.')
Ejemplo n.º 19
0
def createAverageDark(darkImagesList):
    darkString = getIrafString(darkImagesList)
    iraf.darkcombine(input=darkString,process="No",output="averagedDark")
Ejemplo n.º 20
0
 def createAverageDark(self):
     iraf.darkcombine(input=self.inputFolder,process="No",output=self.avaragedDark)
Ejemplo n.º 21
0
def main(argv):
    
    import getopt, os
    import param as p

    try:
        # accept options -h, -m, -t, -b, -d, -f, -r
        opts, argv = getopt.getopt(argv, 'hm:t:b:d:f:r', ['help', 'master=', 'telescope=', 'bias=', 'dark=', 'flat=', 'reduce'])
        
    except getopt.GetoptError:           
        usage()                         
        sys.exit(2)                     
    
    for opt, arg in opts:
        if opt in ('-h', '--help'):
            usage()
            sys.exit(2)
        
        # need to select the telescope, see param.py
        if opt in ('-r', '--reduce') or opt in ('-m', '--master'):
            for opt2, arg2 in opts:
                if opt2 in ('-t', '--telescope'):
                    telescope = p.telescopes[arg2]
                    
            try: telescope
            except:
                usage()
                sys.exit(2)
        
        # option -r, reduce frames
        if opt in ('-r', '--reduce'):
            
            from pyraf import iraf
            import pyfits

            # inizialise variables
            p = {}
            framelist = []
            filters = []
            
            if arg:
                # one can specify a list of frames, divided by a space 
                # @todo not tested!
                framelist.append(arg.split(' '))
                
            else:
                # get list of frames, using function list_frames
                frameType = 'Light Frame'
                frames = list_frames('.')[0]
                for date in frames[frameType]: # select just frameType
                    for temperature in frames[frameType][date]:
                        for bin in frames[frameType][date][temperature]:
                            framesProc = frames[frameType][date][temperature][bin]
                            for frameProc in framesProc:
                                # exclude master frames (shouldn't be necessary!)
                                if not os.path.basename(frameProc['path'])[0:6] == 'Master':   
                                    # add frame path to framelist                                 
                                    if not frameProc['filter'] in filters: filters.append(frameProc['filter'])
                                    f = {}
                                    f['path'] = os.path.abspath(frameProc['path'])
                                    f['filter'] = frameProc['filter']
                                    framelist.append(f)
            
            # set bias, dark and flats.
            # if nothing is specified, use default Master*.fits

            for opt1, arg1 in opts:
                if opt1 in ('-b', '--bias'):
                    if arg1: p['bias'] = arg1
                if opt1 in ('-d', '--dark'):
                    if arg1: p['dark'] = arg1
                if opt1 in ('-f', '--flat'):
                    if arg1: p['flat'] = arg1
        
            if not 'bias' in p: p['bias'] = 'MasterBias.fits'
            if not 'dark' in p: p['dark'] = 'MasterDark.fits'
            
            # set flat fields, divided by filter
            flatfiles = []
            if not 'flats' in p: 
                import glob
                for file in glob.glob('./MasterFlat*'):
                    f = {}
                    f['path'] = os.path.abspath(file)
                    header=pyfits.getheader(file)
                    f['filter'] = header['FILTER']
                    flatfiles.append(f)
            
            # check that files  exist
            try:
                with open(p['dark']): pass
            except IOError:
                print '%s not found' % p['dark']
            try:
                with open(p['bias']): pass
            except IOError:
                print '%s not found' % p['bias']

            # create copies of original files, with prefix CORR_
            import shutil
            for f in framelist:
                shutil.copy(f['path'], os.path.splitext(f['path'])[0]+'_reduced.fits')
                
            # reduce images by filter
            for filter in filters:
                
                
                # create text list of files for iraf
                tmplistcorr = open('tmplistcorr', 'w')        
                for frame in framelist:
                    if frame['filter'] == filter:
                        tmplistcorr.write("%s_reduced.fits\n" % (os.path.splitext(frame['path'])[0]))
                tmplistcorr.close()
                
                # select flat field
                for flat in flatfiles:
                    if flat['filter'] == filter: p['flat'] = flat['path']
                                
                # reduce frames
                print 'Calibrate images with %s filter' % filter
                iraf.ccdproc(images='@tmplistcorr',output='', ccdtype='', fixpix='no', \
                overscan='no', trim='No', zerocor='yes', zero=p['bias'],            \
                darkcor='Yes', dark=p['dark'], flatcor='yes', flat=p['flat'], readaxi='column', \
                biassec='',    trimsec='')
            
            
        # option -m type: create master frames                
        elif opt in ('-m', '--master'):
          
            from pyraf import iraf
            import pyfits
            
            p = {}
            framelist = []

            # select frame type
            if arg == 'bias' or arg == 'dark' or arg == 'flat':   
                if arg == 'bias': frameType = 'Bias Frame' # we need 'Bias Frame', not just 'bias'!
                elif arg == 'dark': frameType = 'Dark Frame' # same
                elif arg == 'flat': 
                    frameType = 'Flat Field' # same
                    frameflat = [] # frameflat is used to divide files by filter
                    filters = []
                    
                # use function list_frames from reduceall, to list all the frames
                # divided by frametype, date, temperature, bin
                # and add them to a single list
                frames = list_frames('.')[0]
                for date in frames[frameType]: # select just frameType
                    for temperature in frames[frameType][date]:
                        for bin in frames[frameType][date][temperature]:
                            framesProc = frames[frameType][date][temperature][bin]
                            for frameProc in framesProc:
                                # exclude master frames
                                if not os.path.basename(frameProc['path'])[0:6] == 'Master':   
                                    # add frame path to framelist                                 
                                    framelist.append(os.path.abspath(frameProc['path']))
                                    # for flat fields, create a second list (frameflat) 
                                    # that specifies the filter name
                                    if arg == 'flat':
                                        if not frameProc['filter'] in filters: filters.append(frameProc['filter'])
                                        flat = {}
                                        flat['path'] = os.path.abspath(frameProc['path'])
                                        flat['filter'] = frameProc['filter']
                                        frameflat.append(flat)
                
                # set bias frame and/or dark frame.
                # if nothing is specified, use default Master*.fits
                # check that files actually exist
                if arg == 'dark' or arg == 'flat':
                    for opt1, arg1 in opts:
                        if opt1 in ('-b', '--bias'):
                            if arg1: p['bias'] = arg1
                        if opt1 in ('-d', '--dark') and arg == 'flat':
                            if arg1: p['dark'] = arg1
                    
                    if not 'bias' in p: p['bias'] = 'MasterBias.fits'
                    if not 'dark' in p and arg == 'flat': p['dark'] = 'MasterDark.fits'
                    
                    if 'dark' in p:
                        try:
                            with open(p['dark']): pass
                        except IOError:
                            print '%s not found' % p['dark']
                    if 'bias' in p:
                        try:
                            with open(p['bias']): pass
                        except IOError:
                            print '%s not found' % p['bias']


                # create copies of original files, with prefix CORR_
                import shutil
                for f in framelist:
                    shutil.copy(f, os.path.join(os.path.dirname(f), 'CORR_'+os.path.basename(f)))
                
                # create text lists of original and copied files
                tmplistcorr = open('tmplistcorr', 'w')        
                tmplist = open('tmplist', 'w')        
                for f in framelist: 
                    tmplistcorr.write("%s/CORR_%s\n" % (os.path.dirname(f), os.path.basename(f)))
                    tmplist.write("%s\n" % f)
                tmplistcorr.close()
                tmplist.close()

                # create MasterBias
                if arg == 'bias':
                    
                        print 'Trim bias frames'
                        iraf.ccdproc (images='@tmplistcorr',output ='', ccdtype = '', fixpix='no', \
                        oversca = 'no', trim = 'yes', zerocor = 'no', zero = '',   \
                        flatcor = 'no', darkcor = 'no', readaxi = 'column',        \
                        biassec = '', trimsec=telescope.trimsection)
                    
                        print 'Creating MasterBias.fits'
                        iraf.zerocombine (PYinput='@tmplistcorr', output='MasterBias.fits', ccdtype='', \
                        combine='median', reject='none', rdnoise=telescope.rdnoise, gain=telescope.egain)

                # create MasterDark
                if arg == 'dark': 
                                            
                        print 'Bias subtract dark frames'
                        iraf.ccdproc(images='@tmplistcorr',output='', ccdtype='', fixpix='no', \
                        overscan='no', trim='yes', zerocor='yes', zero=p['bias'],            \
                        darkcor='No', flatcor='no', readaxi='column',        \
                        biassec='',    trimsec=telescope.trimsection)
                        
                        print 'Creating MasterDark.fits'
                        iraf.darkcombine (PYinput='@tmplistcorr', output='MasterDark.fits', ccdtype='', \
                        combine='median', reject='none', process='no', delete='no',      \
                        clobber='no', scale='exposure', statsec='', nlow='0', nhigh='1', \
                        nkeep='1', mclip='yes', lsigma='5.', hsigma='4.',rdnoise=telescope.rdnoise,\
                        gain=telescope.egain, snoise='0.', pclip='-0.5', blank='0.')
                
                # create FlatFields, divided by filter
                if arg == 'flat':
                    
                        print 'Bias and dark subtract flat fields'
                        iraf.ccdproc(images='@tmplistcorr',output='', ccdtype='', fixpix='no', \
                        overscan='no', trim='yes', zerocor='yes', zero=p['bias'],            \
                        darkcor='Yes', dark=p['dark'], flatcor='no', readaxi='column',        \
                        biassec='',    trimsec=telescope.trimsection)
                     
                        # divide images by filter and flat combine
                        for filter in filters:
                            print 'Combine flat fields - Filter %s' % filter
                            
                            # create text list for iraf
                            flatlist = open('flatlist', 'w')        
                            for frame in frameflat:
                                if frame['filter'] == filter:
                                    flatlist.write("%s\n" % frame['path'])
                            flatlist.close()
                            
                            iraf.flatcombine(PYinput = '@flatlist', output='MasterFlat-%s.fits' % filter, ccdtype='',   \
                            combine='median', reject='none', process='no', subsets='no',     \
                            delete='no', clobber='no', scale='mode', statsec=' ', nlow='1',  \
                            nhigh='1', nkeep='1', mclip='yes', lsigma='5.', hsigma='5.',     \
                            rdnoise=telescope.rdnoise, gain=telescope.egain, snoise='0.', pclip='-0.5',blank='1.')
                            
                            os.remove('flatlist')


                # remove working files & temp lists
                for f in framelist:
                    os.remove(os.path.join(os.path.dirname(f), 'CORR_'+os.path.basename(f)))
                os.remove('tmplist')
                os.remove('tmplistcorr')