Ejemplo n.º 1
0
def psf(args):
    """ Calculate the PSF of an image.
    """
    # Read the seeing and sigma of the sky from the header
    seeing, sigma = utils.get_from_header(args.input, args.FWHM_key, args.sigma)
    
    # Do photometry on the image
    #print "photometry: \n"
    photfile_name = args.input + ".mag.1"
    utils.if_exists_remove(photfile_name)
    iraf.phot(args.input, output=photfile_name, coords=args.stars,
                     wcsin=args.coords, fwhm=seeing, 
                     sigma=sigma, datamax=args.maxval, datamin=args.minval,
                     ccdread=args.ron_key, gain=args.gain_key, exposure=args.expt_key,
                     airmass=args.airm_key, annulus=36, dannulus=18,
                     apert=18, verbose="no", verify="no", interac="no")


    # Select stars on the image                 
    #print "pstselect: \n"
    pstfile_name = args.input + ".pst.1"
    utils.if_exists_remove(pstfile_name)
    iraf.pstselect(args.input, photfile=photfile_name, pstfile=pstfile_name,
                          maxnpsf=20, fwhm=seeing, sigma=sigma,
                       datamax=args.maxval, ccdread=args.ron_key, gain=args.gain_key,
                       exposure=args.expt_key,  function="auto", nclean=1, 
                       psfrad=36, fitrad=18, maxnstar=20, verbose="no", interac="no",
                       verify="no")

    # Build psf of the stars
    #print "psf: \n"
    psffile_table = args.input + ".psf.1.fits"  # iraf keeps adding the .fits :(
    psgfile_name = args.input + ".psg.1"
    pstfile_name2 = args.input + ".pst.2"   
    utils.if_exists_remove(psffile_table,psgfile_name, pstfile_name2)
    iraf.psf( args.input, photfile=photfile_name, pstfile=pstfile_name,
                     groupfile=psgfile_name, opstfile=pstfile_name2,    
                     psfimage=psffile_table,fwhm=seeing, sigma=sigma, datamax=args.maxval, 
                     datamin=args.minval, ccdread=args.ron_key, gain=args.gain_key, 
                     exposure=args.expt_key, function="moffat25", nclean=1, 
                     psfrad=36, fitrad=18, maxnstar=20, interactive="no",
                     varorder=args.varorder, verbose="no",verify="no")

    # Use seepsf to build the image of the psf
    psffile_name = args.input + ".psf.fits" 
    utils.if_exists_remove(psffile_name)
    iraf.seepsf(psffile_table, psffile_name)
     
    return psffile_name
Ejemplo n.º 2
0
def apply_psf(args, phot_file, pst_file):
    with tempfile.NamedTemporaryFile(suffix=".psf.1.fits") as fd0:
        psffile_table = fd0.name

    with tempfile.NamedTemporaryFile(suffix=".psf") as fd1:
        psf_name = fd1.name

    with tempfile.NamedTemporaryFile(suffix=".psg.1") as fd2:
        psg_name = fd2.name

    with tempfile.NamedTemporaryFile(suffix=".pst.2") as fd3:
        pst2_name = fd3.name

    hdr = args.image.header  # for short
    seeing, sigma = utils.get_from_header(args.image.im_name, hdr.seeingk, hdr.sigmak)
    iraf.psf(
        args.image.im_name,
        photfile=phot_file,
        pstfile=pst_file,
        groupfile=psg_name,
        opstfile=pst2_name,
        psfimage=psffile_table,
        fwhm=seeing,
        sigma=sigma,
        ccdread=hdr.ccdronk,
        gain=hdr.gaink,
        exposure=hdr.exptimek,
        function="auto",
        nclean=1,
        psfrad=6 * seeing,
        fitrad=5 * seeing,
        interactive="no",
        varorder=-1,
        verbose="no",
        verify="no",
    )

    # Use seepsf to make an image of the PSF
    iraf.seepsf(psffile_table, psf_name)
    print "\n PSF file: ", psf_name
    return psf_name
Ejemplo n.º 3
0
def psfphot(image,coords,pststars,refstar,centre=True,vary=False):
    """PSF photometry. Centering is through phot on refstar.
Assume coords is a .als file for now. Recentering is always done
for the reference star, never for the targets."""
    iraf.dele('temp.mag*')
    iraf.dele('temp.psf.fits')
    iraf.dele('temp.als')
    if centre:
        xsh,ysh = recentre(image,refstar) 
        print "Fine Centring: ", xsh,ysh
    else: xsh,ysh = 0,0
    if vary:
        setaperture(image,refstar)
    shift_file_coords(coords,xsh,ysh,'tempcoords2',sort='als')
    shift_file_coords(pststars,xsh,ysh,'temppst2',sort='pst')
    iraf.phot(image,'tempcoords2','temp.mag2',inter="no",calgorithm='none',
                  mode='h',verify='no',update='no',verbose='no')
    iraf.psf(image,'temp.mag2','temppst2','temp.psf','temp.mag.pst','temp.mag.psg',
             inter='no',mode='h',verify='no',update='no',verbose='no')
    iraf.allstar(image,'temp.mag2','temp.psf','temp.als','temp.mag.arj',"default",
                 mode='h',verify='no',update='no',verbose='no')
    out = iraf.pdump('temp.als','id,mag,merr,msky','yes',Stdout=1)
    return out   
Ejemplo n.º 4
0
def psffit(img,
           fwhm,
           psfstars,
           hdr,
           interactive,
           _datamin,
           _datamax,
           psffun='gauss',
           fixaperture=False):
    ''' 
    giving an image, a psffile compute the psf using the file _psf.coo
    '''
    import lsc
    _ron = lsc.util.readkey3(hdr, 'ron')
    _gain = lsc.util.readkey3(hdr, 'gain')
    if not _ron:
        _ron = 1
        print 'warning ron not defined'
    if not _gain:
        _gain = 1
        print 'warning gain not defined'

    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)
    zmag = 0.
    varord = 0  # -1 analitic 0 - numeric

    if fixaperture:
        print 'use fix aperture 5 8 10'
        hdr = lsc.util.readhdr(img + '.fits')
        _pixelscale = lsc.util.readkey3(hdr, 'PIXSCALE')
        a1, a2, a3, a4, = float(5. / _pixelscale), float(
            5. / _pixelscale), float(8. / _pixelscale), float(10. /
                                                              _pixelscale)
    else:
        a1, a2, a3, a4, = int(fwhm + 0.5), int(fwhm * 2 +
                                               0.5), int(fwhm * 3 +
                                                         0.5), int(fwhm * 4 +
                                                                   0.5)

    iraf.fitskypars.annulus = a4
    iraf.fitskypars.salgori = 'mean'  #mode,mean,gaussian
    iraf.photpars.apertures = '%d,%d,%d' % (a2, a3, a4)
    iraf.datapars.datamin = _datamin
    iraf.datapars.datamax = _datamax
    iraf.datapars.readnoise = _ron
    iraf.datapars.epadu = _gain
    iraf.datapars.exposure = 'EXPTIME'
    iraf.datapars.airmass = ''
    iraf.datapars.filter = ''
    iraf.centerpars.calgori = 'centroid'
    iraf.centerpars.cbox = a2
    iraf.daopars.recenter = 'yes'
    iraf.photpars.zmag = zmag

    psfout = img.replace('.zogypsf', '') + '.psf.fits'
    iraf.delete('_psf.ma*,_psf.ps*,_psf.gr?,_psf.n*,_psf.sub.fit?,' + psfout,
                verify=False)
    iraf.phot(img + '[0]',
              '_psf.coo',
              '_psf.mag',
              interac=False,
              verify=False,
              verbose=False)

    # removes saturated stars from the list (IRAF just issues a warning)
    with open('_psf.mag') as f:
        text = f.read()
    text = re.sub('(.*\n){6}.*BadPixels\* \n', '', text)
    with open('_psf.mag', 'w') as f:
        f.write(text)

    iraf.daopars.psfrad = a4
    iraf.daopars.functio = psffun
    iraf.daopars.fitrad = a1
    iraf.daopars.fitsky = 'yes'
    iraf.daopars.sannulus = a4
    iraf.daopars.recenter = 'yes'
    iraf.daopars.varorder = varord

    if interactive:  # not possible to run pstselect or psf interactively on 64-bit linux (Error 851)
        os.system('cp _psf.mag _psf.pst')
        print '_' * 80
        print '>>> Mark good stars with "a" or "d"-elete. Then "f"-it,' + \
              ' "w"-write and "q"-uit (cursor on ds9)'
        print '-' * 80
    else:
        iraf.pstselect(img + '[0]',
                       '_psf.mag',
                       '_psf.pst',
                       psfstars,
                       interac=False,
                       verify=False)

    iraf.psf(img + '[0]',
             '_psf.mag',
             '_psf.pst',
             psfout,
             '_psf.psto',
             '_psf.psg',
             interac=interactive,
             verify=False,
             verbose=False)
    iraf.group(img + '[0]',
               '_psf.mag',
               psfout,
               '_psf.grp',
               verify=False,
               verbose=False)
    iraf.nstar(img + '[0]',
               '_psf.grp',
               psfout,
               '_psf.nst',
               '_psf.nrj',
               verify=False,
               verbose=False)

    photmag = iraf.txdump("_psf.mag",
                          'xcenter,ycenter,id,mag,merr',
                          expr='yes',
                          Stdout=1)
    pst = iraf.txdump("_psf.pst", 'xcenter,ycenter,id', expr='yes', Stdout=1)
    fitmag = iraf.txdump("_psf.nst",
                         'xcenter,ycenter,id,mag,merr',
                         expr='yes',
                         Stdout=1)
    return photmag, pst, fitmag
Ejemplo n.º 5
0
def psffit(img, fwhm, psfstars, hdr, interactive, _datamax=45000, psffun='gauss', fixaperture=False):
    import agnkey

    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)
    zmag = 0.
    varord = 0  # -1 analitic 0 - numeric

    if fixaperture:
        print 'use fix aperture 5 8 10'
        hdr = agnkey.util.readhdr(img+'.fits')
        _pixelscale = agnkey.util.readkey3(hdr, 'PIXSCALE')
        a1, a2, a3, a4, = float(5. / _pixelscale), float(5. / _pixelscale), float(8. / _pixelscale), float(
                    10. / _pixelscale)
#        a1, a2, a3, a4, = int(5), int(8), int(10), int(12)
    else:
        a1, a2, a3, a4, = int(fwhm + 0.5), int(fwhm * 2 + 0.5), int(fwhm * 3 + 0.5), int(fwhm * 4 + 0.5)


    _center='no'

    iraf.fitskypars.annulus = a4
    iraf.fitskypars.dannulus = a4
    iraf.noao.digiphot.daophot.daopars.sannulus = int(a4)
    iraf.noao.digiphot.daophot.daopars.wsannul = int(a4)
    iraf.fitskypars.salgori = 'mean'  #mode,mean,gaussian
    iraf.photpars.apertures = '%d,%d,%d' % (a2, a3, a4)
    #    iraf.photpars.apertures = '%d,%d,%d'%(a2,a3,a4)
    iraf.datapars.datamin = -100
    iraf.datapars.datamax = _datamax
    iraf.datapars.readnoise = agnkey.util.readkey3(hdr, 'ron')
    iraf.datapars.epadu = agnkey.util.readkey3(hdr, 'gain')
    iraf.datapars.exposure = 'exptime'  #agnkey.util.readkey3(hdr,'exptime')
    iraf.datapars.airmass = 'airmass'
    iraf.datapars.filter = 'filter2'
    iraf.centerpars.calgori = 'gauss'
    iraf.centerpars.cbox = 1
    iraf.daopars.recenter = _center
    iraf.photpars.zmag = zmag

    iraf.delete('_psf.ma*,' + img + '.psf.fit?,_psf.ps*,_psf.gr?,_psf.n*,_psf.sub.fit?', verify=False)
    iraf.phot(img+'[0]', '_psf.coo', '_psf.mag', interac=False, verify=False, verbose=False)

    iraf.daopars.psfrad = a4
    iraf.daopars.functio = psffun
    iraf.daopars.fitrad = a1
    iraf.daopars.fitsky = 'yes'
    iraf.daopars.sannulus = int(a4)
    iraf.daopars.wsannul = int(a4)
    iraf.daopars.recenter = _center
    iraf.daopars.varorder = varord

    if interactive:
        shutil.copyfile('_psf.mag', '_psf.pst')
        print '_' * 80
        print '>>> Mark good stars with "a" or "d"-elete. Then "f"-it,' + \
              ' "w"-write and "q"-uit (cursor on ds9)'
        print '-' * 80
    else:
        iraf.pstselect(img+'.fits[0]', '_psf.mag', '_psf.pst', psfstars, interac=False, verify=False)

    iraf.psf(img+'.fits[0]', '_psf.mag', '_psf.pst', img + '.psf', '_psf.psto', '_psf.psg', interac=interactive,
             verify=False, verbose=False)

#    if os.path.isfile(img + '.psf.fits'):
#        print 'file there'

    iraf.group(img+'.fits[0]', '_psf.mag', img + '.psf.fits', '_psf.grp', verify=False, verbose=False)
    iraf.nstar(img+'.fits[0]', '_psf.grp', img + '.psf.fits', '_psf.nst', '_psf.nrj', verify=False, verbose=False)

    photmag = iraf.txdump("_psf.mag", 'xcenter,ycenter,id,mag,merr', expr='yes', Stdout=1)
    pst = iraf.txdump("_psf.pst", 'xcenter,ycenter,id', expr='yes', Stdout=1)
    fitmag = iraf.txdump("_psf.nst", 'xcenter,ycenter,id,mag,merr', expr='yes', Stdout=1)
    return photmag, pst, fitmag
Ejemplo n.º 6
0
def performPhotometry(task, logger):
  #iraf.prcacheOff()
  [iraf.unlearn(t) for t in ('phot','pstselect','psf','allstar')]
  iraf.set(imtype="fits,noinherit")   # set image output format
  iraf.set(clobber="yes")
  hdu=pyfits.open(task['images'])[0] 
  hdr = hdu.header
  imdata = hdu.data  
  for key,value in task['fits'].iteritems():
    task[key] = hdr.get(value,1)

  #Sextractor to find stars; add an object for the force detect
  logger.info('Running SExtractor on [%s]' % os.path.basename(task['images']))
  sex = sextractor.SExtractor()
  makeSexConfig(sex,task)
  sex.run(task['images'])
  catalog = sex.catalog()

  #Set up image parameters
  MIN_X = max(1,int(task['numpixx']*task['filtfactor']))
  MIN_Y = max(1,int(task['numpixy']*task['filtfactor']))
  MAX_X = int(task['numpixx']*(1-task['filtfactor']))
  MAX_Y = int(task['numpixy']*(1-task['filtfactor']))
  AREAXY = '[%s:%s,%s:%s]' % (MIN_X, MAX_X, MIN_Y, MAX_Y)
  AREANO = '[%s:%s,%s:%s]' % (MIN_X, MAX_X-2*MIN_X, MIN_Y, MAX_Y-2*MIN_Y)
  try:
    task['pixscale'] = abs(hdr.get('CD1_1'))*3600.
  except TypeError:
    task['pixscale'] = abs(hdr.get('CDELT1'))*3600.
  task['seeing'] = np.median( sorted([i['FWHM_IMAGE'] for i in catalog])[:int(-len(catalog)*0.5)] ) #Take the median of the "bottom" 50% of objects
  
  logger.info('--> %s SExtractor detected bright objects in the field' % (len(catalog),) )
  logger.info('--> %0.2f median FWHM of bright objects in the field, in arcsec' % (task['seeing']*task['pixscale'],))

  task['objects'] = [(i['ALPHA_J2000'],i['DELTA_J2000']) for i in catalog]
  task['objects'].append(task['objwcs'])  
  task['objectlist'] = open(os.path.join(task['output_directory'],'objectlist'),'w')  
  task['objectlist'].write('\n'.join([' %s %s' % (i[0],i[1]) for i in task['objects']]))
  task['objectlist'].close()

  logger.info('Running iraf.imstat')
  irafoutput = iraf.imstat(images=task['images']+AREANO,fields='midpt,min,max,stddev', format=0, Stdout=1)
  task['nimgs'] = hdr.get('NIMGS',1)
  task['gain'] *= task['nimgs']*2/3.
  task['ron'] *= np.sqrt(task['nimgs'])/task['nimgs']*constants.INTERPSM[task['band']]
  task['datamean'], task['datamin'], task['datamax'], task['datastdev']  = map(float, irafoutput[0].split())
  irafoutput = iraf.imstat(images=task['images'],fields='stddev,midpt',nclip=25,format=0,cache='yes',Stdout=1)
  task['skynoise'], task['datamean'] = map(float, irafoutput[0].split() )
  task['skynoise'] *= constants.INTERPSM[task['band']]
  task['airmass'] = hdr.get('AIRMASS',1)
  task['zmag'] -= (float(task['airmass'])-1.0)*constants.extinction_coefficients[task['band']]  
  task['match_proximity'] = 2.5 * task['seeing']
  logger.info('--> %5.2f counts: Sky noise, corrected for drizzle imcombine' % task['skynoise'])
  logger.info('--> %5.2f Median count value, after background subtraction' % task['datamean'])
  logger.info('--> %5.2f Airmass' % task['airmass'])

  #prepare temp files that iraf will use
  for filename in ('photfile','pstfile','psfimg','opstfile','groupfile','allstarfile','rejfile','subimage'): 
    task[filename] = open(os.path.join(task['output_directory'],filename),'w')
    task[filename].close()

  #iraf.phot to get APP magnitudes
  logger.info('Running iraf.apphot.phot')
  #apsizes = [i*task['faperture']*task['seeing'] for i in (0.4,0.5,0.6,0.8,1.0,1.2,1.5,2.0,2.5,3.0)]
  #irafapsizes = ','.join(['%.2f' % i for i in apsizes])
  irafapsizes = '%0.2f' % (task['faperture']*task['seeing'])
  kwargs = dict(image=task['images'],coords=task['objectlist'].name,
    output=task['photfile'].name,
    interac='no',scale=1,
    fwhmpsf=task['seeing'], 
    wcsin='world', wcsout='physical',
    sigma=task['skynoise'],
    datamin=task['datamin'],
    datamax=task['datamax'],
    readnoi=task['ron'],
    epadu=task['gain'],
    itime=task['exposure'],
    xairmass=task['airmass'],
    ifilter=task['band'],
    otime=task['dateobs'],
    aperture= irafapsizes,
    zmag=task['zmag'],
    annulus=task['fannulus']*task['seeing'],
    dannulus=task['fdannulus']*task['seeing'],
    calgorithm='gauss',
    cbox = 1.5*task['seeing'],
    maxshift=2.0*task['seeing'],
    mode="h",Stdout=1,verify=0)
  iraf.phot(**kwargs)

  if task['band'] not in constants.infrared:
    #iraf.pstselect to choose objects for PSF modelling
    logger.info('Running iraf.daophot.pstselect')
    kwargs = dict(image=task['images'],
                     photfile=task['photfile'].name,pstfile=task['pstfile'].name,
                     maxnpsf=task['pstnumber'],
                     wcsin='physical',
                     wcsout='physical',
                     interac="no",verify='no',scale=1,
                     fwhmpsf=task['seeing'],
                     datamin=0,
                     datamax=task['datamax'],
                     psfrad=3.0*task['seeing'],
                     fitrad=1.0*task['seeing'],
                     recente='yes',
                     nclean=task['nclean'],
                     mode="h",Stdout=1)
    iraf.pstselect(**kwargs)

    #iraf.psf to model PSF
    logger.info('Running iraf.daophot.psf')
    kwargs = dict( image=task['images'],
              photfile=task['photfile'].name,
              pstfile=task['pstfile'].name,
              psfimage=task['psfimg'].name,
              opstfile=task['opstfile'].name,
              groupfile=task['groupfile'].name,
              wcsin='physical',wcsout='physical',
              interac="no",verify="no",scale=1,
              fwhmpsf=task['seeing'],
              sigma=task['skynoise'],
              datamin=task['datamin'],
              datamax=task['datamax'],
              readnoi=task['ron'],
              epadu=task['gain'],
              itime=task['exposure'],
              xairmass=task['airmass'],
              ifilter=task['band'],
              otime=task['dateobs'],
              function=task['func'],
              varorder=task['varorder'],
              saturat='no',
              psfrad=3.0*task['seeing'],
              fitrad=1.*task['faperture']*task['seeing'],
              nclean=task['nclean'],
              mergerad=1.5*task['seeing'],
              mode='h',Stdout=1)  

    iraf.psf(**kwargs)
    logger.info('Running iraf.daophot.allstar')
    #iraf.allstars to compute PSF photometry; recenter with recenter='yes', mergerad=<value> to avoid duplicate detection
    kwargs = dict(image=task['images'],
                  photfile=task['photfile'].name,
                  wcsin='physical',
                  wcsout='physical',
                  psfimage=task['psfimg'].name,
                  allstarf=task['allstarfile'].name,
                  rejfile=task['rejfile'].name,
                  subimage=task['subimage'].name,
                  verbose=1,verify='no',scale=1,
                  fwhmpsf=task['seeing'],
                  sigma=task['skynoise'],
                  datamin=task['datamin'],
                  datamax=task['datamax'],
                  readnoi=task['ron'],
                  epadu=task['gain'],
                  itime=task['exposure'],
                  xairmass=task['airmass'],
                  ifilter=task['band'],
                  otime=task['dateobs'],
                  function=task['func'],
                  varorder=task['varorder'],
                  psfrad=3.*task['seeing'],
                  fitrad=1.*task['faperture']*task['seeing'],
                  recenter='yes',
                  mergerad=1.5*task['seeing'],
                  mode='h',Stdout=1)
    iraf.allstar(**kwargs)
  

  #Parse both photometry, convert to RA,DEC,MAG,MAGERR
  logger.info('iraf tasks complete. Parsing results and calibrating')
  photometry = {}
  photometry['APP'] = iraf.txdump(textfiles=task['photfile'].name,
                        fields='XCENTER,YCENTER,MAG,MERR',expr='yes',
                        headers='no',Stdout=1)

  if task['band'] not in constants.infrared:
    photometry['PSF'] = iraf.txdump(textfiles=task['allstarfile'].name,
                          fields='XCENTER,YCENTER,MAG,MERR',expr='yes',
                          headers='no',Stdout=1)


  for phototype in photometry:
    kwargs = dict(input='STDIN',
                  output='STDOUT',
                  insystem='%s physical' % task['images'],
                  outsystem='%s world' % task['images'],
                  ilatuni='physical',
                  ilnguni='physical',
                  olnguni='degrees',
                  olatuni='degrees',
                  ilngfor='%10.7f',
                  ilatfor='%10.7f',
                  olngfor='%10.5f',
                  olatfor='%10.5f',
                  Stdin=photometry[phototype],Stdout=1)
    photometry[phototype] = [i.split() for i in iraf.skyctran(**kwargs) if i and not i.startswith('#') and 'INDEF' not in i]
    photometry[phototype] = [map(float,(i[4],i[5],i[2],i[3])) for i in photometry[phototype] ] #Now we have [(ra,dec,'mag','mageerr'),...]
  results = calibrate((task['objwcs'][0],task['objwcs'][1]),task,photometry,logger)
#  if 'PSF' not in results:
    
  return results
Ejemplo n.º 7
0
    pstfile = open(FitsFileName+'.pst.1', 'a+r')
    pstfile.write("#N ID    XCENTER   YCENTER   MAG         MSKY                                  \\\n")
    pstfile.write("#U ##    pixels    pixels    magnitudes  counts                                \\\n")
    pstfile.write("#F %-9d  %-10.3f   %-10.3f   %-12.3f     %-15.7g                                 \n")
    pstfile.write("#\n")
    np.savetxt(pstfile,g.take([-1,0,1,2,3],axis=1),fmt=['%-9d','%-10.3f','%-10.3f','%-12.3f','%-15.7g'])
    pstfile.close()

    iraf.daopars.setParam('matchra',fwhm)
    iraf.daopars.setParam('psfrad',4*fwhm+1)
    iraf.daopars.setParam('fitrad',fwhm)
    iraf.daopars.setParam('sannulu',2*fwhm)
    iraf.daopars.setParam('wsannul',4*fwhm)
    iraf.psf.setParam('image',FitsFileName)
    iraf.psf(mode='h')
    iraf.seepsf(psfimage=FitsFileName+'.psf.1.fits',image=base+'psfim'+ext+'.fits',magnitu='18.0')
    iraf.allstar.setParam('image',FitsFileName)
    iraf.allstar(mode='h',verbose='no')

    if os.path.exists(base+'allstartmp') == True: os.remove(base+'allstartmp')
    iraf.txdump(textfile=FitsFileName+'.als.1',fields='xcenter,ycenter,mag,merr,id',expr='mag\
    != INDEF && merr != INDEF', Stdout=base+'allstartmp')
    outmags = np.loadtxt(base+'allstartmp')
    if os.path.exists(base+'allstartmp') == True: os.remove(base+'allstartmp')

    if int(ext) <= 4:
        shifty = 0.0
        shiftx = (float(ext) - 1.)*sx
    else:
        shifty = sy
Ejemplo n.º 8
0
def psfphot(image,
            coofile,
            ot,
            wtimage="",
            varorder=1,
            clobber=globclob,
            verbose=globver,
            pixtol=3.0,
            maxnpsf=25):
    """ perform PSF-based photometry on a single target star (SN?) at RA, Dec and  
        also on a set of comparison stars, using daophot.  simultaneously 
        perform aperture photometry on all the comparison stars (after 
        subtracting off contributions from neighbors) to enable absolute 
        photometry by comparison to aperture photometry of standard stars 
        observed in other fields """

    # Defaults / constants
    psfmult = 5.0  #standard factor (multiplied by fwhm to get psfradius)
    psfmultsmall = 3.0  #similar to psfmult, adjusted for nstar and substar

    # Necessary package
    iraf.imutil()
    iraf.digiphot()
    iraf.daophot()

    # Detect stars
    iqobjs("%s.sub.fits" % image[:-5],
           1.5,
           12000.0,
           wtimage=wtimage,
           skyval="0.0")

    root = image[:-5]
    [gain, rnoise, fwhm] = get_head(image, ["GAIN", "READN", "SEEPIX"])
    fwhm = float(fwhm)
    rnoise = float(rnoise)

    iraf.iterstat(image)

    # Saturation level
    if not check_head(image, "SATURATE"):
        saturate = 60000.0
    else:
        saturate = get_head(image, "SATURATE")

    # Update datapars and daopars
    iraf.datapars.fwhmpsf = fwhm
    iraf.datapars.sigma = iraf.iterstat.sigma
    iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma
    iraf.datapars.datamax = 0.50 * saturate
    iraf.datapars.readnoise = rnoise
    iraf.datapars.epadu = gain
    iraf.daopars.psfrad = psfmult * fwhm
    iraf.daopars.fitrad = fwhm
    iraf.daopars.function = "gauss,moffat15,moffat25,lorentz,penny1"
    iraf.daopars.varorder = varorder

    # Reference stars file
    stars = Starlist(coofile)
    stars.wcs2pix(image)
    outf = open("%s.coo.1" % image[:-5], "w")
    for star in stars:
        outf.write("%10.3f%10.3f\n" % (star.xval, star.yval))
    outf.close()

    #Aperture photometry
    iraf.daophot.phot(root,
                      'default',
                      'default',
                      apertures=fwhm,
                      verify=no,
                      interac=no,
                      verbose=verbose)

    iraf.datapars.datamax = 0.50 * saturate
    iraf.pstselect(root,
                   'default',
                   'default',
                   maxnpsf,
                   interactive=no,
                   verify=no,
                   verbose=verbose)

    iraf.psf(root,
             'default',
             'default',
             'default',
             'default',
             'default',
             interactive=no,
             showplots=no,
             verify=no,
             verbose=verbose)

    iraf.allstar(root,
                 'default',
                 'default',
                 'default',
                 'default',
                 'default',
                 verify=no,
                 verbose=verbose)

    # Prep for subtracted image
    iraf.iterstat("%s.sub.fits" % root)

    iraf.datapars.sigma = iraf.iterstat.sigma
    iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma
    iraf.datapars.datamax = saturate

    # Look for source at OT location
    substars = Starlist("%s.sub.fits.stars" % image[:-5])
    otstars = Starlist(ot)
    otstars.wcs2pix("%s.sub.fits" % image[:-5])
    smatch, omatch = substars.match(otstars, tol=pixtol, useflags=no)

    # Generate coo file
    otcoo = open("%s.sub.coo.1" % image[:-5], "w")

    if len(smatch) == 0:
        otcoo.write("%10.3f%10.3f\n" % (otstars[0].xval, otstars[0].yval))
    else:
        otcoo.write("%10.3f%10.3f\n" % (smatch[0].xval, smatch[0].yval))

    otcoo.close()

    iraf.daophot.phot("%s.sub.fits" % root,
                      "%s.sub.coo.1" % image[:-5],
                      'default',
                      'default',
                      apertures=fwhm,
                      calgorithm="none",
                      interac=no,
                      verify=no,
                      verbose=verbose)

    if len(smatch) == 0:
        print "No match in subtracted image: %s.sub.fits" % root
    else:
        iraf.allstar("%s.sub.fits" % root,
                     'default',
                     "%s.psf.1.fits" % root,
                     'default',
                     'default',
                     'default',
                     verify=no,
                     verbose=no)

        return
Ejemplo n.º 9
0
def psfphot(inlist, ra, dec, reffilt, interact, fwhm, readnoise, gain, 
            threshold,refimage=None,starfile=None,maxnpsf=5, 
            clobber=globclob,verbose=globver,skykey='SKYBKG',
            filtkey='FILTER',pixtol=3.0):


    """ perform PSF-based photometry on a single target star (SN?) at RA, Dec and  
        also on a set of comparison stars, using daophot.  simultaneously 
        perform aperture photometry on all the comparison stars (after 
        subtracting off contributions from neighbors) to enable absolute 
        photometry by comparison to aperture photometry of standard stars 
        observed in other fields """

    # Defaults / constants
    psfmult=5.0         #standard factor (multiplied by fwhm to get psfradius)
    psfmultsmall=3.0    #similar to psfmult, adjusted for nstar and substar

    # Necessary package
    iraf.imutil()

    # Parse inputs
    infiles=iraffiles(inlist)

    # Which file is reffilt?  call it refimage
    if refimage==None:
        for image in infiles:
            if check_head(image, filtkey):
                try:
                    imgfilt = get_head(image, filtkey)
                    if imgfilt == reffilt:
                        refimage = image
                        break
                except:
                    pass
            
    if not refimage:
        print "BAD USER!  No image corresponds to the filter: %s" % reffilt
        return
    else:
        refroot='s'+refimage.split('.')[0]

    #first make sure to add back in background of sky
    iraf.iqsubsky(inlist, sub=no, skykey=skykey)

    #put reference image first on list
    infiles.remove(refimage)
    infiles.insert(0,refimage)

    #setup for keywords
    if gain == "!GAIN":
        try: gainval = float(get_head(image, gain))
        except:
            print "Bad header keyword for gain."
    else:
        gainval = float(gain)

    if readnoise == "!READNOISE":
        try: readval = float(get_head(image, readnoise))
        except:
            print "Bad header keyword for readnoise."
    else:
        readval = float(readnoise)

    # Process each file in turn
    for image in infiles:

        # Check that the image is there
        check_exist(image,"r")

        # Grab image root name
        root=image.split('.')[0]

        # Map image to reference image
        if not (image==refimage):
            [nx,ny]=get_head(image,['NAXIS1','NAXIS2'])
            stars=Starlist(get_head(image,'STARFILE'))
            refstars=Starlist(get_head(refimage,'STARFILE'))
            refstars.pix2wcs(refimage)
            refstars.wcs2pix(image)
            match,refmatch=stars.match(refstars,useflags=yes,tol=10.0)
            nstars=len(match)
            if not (nstars>2):
                print 'Could not find star matches between reference and %s' % image
                infiles.remove(image)
                continue
            refmatch.pix2wcs(image)
            refmatch.wcs2pix(refimage)
            matchfile=open('%s.match' % root, 'w')
            for i in range(len(match)):
                matchfile.write('%10.3f%10.3f%10.3f%10.3f\n' % 
                               (refmatch[i].xval,refmatch[i].yval,
                                match[i].xval,match[i].yval))
            matchfile.close()
            check_exist('%s.geodb' % root, 'w', clobber=clobber)
            iraf.geomap('%s.match' % root,'%s.geodb' % root,1.0,nx,1.0,ny,
                        verbose=no,interactive=no)
            check_exist('s%s.fits' % root, 'w', clobber=clobber)
            iraf.geotran(image,'s%s' % root,'%s.geodb' % root,
                         '%s.match' % root,geometry="geometric",
                         boundary="constant",verbose=no)
        else:
            iraf.imcopy(image,'s%s' % root)
        root='s%s' % root
 
        #get sky level and calculate sigma
        #if check_head(image, skykey):
        #    try:
        #        sky=float(get_head(image, skykey))
        #    except:
        #        print "No sky levels in header."

        #sigma= (((sky * gainval) + readval**2)**.5) / gainval        
        iraf.iterstat(image)
        
        # Saturation level
        if not check_head(image, "SATURATE"):
        	saturate = 60000.0
        else:
        	saturate = get_head(image, "SATURATE")
        	        
        # Update datapars and daopars
        iraf.datapars.fwhmpsf=fwhm
        iraf.datapars.sigma=iraf.iterstat.sigma
        iraf.datapars.datamin=iraf.iterstat.median-10*iraf.iterstat.sigma
        iraf.datapars.datamax=0.90*saturate
        iraf.datapars.readnoise=readval
        iraf.datapars.epadu=gainval
        iraf.datapars.filter=filtkey
        iraf.daopars.psfrad=psfmult*fwhm
        iraf.daopars.fitrad=fwhm
        iraf.daopars.function="gauss,moffat15,moffat25,lorentz,penny1"

        #find stars in image unless a starlist is given
        if image==refimage and starfile==None:
            iraf.daophot.daofind(root,'refimage.coo.1',threshold=threshold,verify=no,
                         verbose=verbose)
        elif image==refimage:
            shutil.copy(starfile,'refimage.coo.1')

        #initial photometry
        iraf.daophot.phot(root,'refimage.coo.1','default',aperture=fwhm,verify=no,
                  verbose=verbose)

        #select stars for psf the first time
        refstarsfile = "refimage.pst.1"
        if image == refimage:
            iraf.pstselect(root,'default',refstarsfile,maxnpsf,
                           interactive=yes,verify=no,verbose=verbose)

        #fit the psf
        iraf.psf(root,'default',refstarsfile,'default','default','default',
                 interactive=interact,verify=no,verbose=verbose)

        #identify neighboring/interfering stars to selected stars
        groupingfile = root+".psg.1"
        iraf.nstar(root,groupingfile,'default','default','default',
                   psfrad= psfmultsmall * fwhm,verify=no,verbose=verbose)

        #subtract out neighboring stars from image
        iraf.substar(root,'default',refstarsfile,'default','default',
                     psfrad=psfmultsmall*fwhm,verify=no,verbose=verbose)

        #repeat psf to get better psf model
        #IRAF's interactive version usually crashes
        subtractedimage = root+".sub.1"
        iraf.psf(subtractedimage,root+".nst.1",refstarsfile,'%s.psf.2' % root,
                 '%s.pst.2' % root,'%s.psg.2' % root,interactive=interact,
                 verify=no,verbose=verbose)

        #Need to make sure SN was detected by daofind
        stars=Starlist('%s.mag.1' % root)
        SN=Star(name='SN',radeg=ra,dcdeg=dec,fwhm=2.0,fwhmw=2.0)
        SNlis=Starlist(stars=[SN])
        SNlis.wcs2pix(image)
        if (len(stars.match(SNlis)[0])==0):
            #No match - need to add to daofind file
            print "No match!"
            coofile=open('refimage.coo.1', 'a+')
            coofile.write('%10.3f%10.3f%9.3f%8.3f%13.3f%12.3f%8i\n' % (SNlis[0].xval, SNlis[0].yval,99.999,0.500,0.000,0.000,999))
            coofile.close()    

        #repeat aperture photometry to get good comparisons to standard fields
        iraf.daophot.phot(root,'refimage.coo.1','default',aperture=psfmult*fwhm,
                  verify=no,verbose=verbose)

        # allstar run
        iraf.allstar(root,'default','default','default','default','default',
                     verify=no,verbose=verbose)
Ejemplo n.º 10
0
def build(f):

    ### is this an MEF file
    current_ext = 0
    NEXTEND = 0

    EXTEND = f[0].header["EXTEND"]
    if EXTEND == "T":
        NEXTEND = f[0].header["NEXTEND"]
        current_ext = 1

    ### create the name of the output MEF psf file
    if not f[0].header.has_key("FILENAME"):
        os.unlink(opt.filename)
        sys.exit("The fits file " + opt.filename + " has no EXPNUM keyword\n")

    sexp = f[0].header["FILENAME"]
    mef_psf = sexp + "p_psf_iraf.fits"
    ### create an MEF file that will contian the PSF(s)
    import pyfits

    fitsobj = pyfits.HDUList()
    prihdu = pyfits.PrimaryHDU()
    import re

    prihdu.header.update("FILENAME", sexp, comment="CFHT Exposure Numebr")
    prihdu.header.update("NEXTEND", NEXTEND, comment="number of extensions")
    version = re.match(r"\$Rev.*: (\d*.\d*) \$", __Version__).group(1)
    prihdu.header.update("MKPSF_V", float(version), comment="Version number of mkpsf")
    fitsobj.append(prihdu)
    if os.access(mef_psf, os.F_OK):
        os.unlink(mef_psf)
    fitsobj.writeto(mef_psf)
    fitsobj.close()
    outfits = pyfits.open(mef_psf, "append")
    prihdr = outfits[0].header

    import jjkmode

    ### Get my python routines
    from pyraf import iraf
    from pyraf.irafpar import IrafParList

    ### keep all the parameters locally cached.
    iraf.set(uparm="./")

    ### Load the required IRAF packages
    iraf.digiphot()
    iraf.apphot()
    iraf.daophot()

    ### temp file name hash.
    tfile = {}

    while current_ext <= NEXTEND:

        ### this is a psf SCRIPT so the showplots and interactive are off by force

        print "Working on image section " + str(current_ext)

        iraf.findpars.sharplo = 0
        iraf.findpars.sharphi = 0.7
        iraf.findpars.roundlo = -0.7
        iraf.findpars.roundhi = 0.7

        iraf.datapars.datamax = 20000
        iraf.datapars.airmass = "AIRMASS"
        iraf.datapars.filter = "FILTER"
        iraf.datapars.obstime = "TIME-OBS"
        iraf.datapars.exposure = "EXPTIME"
        iraf.datapars.gain = "GAIN"
        iraf.datapars.ccdread = "RDNOISE"
        iraf.datapars.fwhmpsf = opt.fwhm

        iraf.daopars.nclean = 2
        iraf.daopars.psfrad = 5.0 * opt.fwhm
        iraf.daopars.fitrad = 0.85 * opt.fwhm
        iraf.daopars.function = "gauss"

        iraf.centerpars.calgorithm = "centroid"

        zero_mag = 26.19
        iraf.photpars.zmag = zero_mag
        iraf.photpars.apertures = int(0.85 * opt.fwhm)
        iraf.fitskypars.annulus = 2 + int(opt.fwhm * 4.00)
        iraf.fitskypars.dannulus = int(opt.fwhm * 2.0)
        iraf.daophot.verbose = no
        iraf.daophot.verify = no
        iraf.daophot.update = no

        iraf.psf.interactive = no
        iraf.pstselect.interactive = no

        iraf.datapars.saveParList()
        iraf.fitskypars.saveParList()
        iraf.centerpars.saveParList()
        iraf.findpars.saveParList()
        iraf.photpars.saveParList()

        tfiles = [
            "coo_bright",
            "coo_ok",
            "coo_faint",
            "mag_all",
            "mag_bright",
            "mag_ok",
            "mag_good",
            "mag_best",
            "pst_in",
            "pst_out",
            "pst_out2",
            "prf",
            "psg_org",
            "psg",
            "psf_1.fits",
            "psf_2.fits",
            "psf_final.fits",
            "psf_3.fits",
            "psf_4.fits",
            "mag_pst",
            "coo_pst",
            "nst",
            "nrj",
            "seepsf.fits",
            "sub.fits",
            "fwhm",
            "apcor",
        ]

        for file in tfiles:
            extname = "chip" + str(f[current_ext].header.get("IMAGEID", str(current_ext))).zfill(2)
            tfile[file] = sexp + "_" + extname + "." + file
            if os.access(tfile[file], os.F_OK):
                os.unlink(tfile[file])

        if EXTEND == "T":
            this_image = opt.filename + "[" + extname + "]"
        else:
            this_image = opt.filename
        gain = f[current_ext].header.get("GAIN", 1.0)
        #### set sky/sigma parameters specific to this frame.
        (skyvalue, sigma) = jjkmode.stats(f[current_ext].data)
        import math

        sigma = math.sqrt(skyvalue / gain)
        datamin = float(skyvalue) - 8.0 * float(sigma)
        print "Determined sky level to be " + str(skyvalue) + " +/-" + str(sigma)

        iraf.datapars.datamin = datamin
        iraf.datapars.sigma = float(sigma)
        iraf.datapars.saveParList()

        iraf.fitskypars.skyvalue = skyvalue
        iraf.fitskypars.saveParList()
        ### find the bright stars in the image.
        print "sextracting for stars in " + this_image

        ###iraf.daophot.daofind(image=this_image,
        ###                     output=tfile['coo_bright'],threshold=4.0)

        os.system(
            "sex -c /home/cadc/kavelaar/12kproc/config/default.sex -SATUR_LEVEL 25000 -CATALOG_NAME "
            + tfile["coo_bright"]
            + " "
            + this_image
        )

        ### print "finding stellar locus in sround/ground space"
        print "clipping using star_class > 0.85 "
        fcoo = open(tfile["coo_bright"], "r")
        lines = fcoo.readlines()
        fcoo.close()
        import numarray, math

        fout = open(tfile["coo_ok"], "w")
        for line in lines:
            if re.match(r"^#", line) or re.search(r"INDEF", line):
                continue
            values = line.split()
            star_class = float(values[2])
            if star_class > 0.75:
                fout.write(line)
        fout.close()

        print "Measuring photometry for psf candidate stars in " + tfile["coo_ok"]
        iraf.daophot.phot(image=this_image, coords=tfile["coo_ok"], output=tfile["mag_bright"])

        ### do this selection in 2 steps because of the way IRAF handles INDEFs
        print "Selecting stars that have good centroids and magnitudes "
        iraf.pselect(
            tfile["mag_bright"], tfile["mag_ok"], "(CIER==0)&&(PIER==0)&&(SIER==0)&&(MSKY>0)&&(MSKY<2e5)&&(MSKY!=INDEF)"
        )
        print "Selecting stars that have normal sky levels"
        condition = "(abs(MSKY -" + str(skyvalue) + ") < 5.0*" + str(sigma) + ")"
        iraf.pselect(tfile["mag_ok"], tfile["mag_good"], condition)

        a = iraf.txdump(tfile["mag_good"], "SSKEW", iraf.yes, Stdout=1)
        aa = []
        for v in a:
            aa.append(float(v))

        a = numarray.array(aa)
        mean = a.mean()
        aa = a * a

        stddev = math.sqrt(aa.sum() / len(aa) - mean ** 2)
        limit = mean + 2 * stddev

        os.unlink(tfile["mag_good"])
        condition = condition + " && SSKEW < " + str(limit)
        iraf.pselect(tfile["mag_ok"], tfile["mag_good"], condition)

        print "Choosing the psf stars"
        iraf.pstselect(image=this_image, photfile=tfile["mag_good"], pstfile=tfile["pst_in"], maxnpsf=25)

        ## construct an initial PSF image
        print "computing psf with neighbor stars based on complete star list"
        iraf.psf.mode = "a"
        iraf.psf(
            image=this_image,
            photfile=tfile["mag_bright"],
            pstfile=tfile["pst_in"],
            psfimage=tfile["psf_1.fits"],
            opstfile=tfile["pst_out"],
            groupfile=tfile["psg_org"],
            varorder=0,
        )

        try:
            print "subtracting the psf neighbors and placing the results in " + tfile["sub.fits"]
            iraf.daophot.nstar(
                image=this_image,
                groupfile=tfile["psg_org"],
                psfimage=tfile["psf_1.fits"],
                nstarfile=tfile["nst"],
                rejfile=tfile["nrj"],
            )

            iraf.daophot.substar(
                image=this_image,
                photfile=tfile["nst"],
                exfile=tfile["pst_in"],
                psfimage=tfile["psf_1.fits"],
                subimage=tfile["sub.fits"],
            )

            a = iraf.daophot.txdump(tfile["nst"], "chi", "yes", Stdout=1)
            aa = []
            for v in a:
                aa.append(float(v))

            a = numarray.array(aa)
            mean = a.mean()
            aa = a * a

            stddev = math.sqrt(aa.sum() / len(aa) - mean ** 2)
            limit = mean + 2.5 * stddev

            print "Selecting those psf stars with CHI^2 <" + str(limit) + " after fitting with trial psf"
            iraf.pselect(tfile["nst"], tfile["mag_best"], "CHI < " + str(limit))

            os.unlink(tfile["pst_out"])
            ##    os.unlink(tfile['psg'])
            ## rebuild the PSF file with the psf stars that fit well..
            ## using the neighbor subtracted image

            print "Rebuilding the PSF"

            iraf.daophot.psf(
                image=tfile["sub.fits"],
                photfile=tfile["mag_best"],
                pstfile=tfile["pst_in"],
                psfimage=tfile["psf_2.fits"],
                opstfile=tfile["pst_out"],
                groupfile=tfile["psg"],
                varorder=0,
            )

            print "re-subtracting with rebuilt psf"

            os.unlink(tfile["nst"])
            os.unlink(tfile["nrj"])
            iraf.daophot.nstar(
                image=this_image,
                groupfile=tfile["psg"],
                psfimage=tfile["psf_2.fits"],
                nstarfile=tfile["nst"],
                rejfile=tfile["nrj"],
            )

            os.unlink(tfile["sub.fits"])
            iraf.daophot.substar(
                image=this_image,
                photfile=tfile["nst"],
                exfile=tfile["pst_in"],
                psfimage=tfile["psf_2.fits"],
                subimage=tfile["sub.fits"],
            )

            os.unlink(tfile["psg"])
            os.unlink(tfile["pst_out"])
            iraf.daophot.psf(
                image=tfile["sub.fits"],
                photfile=tfile["mag_best"],
                pstfile=tfile["pst_in"],
                psfimage=tfile["psf_3.fits"],
                opstfile=tfile["pst_out"],
                groupfile=tfile["psg"],
                varorder=0,
            )

            os.unlink(tfile["nrj"])
            os.unlink(tfile["nst"])
            iraf.daophot.nstar(
                image=this_image,
                groupfile=tfile["psg"],
                psfimage=tfile["psf_3.fits"],
                nstarfile=tfile["nst"],
                rejfile=tfile["nrj"],
            )

            a = iraf.daophot.txdump(tfile["nst"], "chi", "yes", Stdout=1)
            aa = []
            for v in a:
                aa.append(float(v))

            a = numarray.array(aa)
            mean = a.mean()
            aa = a * a

            stddev = math.sqrt(aa.sum() / len(aa) - mean ** 2)
            limit = mean + 2 * stddev
            limit = 2.0

            # print "Selecting those psf stars with CHI^2 < "+str(limit)+" after fit with GOOD psf"

            os.unlink(tfile["mag_best"])
            iraf.pselect(tfile["nst"], tfile["mag_best"], "CHI < " + str(limit))

            print "Building final PSF.... "
            os.unlink(tfile["sub.fits"])
            iraf.daophot.substar(
                image=this_image,
                photfile=tfile["nst"],
                exfile=tfile["pst_in"],
                psfimage=tfile["psf_3.fits"],
                subimage=tfile["sub.fits"],
            )

            os.unlink(tfile["psg"])
            os.unlink(tfile["pst_out"])
            iraf.daophot.psf(
                image=tfile["sub.fits"],
                photfile=tfile["mag_best"],
                pstfile=tfile["pst_in"],
                psfimage=tfile["psf_final.fits"],
                opstfile=tfile["pst_out"],
                groupfile=tfile["psg"],
                varorder=0,
            )

            print "building an analytic psf for the FWHM calculations"
            os.unlink(tfile["pst_out"])
            os.unlink(tfile["psg"])
            iraf.daophot.psf(
                image=tfile["sub.fits"],
                photfile=tfile["mag_best"],
                pstfile=tfile["pst_in"],
                psfimage=tfile["psf_4.fits"],
                opstfile=tfile["pst_out"],
                groupfile=tfile["psg"],
                varorder=-1,
            )
        except:
            print sys.exc_info()[1]
            print "ERROR: Reverting to first pass psf"
            tfile["psf_final.fits"] = tfile["psf_1.fits"]

            iraf.daophot.psf(
                image=this_image,
                photfile=tfile["mag_best"],
                pstfile=tfile["pst_in"],
                psfimage=tfile["psf_4.fits"],
                opstfile=tfile["pst_out2"],
                groupfile=tfile["psg"],
                varorder=-1,
            )

        psf_ap = iraf.photpars.apertures
        ap1 = int(psf_ap)
        ap2 = int(4.0 * opt.fwhm)
        apcor = "INDEF"
        aperr = "INDEF"
        if 0:
            # try
            ### now that we have the psf use the output list of psf stars
            ### to compute the aperature correction
            lines = iraf.txdump(tfile["pst_out"], "xcen,ycen,mag,id", iraf.yes, Stdout=tfile["coo_pst"])

            ## set the lower ap value for the COG (normally set to 2)
            if ap1 < 3:
                smallap = 1
            else:
                smallap = 2 - ap1 + 1
                ap1 = 2

            ap2 = int(math.floor(4.0 * opt.fwhm))
            naperts = ap2 - ap1 + 1

            iraf.photpars.apertures = str(ap1) + ":" + str(ap2) + ":1"
            iraf.photpars.saveParList()
            iraf.daophot.phot(image=this_image, coords=tfile["coo_pst"], output=tfile["mag_pst"])
            iraf.photcal()
            iraf.photcal.mkapfile(
                tfile["mag_pst"],
                naperts=naperts,
                apercors=tfile["apcor"],
                smallap=smallap,
                verify="no",
                gcommands="",
                interactive=0,
            )
            fin = open(tfile["apcor"], "r")
            lines = fin.readlines()
            values = lines[2].split()
            apcor = values[1]
            aperr = values[2]
        # except:

        ## compute the FWHM of the PSF image using the analytic PSF (VarOrd=-1)
        psf_file = pyfits.open(tfile["psf_4.fits"])

        fwhm = psf_file[0].header.get("PAR1", 99.0) + psf_file[0].header.get("PAR2", 99.0)
        psf_file.close()
        #   ## Open the psf.fits
        infits = pyfits.open(tfile["psf_final.fits"])
        hdu = infits[0]
        inhdu = hdu.header
        inhdu.update("XTENSION", "IMAGE", before="SIMPLE")
        inhdu.update("PCOUNT", 0, after="NAXIS2")
        inhdu.update("GCOUNT", 1, after="PCOUNT")
        del hdu.header["SIMPLE"]
        del hdu.header["EXTEND"]
        inhdu.update("EXTNAME", extname, comment="image extension identifier")
        # inhdu.update("SLOW",slow,comment="SROUND low cutoff")
        # inhdu.update("SIGH",sigh,comment="SROUND high cutoff")
        inhdu.update("PFWHM", fwhm, comment="FWHM of stars based on PSF fitting")
        inhdu.update("ZMAG", zero_mag, comment="ZMAG of PSF ")
        inhdu.update("BCKG", skyvalue, comment="Mean sky level in counts")
        inhdu.update("BCKG_STD", sigma, comment="standard deviation of sky in counts")
        inhdu.update("AP1", psf_ap, comment="Apperture used for PSF flux")
        inhdu.update("AP2", ap2, comment="Full Flux aperture")
        inhdu.update("APCOR", apcor, comment="Apperture correction (ap1->ap2)")
        inhdu.update("APERR", apcor, comment="Uncertainty in APCOR")

        #    ### append this psf to the output images....
        print "Sticking this PSF onto the output file"
        f[current_ext].header.update("PFWHM", fwhm, comment="FWHM of stars based on PSF fitting")
        f[current_ext].header.update("BCKG", skyvalue, comment="Mean sky level in counts")
        f[current_ext].header.update("BCKG_STD", sigma, comment="Standard deviation of sky in counts")
        f.flush()
        outfits.append(hdu)
        outfits.flush()
        infits.close()

        ### remove the temp file we used for this computation.
        for tf in tfile.keys():
            if os.access(tfile[tf], os.F_OK):
                os.unlink(tfile[tf])

        current_ext = current_ext + 1

    outfits.close()
    return mef_psf
Ejemplo n.º 11
0
def psffit(img, fwhm, psfstars, hdr, interactive, _datamax, psffun='gauss', fixaperture=False):
    ''' 
    giving an image, a psffile compute the psf using the file _psf.coo
    '''
    import lsc
    _ron = lsc.util.readkey3(hdr, 'ron')
    _gain = lsc.util.readkey3(hdr, 'gain')
    if not _ron:
        _ron = 1
        print 'warning ron not defined'
    if not _gain:
        _gain = 1
        print 'warning ron not defined'

    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)
    zmag = 0.
    varord = 0  # -1 analitic 0 - numeric

    if fixaperture:
        print 'use fix aperture 5 8 10'
        hdr = lsc.util.readhdr(img+'.fits')
        _pixelscale = lsc.util.readkey3(hdr, 'PIXSCALE')
        a1, a2, a3, a4, = float(5. / _pixelscale), float(5. / _pixelscale), float(8. / _pixelscale), float(
                    10. / _pixelscale)
    else:
        a1, a2, a3, a4, = int(fwhm + 0.5), int(fwhm * 2 + 0.5), int(fwhm * 3 + 0.5), int(fwhm * 4 + 0.5)

    iraf.fitskypars.annulus = a4
    iraf.fitskypars.salgori = 'mean'  #mode,mean,gaussian
    iraf.photpars.apertures = '%d,%d,%d' % (a2, a3, a4)
    iraf.datapars.datamin = -100
    iraf.datapars.datamax = _datamax
    iraf.datapars.readnoise = _ron
    iraf.datapars.epadu = _gain
    iraf.datapars.exposure = 'EXPTIME'
    iraf.datapars.airmass = ''
    iraf.datapars.filter = ''
    iraf.centerpars.calgori = 'centroid'
    iraf.centerpars.cbox = a2
    iraf.daopars.recenter = 'yes'
    iraf.photpars.zmag = zmag

    iraf.delete('_psf.ma*,' + img + '.psf.fit?,_psf.ps*,_psf.gr?,_psf.n*,_psf.sub.fit?', verify=False)
    iraf.phot(img+'[0]', '_psf.coo', '_psf.mag', interac=False, verify=False, verbose=False)

    # removes saturated stars from the list (IRAF just issues a warning)
    with open('_psf.mag') as f:
        text = f.read()
    text = re.sub('(.*\n){6}.*BadPixels\* \n', '', text)
    with open('_psf.mag', 'w') as f:
        f.write(text)

    iraf.daopars.psfrad = a4
    iraf.daopars.functio = psffun
    iraf.daopars.fitrad = a1
    iraf.daopars.fitsky = 'yes'
    iraf.daopars.sannulus = a4
    iraf.daopars.recenter = 'yes'
    iraf.daopars.varorder = varord

    if interactive: # not possible to run pstselect or psf interactively on 64-bit linux (Error 851)
        shutil.copyfile('_psf.mag', '_psf.pst')
        print '_' * 80
        print '>>> Mark good stars with "a" or "d"-elete. Then "f"-it,' + \
              ' "w"-write and "q"-uit (cursor on ds9)'
        print '-' * 80
    else:
        iraf.pstselect(img+'[0]', '_psf.mag', '_psf.pst', psfstars, interac=False, verify=False)

    iraf.psf(img + '[0]', '_psf.mag', '_psf.pst', img + '.psf', '_psf.psto', '_psf.psg', interac=interactive,
             verify=False, verbose=False)
    iraf.group(img + '[0]', '_psf.mag', img + '.psf', '_psf.grp', verify=False, verbose=False)
    iraf.nstar(img + '[0]', '_psf.grp', img + '.psf', '_psf.nst', '_psf.nrj', verify=False, verbose=False)

    photmag = iraf.txdump("_psf.mag", 'xcenter,ycenter,id,mag,merr', expr='yes', Stdout=1)
    pst = iraf.txdump("_psf.pst", 'xcenter,ycenter,id', expr='yes', Stdout=1)
    fitmag = iraf.txdump("_psf.nst", 'xcenter,ycenter,id,mag,merr', expr='yes', Stdout=1)
    return photmag, pst, fitmag
Ejemplo n.º 12
0
def psffit(img, fwhm, psfstars, hdr, interactive, _datamax=45000, psffun='gauss', fixaperture=False):
    ''' 
    giving an image, a psffile compute the psf using the file _psf.coo
    '''
    import lsc
    _ron = lsc.util.readkey3(hdr, 'ron')
    _gain = lsc.util.readkey3(hdr, 'gain')
    if not _ron:
        _ron = 1
        print 'warning ron not defined'
    if not _gain:
        _gain = 1
        print 'warning ron not defined'

    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)
    zmag = 0.
    varord = 0  # -1 analitic 0 - numeric

    if fixaperture:
        print 'use fix aperture 5 8 10'
        hdr = lsc.util.readhdr(img+'.fits')
        _pixelscale = lsc.util.readkey3(hdr, 'PIXSCALE')
        a1, a2, a3, a4, = float(5. / _pixelscale), float(5. / _pixelscale), float(8. / _pixelscale), float(
                    10. / _pixelscale)
    else:
        a1, a2, a3, a4, = int(fwhm + 0.5), int(fwhm * 2 + 0.5), int(fwhm * 3 + 0.5), int(fwhm * 4 + 0.5)

    iraf.fitskypars.annulus = a4
    iraf.fitskypars.salgori = 'mean'  #mode,mean,gaussian
    iraf.photpars.apertures = '%d,%d,%d' % (a2, a3, a4)
    iraf.datapars.datamin = -100
    iraf.datapars.datamax = _datamax
    iraf.datapars.readnoise = _ron
    iraf.datapars.epadu = _gain
    iraf.datapars.exposure = 'EXPTIME'
    iraf.datapars.airmass = ''
    iraf.datapars.filter = ''
    iraf.centerpars.calgori = 'centroid'
    iraf.centerpars.cbox = a2
    iraf.daopars.recenter = 'yes'
    iraf.photpars.zmag = zmag

    iraf.delete('_psf.ma*,' + img + '.psf.fit?,_psf.ps*,_psf.gr?,_psf.n*,_psf.sub.fit?', verify=False)
    iraf.phot(img+'[0]', '_psf.coo', '_psf.mag', interac=False, verify=False, verbose=False)

    iraf.daopars.psfrad = a4
    iraf.daopars.functio = psffun
    iraf.daopars.fitrad = a1
    iraf.daopars.fitsky = 'yes'
    iraf.daopars.sannulus = a4
    iraf.daopars.recenter = 'yes'
    iraf.daopars.varorder = varord

    if interactive:
        shutil.copyfile('_psf.mag', '_psf.pst')
        print '_' * 80
        print '>>> Mark good stars with "a" or "d"-elete. Then "f"-it,' + \
              ' "w"-write and "q"-uit (cursor on ds9)'
        print '-' * 80
    else:
        iraf.pstselect(img+'[0]', '_psf.mag', '_psf.pst', psfstars, interac=False, verify=False)

    iraf.psf(img + '[0]', '_psf.mag', '_psf.pst', img + '.psf', '_psf.psto', '_psf.psg', interac=interactive,
             verify=False, verbose=False)
    iraf.group(img + '[0]', '_psf.mag', img + '.psf', '_psf.grp', verify=False, verbose=False)
    iraf.nstar(img + '[0]', '_psf.grp', img + '.psf', '_psf.nst', '_psf.nrj', verify=False, verbose=False)

    photmag = iraf.txdump("_psf.mag", 'xcenter,ycenter,id,mag,merr', expr='yes', Stdout=1)
    pst = iraf.txdump("_psf.pst", 'xcenter,ycenter,id', expr='yes', Stdout=1)
    fitmag = iraf.txdump("_psf.nst", 'xcenter,ycenter,id,mag,merr', expr='yes', Stdout=1)
    return photmag, pst, fitmag
Ejemplo n.º 13
0
def psfphot(image,
            clobber=globclob,
            verbose=globver,
            pixtol=3.0,
            maxnpsf=5,
            interact=yes):
    """ perform PSF-based photometry on a single target star (SN?) at RA, Dec and  
        also on a set of comparison stars, using daophot.  simultaneously 
        perform aperture photometry on all the comparison stars (after 
        subtracting off contributions from neighbors) to enable absolute 
        photometry by comparison to aperture photometry of standard stars 
        observed in other fields """

    # Defaults / constants
    psfmult = 5.0  #standard factor (multiplied by fwhm to get psfradius)
    psfmultsmall = 3.0  #similar to psfmult, adjusted for nstar and substar

    # Necessary package
    iraf.imutil()

    # Detect stars
    iqpkg.iqobjs(image, 3.0, 50000.0, wtimage="", skyval="!MEDSKY")

    root = image[:-5]
    [gain, rnoise, fwhm] = get_head(image, ["GAIN", "READNOI", "SEEPIX"])
    fwhm = float(fwhm)
    rnoise = float(rnoise)

    iraf.iterstat(image)

    # Saturation level
    if not check_head(image, "SATURATE"):
        saturate = 60000.0
    else:
        saturate = get_head(image, "SATURATE")

    # Update datapars and daopars
    iraf.datapars.fwhmpsf = fwhm
    iraf.datapars.sigma = iraf.iterstat.sigma
    iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma
    iraf.datapars.datamax = 70000.0
    iraf.datapars.readnoise = rnoise
    iraf.datapars.epadu = gain
    iraf.daopars.psfrad = psfmult * fwhm
    iraf.daopars.fitrad = fwhm
    iraf.daopars.function = "gauss,moffat15,moffat25,lorentz,penny1"

    # coo file
    stars = Starlist("%s.stars" % image)
    outf = open("%s.coo.1" % image[:-5], "w")
    for star in stars:
        outf.write("%10.3f%10.3f\n" % (star.xval, star.yval))
    outf.close()

    #initial photometry
    iraf.daophot.phot(root,
                      'default',
                      'default',
                      aperture=fwhm,
                      verify=no,
                      verbose=verbose)

    iraf.datapars.datamax = 30000.0
    iraf.pstselect(root,
                   'default',
                   'default',
                   maxnpsf,
                   interactive=yes,
                   verify=no,
                   verbose=verbose)

    iraf.psf(root,
             'default',
             'default',
             'default',
             'default',
             'default',
             interactive=interact,
             verify=no,
             verbose=verbose)

    iraf.allstar(root,
                 'default',
                 'default',
                 'default',
                 'default',
                 'default',
                 verify=no,
                 verbose=verbose)

    iraf.iterstat("%s.sub.fits" % root)

    iraf.datapars.sigma = iraf.iterstat.sigma
    iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma

    iraf.datapars.datamax = 70000.0
    iraf.daophot.phot("%s.sub.fits" % root,
                      "SN.coo",
                      'default',
                      'default',
                      aperture=fwhm,
                      verify=no,
                      verbose=verbose)

    iraf.datapars.datamax = 30000.0
    iraf.daopars.fitrad = fwhm * 2.0
    iraf.allstar("%s.sub.fits" % root,
                 'default',
                 "%s.psf.1.fits" % root,
                 'default',
                 'default',
                 'default',
                 verify=no,
                 verbose=no)
Ejemplo n.º 14
0
def psfphot(inlist,
            ra,
            dec,
            reffilt,
            interact,
            fwhm,
            readnoise,
            gain,
            threshold,
            refimage=None,
            starfile=None,
            maxnpsf=5,
            clobber=globclob,
            verbose=globver,
            skykey='SKYBKG',
            filtkey='FILTER',
            pixtol=3.0):
    """ perform PSF-based photometry on a single target star (SN?) at RA, Dec and  
        also on a set of comparison stars, using daophot.  simultaneously 
        perform aperture photometry on all the comparison stars (after 
        subtracting off contributions from neighbors) to enable absolute 
        photometry by comparison to aperture photometry of standard stars 
        observed in other fields """

    # Defaults / constants
    psfmult = 5.0  #standard factor (multiplied by fwhm to get psfradius)
    psfmultsmall = 3.0  #similar to psfmult, adjusted for nstar and substar

    # Necessary package
    iraf.imutil()

    # Parse inputs
    infiles = iraffiles(inlist)

    # Which file is reffilt?  call it refimage
    if refimage == None:
        for image in infiles:
            if check_head(image, filtkey):
                try:
                    imgfilt = get_head(image, filtkey)
                    if imgfilt == reffilt:
                        refimage = image
                        break
                except:
                    pass

    if not refimage:
        print "BAD USER!  No image corresponds to the filter: %s" % reffilt
        return
    else:
        refroot = 's' + refimage.split('.')[0]

    #first make sure to add back in background of sky
    iraf.iqsubsky(inlist, sub=no, skykey=skykey)

    #put reference image first on list
    infiles.remove(refimage)
    infiles.insert(0, refimage)

    #setup for keywords
    if gain == "!GAIN":
        try:
            gainval = float(get_head(image, gain))
        except:
            print "Bad header keyword for gain."
    else:
        gainval = float(gain)

    if readnoise == "!READNOISE":
        try:
            readval = float(get_head(image, readnoise))
        except:
            print "Bad header keyword for readnoise."
    else:
        readval = float(readnoise)

    # Process each file in turn
    for image in infiles:

        # Check that the image is there
        check_exist(image, "r")

        # Grab image root name
        root = image.split('.')[0]

        # Map image to reference image
        if not (image == refimage):
            [nx, ny] = get_head(image, ['NAXIS1', 'NAXIS2'])
            stars = Starlist(get_head(image, 'STARFILE'))
            refstars = Starlist(get_head(refimage, 'STARFILE'))
            refstars.pix2wcs(refimage)
            refstars.wcs2pix(image)
            match, refmatch = stars.match(refstars, useflags=yes, tol=10.0)
            nstars = len(match)
            if not (nstars > 2):
                print 'Could not find star matches between reference and %s' % image
                infiles.remove(image)
                continue
            refmatch.pix2wcs(image)
            refmatch.wcs2pix(refimage)
            matchfile = open('%s.match' % root, 'w')
            for i in range(len(match)):
                matchfile.write('%10.3f%10.3f%10.3f%10.3f\n' %
                                (refmatch[i].xval, refmatch[i].yval,
                                 match[i].xval, match[i].yval))
            matchfile.close()
            check_exist('%s.geodb' % root, 'w', clobber=clobber)
            iraf.geomap('%s.match' % root,
                        '%s.geodb' % root,
                        1.0,
                        nx,
                        1.0,
                        ny,
                        verbose=no,
                        interactive=no)
            check_exist('s%s.fits' % root, 'w', clobber=clobber)
            iraf.geotran(image,
                         's%s' % root,
                         '%s.geodb' % root,
                         '%s.match' % root,
                         geometry="geometric",
                         boundary="constant",
                         verbose=no)
        else:
            iraf.imcopy(image, 's%s' % root)
        root = 's%s' % root

        #get sky level and calculate sigma
        #if check_head(image, skykey):
        #    try:
        #        sky=float(get_head(image, skykey))
        #    except:
        #        print "No sky levels in header."

        #sigma= (((sky * gainval) + readval**2)**.5) / gainval
        iraf.iterstat(image)

        # Saturation level
        if not check_head(image, "SATURATE"):
            saturate = 60000.0
        else:
            saturate = get_head(image, "SATURATE")

        # Update datapars and daopars
        iraf.datapars.fwhmpsf = fwhm
        iraf.datapars.sigma = iraf.iterstat.sigma
        iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma
        iraf.datapars.datamax = 0.90 * saturate
        iraf.datapars.readnoise = readval
        iraf.datapars.epadu = gainval
        iraf.datapars.filter = filtkey
        iraf.daopars.psfrad = psfmult * fwhm
        iraf.daopars.fitrad = fwhm
        iraf.daopars.function = "gauss,moffat15,moffat25,lorentz,penny1"

        #find stars in image unless a starlist is given
        if image == refimage and starfile == None:
            iraf.daophot.daofind(root,
                                 'refimage.coo.1',
                                 threshold=threshold,
                                 verify=no,
                                 verbose=verbose)
        elif image == refimage:
            shutil.copy(starfile, 'refimage.coo.1')

        #initial photometry
        iraf.daophot.phot(root,
                          'refimage.coo.1',
                          'default',
                          aperture=fwhm,
                          verify=no,
                          verbose=verbose)

        #select stars for psf the first time
        refstarsfile = "refimage.pst.1"
        if image == refimage:
            iraf.pstselect(root,
                           'default',
                           refstarsfile,
                           maxnpsf,
                           interactive=yes,
                           verify=no,
                           verbose=verbose)

        #fit the psf
        iraf.psf(root,
                 'default',
                 refstarsfile,
                 'default',
                 'default',
                 'default',
                 interactive=interact,
                 verify=no,
                 verbose=verbose)

        #identify neighboring/interfering stars to selected stars
        groupingfile = root + ".psg.1"
        iraf.nstar(root,
                   groupingfile,
                   'default',
                   'default',
                   'default',
                   psfrad=psfmultsmall * fwhm,
                   verify=no,
                   verbose=verbose)

        #subtract out neighboring stars from image
        iraf.substar(root,
                     'default',
                     refstarsfile,
                     'default',
                     'default',
                     psfrad=psfmultsmall * fwhm,
                     verify=no,
                     verbose=verbose)

        #repeat psf to get better psf model
        #IRAF's interactive version usually crashes
        subtractedimage = root + ".sub.1"
        iraf.psf(subtractedimage,
                 root + ".nst.1",
                 refstarsfile,
                 '%s.psf.2' % root,
                 '%s.pst.2' % root,
                 '%s.psg.2' % root,
                 interactive=interact,
                 verify=no,
                 verbose=verbose)

        #Need to make sure SN was detected by daofind
        stars = Starlist('%s.mag.1' % root)
        SN = Star(name='SN', radeg=ra, dcdeg=dec, fwhm=2.0, fwhmw=2.0)
        SNlis = Starlist(stars=[SN])
        SNlis.wcs2pix(image)
        if (len(stars.match(SNlis)[0]) == 0):
            #No match - need to add to daofind file
            print "No match!"
            coofile = open('refimage.coo.1', 'a+')
            coofile.write('%10.3f%10.3f%9.3f%8.3f%13.3f%12.3f%8i\n' %
                          (SNlis[0].xval, SNlis[0].yval, 99.999, 0.500, 0.000,
                           0.000, 999))
            coofile.close()

        #repeat aperture photometry to get good comparisons to standard fields
        iraf.daophot.phot(root,
                          'refimage.coo.1',
                          'default',
                          aperture=psfmult * fwhm,
                          verify=no,
                          verbose=verbose)

        # allstar run
        iraf.allstar(root,
                     'default',
                     'default',
                     'default',
                     'default',
                     'default',
                     verify=no,
                     verbose=verbose)
Ejemplo n.º 15
0
def build(f):

    ### is this an MEF file
    current_ext = 0
    NEXTEND = 0

    EXTEND = f[0].header['EXTEND']
    if (EXTEND == "T"):
        NEXTEND = f[0].header['NEXTEND']
        current_ext = 1

    ### create the name of the output MEF psf file
    if not f[0].header.has_key('FILENAME'):
        os.unlink(opt.filename)
        sys.exit('The fits file ' + opt.filename + ' has no EXPNUM keyword\n')

    sexp = f[0].header['FILENAME']
    mef_psf = sexp + "p_psf_iraf.fits"
    ### create an MEF file that will contian the PSF(s)
    import pyfits
    fitsobj = pyfits.HDUList()
    prihdu = pyfits.PrimaryHDU()
    import re
    prihdu.header.update('FILENAME', sexp, comment='CFHT Exposure Numebr')
    prihdu.header.update('NEXTEND', NEXTEND, comment='number of extensions')
    version = re.match(r'\$Rev.*: (\d*.\d*) \$', __Version__).group(1)
    prihdu.header.update('MKPSF_V',
                         float(version),
                         comment="Version number of mkpsf")
    fitsobj.append(prihdu)
    if os.access(mef_psf, os.F_OK):
        os.unlink(mef_psf)
    fitsobj.writeto(mef_psf)
    fitsobj.close()
    outfits = pyfits.open(mef_psf, "append")
    prihdr = outfits[0].header

    import jjkmode

    ### Get my python routines
    from pyraf import iraf
    from pyraf.irafpar import IrafParList

    ### keep all the parameters locally cached.
    iraf.set(uparm="./")

    ### Load the required IRAF packages
    iraf.digiphot()
    iraf.apphot()
    iraf.daophot()

    ### temp file name hash.
    tfile = {}

    while (current_ext <= NEXTEND):

        ### this is a psf SCRIPT so the showplots and interactive are off by force

        print "Working on image section " + str(current_ext)

        iraf.findpars.sharplo = 0
        iraf.findpars.sharphi = 0.7
        iraf.findpars.roundlo = -0.7
        iraf.findpars.roundhi = 0.7

        iraf.datapars.datamax = 20000
        iraf.datapars.airmass = 'AIRMASS'
        iraf.datapars.filter = 'FILTER'
        iraf.datapars.obstime = 'TIME-OBS'
        iraf.datapars.exposure = 'EXPTIME'
        iraf.datapars.gain = 'GAIN'
        iraf.datapars.ccdread = 'RDNOISE'
        iraf.datapars.fwhmpsf = opt.fwhm

        iraf.daopars.nclean = 2
        iraf.daopars.psfrad = 5.0 * opt.fwhm
        iraf.daopars.fitrad = 0.85 * opt.fwhm
        iraf.daopars.function = "gauss"

        iraf.centerpars.calgorithm = 'centroid'

        zero_mag = 26.19
        iraf.photpars.zmag = zero_mag
        iraf.photpars.apertures = int(0.85 * opt.fwhm)
        iraf.fitskypars.annulus = 2 + int(opt.fwhm * 4.00)
        iraf.fitskypars.dannulus = int(opt.fwhm * 2.0)
        iraf.daophot.verbose = no
        iraf.daophot.verify = no
        iraf.daophot.update = no

        iraf.psf.interactive = no
        iraf.pstselect.interactive = no

        iraf.datapars.saveParList()
        iraf.fitskypars.saveParList()
        iraf.centerpars.saveParList()
        iraf.findpars.saveParList()
        iraf.photpars.saveParList()

        tfiles = [
            'coo_bright', 'coo_ok', 'coo_faint', 'mag_all', 'mag_bright',
            'mag_ok', 'mag_good', 'mag_best', 'pst_in', 'pst_out', 'pst_out2',
            'prf', 'psg_org', 'psg', 'psf_1.fits', 'psf_2.fits',
            'psf_final.fits', 'psf_3.fits', 'psf_4.fits', 'mag_pst', 'coo_pst',
            'nst', 'nrj', 'seepsf.fits', 'sub.fits', 'fwhm', 'apcor'
        ]

        for file in tfiles:
            extname = "chip" + str(f[current_ext].header.get(
                'IMAGEID', str(current_ext))).zfill(2)
            tfile[file] = sexp + "_" + extname + "." + file
            if (os.access(tfile[file], os.F_OK)):
                os.unlink(tfile[file])

        if (EXTEND == "T"):
            this_image = opt.filename + "[" + extname + "]"
        else:
            this_image = opt.filename
        gain = f[current_ext].header.get('GAIN', 1.0)
        #### set sky/sigma parameters specific to this frame.
        (skyvalue, sigma) = jjkmode.stats(f[current_ext].data)
        import math
        sigma = math.sqrt(skyvalue / gain)
        datamin = float(skyvalue) - 8.0 * float(sigma)
        print "Determined sky level to be " + str(skyvalue) + " +/-" + str(
            sigma)

        iraf.datapars.datamin = datamin
        iraf.datapars.sigma = float(sigma)
        iraf.datapars.saveParList()

        iraf.fitskypars.skyvalue = skyvalue
        iraf.fitskypars.saveParList()
        ### find the bright stars in the image.
        print "sextracting for stars in " + this_image

        ###iraf.daophot.daofind(image=this_image,
        ###                     output=tfile['coo_bright'],threshold=4.0)

        os.system(
            "sex -c /home/cadc/kavelaar/12kproc/config/default.sex -SATUR_LEVEL 25000 -CATALOG_NAME "
            + tfile['coo_bright'] + " " + this_image)

        ### print "finding stellar locus in sround/ground space"
        print "clipping using star_class > 0.85 "
        fcoo = open(tfile['coo_bright'], 'r')
        lines = fcoo.readlines()
        fcoo.close()
        import numarray, math
        fout = open(tfile['coo_ok'], 'w')
        for line in lines:
            if re.match(r'^#', line) or re.search(r'INDEF', line):
                continue
            values = line.split()
            star_class = float(values[2])
            if star_class > 0.75:
                fout.write(line)
        fout.close()

        print "Measuring photometry for psf candidate stars in " + tfile[
            'coo_ok']
        iraf.daophot.phot(image=this_image,
                          coords=tfile['coo_ok'],
                          output=tfile['mag_bright'])

        ### do this selection in 2 steps because of the way IRAF handles INDEFs
        print "Selecting stars that have good centroids and magnitudes "
        iraf.pselect(
            tfile['mag_bright'], tfile['mag_ok'],
            "(CIER==0)&&(PIER==0)&&(SIER==0)&&(MSKY>0)&&(MSKY<2e5)&&(MSKY!=INDEF)"
        )
        print "Selecting stars that have normal sky levels"
        condition = "(abs(MSKY -" + str(skyvalue) + ") < 5.0*" + str(
            sigma) + ")"
        iraf.pselect(tfile['mag_ok'], tfile['mag_good'], condition)

        a = iraf.txdump(tfile['mag_good'], "SSKEW", iraf.yes, Stdout=1)
        aa = []
        for v in a:
            aa.append(float(v))

        a = numarray.array(aa)
        mean = a.mean()
        aa = a * a

        stddev = math.sqrt(aa.sum() / len(aa) - mean**2)
        limit = mean + 2 * stddev

        os.unlink(tfile['mag_good'])
        condition = condition + " && SSKEW < " + str(limit)
        iraf.pselect(tfile['mag_ok'], tfile['mag_good'], condition)

        print "Choosing the psf stars"
        iraf.pstselect(image=this_image,
                       photfile=tfile['mag_good'],
                       pstfile=tfile['pst_in'],
                       maxnpsf=25)

        ## construct an initial PSF image
        print "computing psf with neighbor stars based on complete star list"
        iraf.psf.mode = 'a'
        iraf.psf(image=this_image,
                 photfile=tfile['mag_bright'],
                 pstfile=tfile['pst_in'],
                 psfimage=tfile['psf_1.fits'],
                 opstfile=tfile['pst_out'],
                 groupfile=tfile['psg_org'],
                 varorder=0)

        try:
            print "subtracting the psf neighbors and placing the results in " + tfile[
                'sub.fits']
            iraf.daophot.nstar(image=this_image,
                               groupfile=tfile['psg_org'],
                               psfimage=tfile['psf_1.fits'],
                               nstarfile=tfile['nst'],
                               rejfile=tfile['nrj'])

            iraf.daophot.substar(image=this_image,
                                 photfile=tfile['nst'],
                                 exfile=tfile['pst_in'],
                                 psfimage=tfile['psf_1.fits'],
                                 subimage=tfile['sub.fits'])

            a = iraf.daophot.txdump(tfile['nst'], 'chi', 'yes', Stdout=1)
            aa = []
            for v in a:
                aa.append(float(v))

            a = numarray.array(aa)
            mean = a.mean()
            aa = a * a

            stddev = math.sqrt(aa.sum() / len(aa) - mean**2)
            limit = mean + 2.5 * stddev

            print "Selecting those psf stars with CHI^2 <" + str(
                limit) + " after fitting with trial psf"
            iraf.pselect(tfile['nst'], tfile['mag_best'],
                         "CHI < " + str(limit))

            os.unlink(tfile['pst_out'])
            ##    os.unlink(tfile['psg'])
            ## rebuild the PSF file with the psf stars that fit well..
            ## using the neighbor subtracted image

            print "Rebuilding the PSF"

            iraf.daophot.psf(image=tfile['sub.fits'],
                             photfile=tfile['mag_best'],
                             pstfile=tfile['pst_in'],
                             psfimage=tfile['psf_2.fits'],
                             opstfile=tfile['pst_out'],
                             groupfile=tfile['psg'],
                             varorder=0)

            print "re-subtracting with rebuilt psf"

            os.unlink(tfile['nst'])
            os.unlink(tfile['nrj'])
            iraf.daophot.nstar(image=this_image,
                               groupfile=tfile['psg'],
                               psfimage=tfile['psf_2.fits'],
                               nstarfile=tfile['nst'],
                               rejfile=tfile['nrj'])

            os.unlink(tfile['sub.fits'])
            iraf.daophot.substar(image=this_image,
                                 photfile=tfile['nst'],
                                 exfile=tfile['pst_in'],
                                 psfimage=tfile['psf_2.fits'],
                                 subimage=tfile['sub.fits'])

            os.unlink(tfile['psg'])
            os.unlink(tfile['pst_out'])
            iraf.daophot.psf(image=tfile['sub.fits'],
                             photfile=tfile['mag_best'],
                             pstfile=tfile['pst_in'],
                             psfimage=tfile['psf_3.fits'],
                             opstfile=tfile['pst_out'],
                             groupfile=tfile['psg'],
                             varorder=0)

            os.unlink(tfile['nrj'])
            os.unlink(tfile['nst'])
            iraf.daophot.nstar(image=this_image,
                               groupfile=tfile['psg'],
                               psfimage=tfile['psf_3.fits'],
                               nstarfile=tfile['nst'],
                               rejfile=tfile['nrj'])

            a = iraf.daophot.txdump(tfile['nst'], 'chi', 'yes', Stdout=1)
            aa = []
            for v in a:
                aa.append(float(v))

            a = numarray.array(aa)
            mean = a.mean()
            aa = a * a

            stddev = math.sqrt(aa.sum() / len(aa) - mean**2)
            limit = mean + 2 * stddev
            limit = 2.0

            #print "Selecting those psf stars with CHI^2 < "+str(limit)+" after fit with GOOD psf"

            os.unlink(tfile['mag_best'])
            iraf.pselect(tfile['nst'], tfile['mag_best'],
                         "CHI < " + str(limit))

            print "Building final PSF.... "
            os.unlink(tfile['sub.fits'])
            iraf.daophot.substar(image=this_image,
                                 photfile=tfile['nst'],
                                 exfile=tfile['pst_in'],
                                 psfimage=tfile['psf_3.fits'],
                                 subimage=tfile['sub.fits'])

            os.unlink(tfile['psg'])
            os.unlink(tfile['pst_out'])
            iraf.daophot.psf(image=tfile['sub.fits'],
                             photfile=tfile['mag_best'],
                             pstfile=tfile['pst_in'],
                             psfimage=tfile['psf_final.fits'],
                             opstfile=tfile['pst_out'],
                             groupfile=tfile['psg'],
                             varorder=0)

            print "building an analytic psf for the FWHM calculations"
            os.unlink(tfile['pst_out'])
            os.unlink(tfile['psg'])
            iraf.daophot.psf(image=tfile['sub.fits'],
                             photfile=tfile['mag_best'],
                             pstfile=tfile['pst_in'],
                             psfimage=tfile['psf_4.fits'],
                             opstfile=tfile['pst_out'],
                             groupfile=tfile['psg'],
                             varorder=-1)
        except:
            print sys.exc_info()[1]
            print "ERROR: Reverting to first pass psf"
            tfile['psf_final.fits'] = tfile['psf_1.fits']

            iraf.daophot.psf(image=this_image,
                             photfile=tfile['mag_best'],
                             pstfile=tfile['pst_in'],
                             psfimage=tfile['psf_4.fits'],
                             opstfile=tfile['pst_out2'],
                             groupfile=tfile['psg'],
                             varorder=-1)

        psf_ap = iraf.photpars.apertures
        ap1 = int(psf_ap)
        ap2 = int(4.0 * opt.fwhm)
        apcor = "INDEF"
        aperr = "INDEF"
        if (0):
            #try
            ### now that we have the psf use the output list of psf stars
            ### to compute the aperature correction
            lines = iraf.txdump(tfile['pst_out'],
                                'xcen,ycen,mag,id',
                                iraf.yes,
                                Stdout=tfile['coo_pst'])

            ## set the lower ap value for the COG (normally set to 2)
            if (ap1 < 3):
                smallap = 1
            else:
                smallap = 2 - ap1 + 1
                ap1 = 2

            ap2 = int(math.floor(4.0 * opt.fwhm))
            naperts = ap2 - ap1 + 1

            iraf.photpars.apertures = str(ap1) + ":" + str(ap2) + ":1"
            iraf.photpars.saveParList()
            iraf.daophot.phot(image=this_image,
                              coords=tfile['coo_pst'],
                              output=tfile['mag_pst'])
            iraf.photcal()
            iraf.photcal.mkapfile(tfile['mag_pst'],
                                  naperts=naperts,
                                  apercors=tfile['apcor'],
                                  smallap=smallap,
                                  verify='no',
                                  gcommands='',
                                  interactive=0)
            fin = open(tfile['apcor'], 'r')
            lines = fin.readlines()
            values = lines[2].split()
            apcor = values[1]
            aperr = values[2]
        #except:

        ## compute the FWHM of the PSF image using the analytic PSF (VarOrd=-1)
        psf_file = pyfits.open(tfile['psf_4.fits'])

        fwhm = (psf_file[0].header.get('PAR1', 99.0) +
                psf_file[0].header.get('PAR2', 99.0))
        psf_file.close()
        #   ## Open the psf.fits
        infits = pyfits.open(tfile['psf_final.fits'])
        hdu = infits[0]
        inhdu = hdu.header
        inhdu.update('XTENSION', 'IMAGE', before='SIMPLE')
        inhdu.update('PCOUNT', 0, after='NAXIS2')
        inhdu.update('GCOUNT', 1, after='PCOUNT')
        del hdu.header['SIMPLE']
        del hdu.header['EXTEND']
        inhdu.update("EXTNAME", extname, comment="image extension identifier")
        #inhdu.update("SLOW",slow,comment="SROUND low cutoff")
        #inhdu.update("SIGH",sigh,comment="SROUND high cutoff")
        inhdu.update("PFWHM",
                     fwhm,
                     comment="FWHM of stars based on PSF fitting")
        inhdu.update("ZMAG", zero_mag, comment="ZMAG of PSF ")
        inhdu.update("BCKG", skyvalue, comment="Mean sky level in counts")
        inhdu.update("BCKG_STD",
                     sigma,
                     comment="standard deviation of sky in counts")
        inhdu.update("AP1", psf_ap, comment="Apperture used for PSF flux")
        inhdu.update("AP2", ap2, comment="Full Flux aperture")
        inhdu.update("APCOR", apcor, comment="Apperture correction (ap1->ap2)")
        inhdu.update("APERR", apcor, comment="Uncertainty in APCOR")

        #    ### append this psf to the output images....
        print "Sticking this PSF onto the output file"
        f[current_ext].header.update(
            "PFWHM", fwhm, comment="FWHM of stars based on PSF fitting")
        f[current_ext].header.update("BCKG",
                                     skyvalue,
                                     comment="Mean sky level in counts")
        f[current_ext].header.update(
            "BCKG_STD", sigma, comment="Standard deviation of sky in counts")
        f.flush()
        outfits.append(hdu)
        outfits.flush()
        infits.close()

        ### remove the temp file we used for this computation.
        for tf in tfile.keys():
            if os.access(tfile[tf], os.F_OK):
                os.unlink(tfile[tf])

        current_ext = current_ext + 1

    outfits.close()
    return mef_psf
def doaphot_psf_photometry(path, imageFile, extent, extension):

    data, image, hdulist, size, mid_point = load_image_data(
        imageFile, extent, extension=extension)
    # garbage collect data and image
    data = None
    image = None

    # import IRAF packages
    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)

    # dao_params.txt must be created manually using daoedit in iraf/pyraf for 5 stars
    dao_params = extract_dao_params(
        imageFile.strip(".fits") + "_dao_params.txt")

    sky = dao_params[0]
    sky_sigma = dao_params[1]
    fwhm = dao_params[2]
    datamin = dao_params[3]
    aperature_radius = dao_params[4]
    annulus_inner_radius = dao_params[5]
    annulus_outer_radius = dao_params[6]

    # get datapars
    datapars = extract_header_info(hdulist)

    datamax = datapars[0]
    ccdread = datapars[1]
    gain = datapars[2]
    readnoise = datapars[3]
    epadu = datapars[4]
    exposure = datapars[5]
    airmass = datapars[6]
    filter = datapars[7]
    obstime = datapars[8]
    itime = datapars[9]
    xairmass = datapars[10]
    ifilter = datapars[11]
    otime = datapars[12]

    # set datapars
    iraf.datapars.unlearn()
    iraf.datapars.setParam('fwhmpsf', fwhm)
    iraf.datapars.setParam('sigma', sky_sigma)
    iraf.datapars.setParam('datamin', datamin)
    iraf.datapars.setParam('datamax', datamax)
    iraf.datapars.setParam('ccdread', ccdread)
    iraf.datapars.setParam('gain', gain)
    iraf.datapars.setParam('readnoise', readnoise)
    iraf.datapars.setParam('epadu', epadu)
    iraf.datapars.setParam('exposure', exposure)
    iraf.datapars.setParam('airmass', airmass)
    iraf.datapars.setParam('filter', filter)
    iraf.datapars.setParam('obstime', obstime)
    iraf.datapars.setParam('itime', itime)
    iraf.datapars.setParam('xairmass', xairmass)
    iraf.datapars.setParam('ifilter', ifilter)
    iraf.datapars.setParam('otime', otime)

    # set photpars
    iraf.photpars.unlearn()
    iraf.photpars.setParam('apertures', aperature_radius)
    zp_estimate = iraf.photpars.getParam('zmag')
    # set centerpars
    iraf.centerpars.unlearn()
    iraf.centerpars.setParam('calgorithm', 'centroid')
    iraf.centerpars.setParam('cbox', 5.)

    # set fitskypars
    iraf.fitskypars.unlearn()
    iraf.fitskypars.setParam('annulus', annulus_inner_radius)
    iraf.fitskypars.setParam('dannulus', annulus_outer_radius)

    # run phot
    run_phot(imageFile, imageFile + ".quality.coo")

    # set daopars
    iraf.daopars.unlearn()
    iraf.daopars.setParam('function', 'auto')
    iraf.daopars.setParam('psfrad', 2 * int(fwhm) + 1)
    iraf.daopars.setParam('fitrad', fwhm)

    # select a psf/prf star
    # taking whatever the default selection is, can't see a way to pass coords of desired
    # stars, if could would use those in dao_params.txt
    # An alternative is to reorder the objects so those in dao_params.txt are at top of
    # sources table, assuming those are the defaults selected here.
    iraf.pstselect.unlearn()
    iraf.pstselect.setParam('maxnpsf', 5)
    iraf.pstselect(image=imageFile,
                   photfile=imageFile + ".mags.1",
                   pstfile=imageFile + ".pst.1",
                   interactive='no')

    # fit the psf
    iraf.psf.unlearn()
    iraf.psf(image=imageFile, \
             photfile=imageFile+".mags.1",\
             pstfile=imageFile+".pst.1",\
             psfimage=imageFile+".psf.1.fits",\
             opstfile=imageFile+".pst.2",\
             groupfile=imageFile+".psg.1",\
             interactive='no')
    # check the psf
    # perhaps pass it through ML and visualise
    # save visualisation for later manual checks
    iraf.seepsf.unlearn()
    iraf.seepsf(psfimage=imageFile + ".psf.1.fits",
                image=imageFile + ".psf.1s.fits")

    hdulist_psf = fits.open(imageFile + ".psf.1s.fits")
    #print "[*] plotting PSF for visual check."
    #plt.imshow(hdulist_psf[0].data, interpolation="nearest",cmap="hot")
    #plt.axis("off")
    #plt.show()

    # perform photometry
    run_allstar(imageFile, imageFile + ".psf.1.fits")
    return zp_estimate, imageFile + ".psf.1.fits"
Ejemplo n.º 17
0
def doaphot_psf_photometry(path, imageFile, extent, extension):
    
    data, image, hdulist, size, mid_point = load_image_data(imageFile, extent, extension=extension)
    # garbage collect data and image
    data = None
    image = None
    
    # import IRAF packages
    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)

    # dao_params.txt must be created manually using daoedit in iraf/pyraf for 5 stars
    dao_params = extract_dao_params(imageFile.strip(".fits")+"_dao_params.txt")
    
    sky                  = dao_params[0]
    sky_sigma            = dao_params[1]
    fwhm                 = dao_params[2]
    datamin              = dao_params[3]
    aperature_radius     = dao_params[4]
    annulus_inner_radius = dao_params[5]
    annulus_outer_radius = dao_params[6]
    
    # get datapars
    datapars = extract_header_info(hdulist)
    
    datamax   = datapars[0]
    ccdread   = datapars[1]
    gain      = datapars[2]
    readnoise = datapars[3]
    epadu     = datapars[4]
    exposure  = datapars[5]
    airmass   = datapars[6]
    filter    = datapars[7]
    obstime   = datapars[8]
    itime     = datapars[9]
    xairmass  = datapars[10]
    ifilter   = datapars[11]
    otime     = datapars[12]
    
    # set datapars
    iraf.datapars.unlearn()
    iraf.datapars.setParam('fwhmpsf',fwhm)
    iraf.datapars.setParam('sigma',sky_sigma)
    iraf.datapars.setParam('datamin',datamin)
    iraf.datapars.setParam('datamax',datamax)
    iraf.datapars.setParam('ccdread',ccdread)
    iraf.datapars.setParam('gain',gain)
    iraf.datapars.setParam('readnoise',readnoise)
    iraf.datapars.setParam('epadu',epadu)
    iraf.datapars.setParam('exposure',exposure)
    iraf.datapars.setParam('airmass',airmass)
    iraf.datapars.setParam('filter',filter)
    iraf.datapars.setParam('obstime',obstime)
    iraf.datapars.setParam('itime',itime)
    iraf.datapars.setParam('xairmass',xairmass)
    iraf.datapars.setParam('ifilter',ifilter)
    iraf.datapars.setParam('otime',otime)
    
    # set photpars
    iraf.photpars.unlearn()
    iraf.photpars.setParam('apertures',aperature_radius)
    zp_estimate = iraf.photpars.getParam('zmag')
    # set centerpars
    iraf.centerpars.unlearn()
    iraf.centerpars.setParam('calgorithm','centroid')
    iraf.centerpars.setParam('cbox',5.)
    
    # set fitskypars
    iraf.fitskypars.unlearn()
    iraf.fitskypars.setParam('annulus',annulus_inner_radius)
    iraf.fitskypars.setParam('dannulus',annulus_outer_radius)
    
    # run phot
    run_phot(imageFile, imageFile+".quality.coo")
    
    # set daopars
    iraf.daopars.unlearn()
    iraf.daopars.setParam('function','auto')
    iraf.daopars.setParam('psfrad', 2*int(fwhm)+1)
    iraf.daopars.setParam('fitrad', fwhm)
    
    # select a psf/prf star
    # taking whatever the default selection is, can't see a way to pass coords of desired
    # stars, if could would use those in dao_params.txt
    # An alternative is to reorder the objects so those in dao_params.txt are at top of
    # sources table, assuming those are the defaults selected here.
    iraf.pstselect.unlearn()
    iraf.pstselect.setParam('maxnpsf',5)
    iraf.pstselect(image=imageFile,photfile=imageFile+".mags.1",pstfile=imageFile+".pst.1",interactive='no')
    
    # fit the psf
    iraf.psf.unlearn()
    iraf.psf(image=imageFile, \
             photfile=imageFile+".mags.1",\
             pstfile=imageFile+".pst.1",\
             psfimage=imageFile+".psf.1.fits",\
             opstfile=imageFile+".pst.2",\
             groupfile=imageFile+".psg.1",\
             interactive='no')
    # check the psf
    # perhaps pass it through ML and visualise
    # save visualisation for later manual checks
    iraf.seepsf.unlearn()
    iraf.seepsf(psfimage=imageFile+".psf.1.fits", image=imageFile+".psf.1s.fits")
             
    hdulist_psf = fits.open(imageFile+".psf.1s.fits")
    #print "[*] plotting PSF for visual check."
    #plt.imshow(hdulist_psf[0].data, interpolation="nearest",cmap="hot")
    #plt.axis("off")
    #plt.show()
             
    # perform photometry
    run_allstar(imageFile,imageFile+".psf.1.fits")
    return zp_estimate, imageFile+".psf.1.fits"
Ejemplo n.º 18
0
            continue
        pst1.add_row(
            (mag1['ID'][ind[0]], mag1['XINIT'][ind[0]], mag1['YINIT'][ind[0]],
             mag1['MAG'][ind[0]], mag1['MSKY'][ind[0]]))

    pst1.write(fn[:-5] + '.pst.0',
               format='ascii.commented_header',
               delimiter='\t',
               comment='#N ID    XCENTER   YCENTER \
	    MAG         MSKY\n#U ##    pixels    pixels    magnitudes  counts\n#F %-9d  %-10.3f   %-10.3f   %-12.3f     %-15.7g\n#'
               )

    original = sys.stdout
    try:
        sys.stdout = open(fn[:-5] + '.psf1.out', 'w')
        iraf.psf(fn[:-5],photfile=fn[:-5]+'.mag.1',pstfile=fn[:-5]+'.pst.0',psfimage=fn[:-5]+'.psf.1',opstfile=fn[:-5]+'.pst.1', \
         groupfile=fn[:-5]+'.psg.1',verify='no',interactive='no',plotfile=fn[:-5]+'.psf1.plots')
        iraf.allstar(fn[:-5],photfile=fn[:-5]+'.psg.1',psfimage=fn[:-5]+'.psf.1',allstarfile=fn[:-5]+'.als.1',rejfile=fn[:-5]+ \
            '.arj.1',subimage=fn[:-5]+'.sub.1',verify='no',verbos='no')
        iraf.substar(fn[:-5],photfile=fn[:-5]+'.als.1',exfile=fn[:-5]+'.pst.1',psfimage=fn[:-5]+'.psf.1',subimage=fn[:-5]+ \
            '.sub.11',verify='no',verbose='no')

        sys.stdout = open(fn[:-5] + '.psf2.out', 'w')
        iraf.psf(fn[:-5]+'.sub.11',photfile=fn[:-5]+'.mag.1',pstfile=fn[:-5]+'.pst.1',psfimage=fn[:-5]+'.psf.2', \
            opstfile=fn[:-5]+'.pst.2', groupfile=fn[:-5]+'.psg.2',verify='no',interactive='no')
        iraf.allstar(fn[:-5],photfile=fn[:-5]+'.psg.2',psfimage=fn[:-5]+'.psf.2',allstarfile=fn[:-5]+'.als.2',rejfile=fn[:-5]+ \
            '.arj.2',subimage=fn[:-5]+'.sub.2',verify='no',verbos='no')
        iraf.substar(fn[:-5],photfile=fn[:-5]+'.als.2',exfile=fn[:-5]+'.pst.2',psfimage=fn[:-5]+'.psf.2',subimage=fn[:-5]+ \
            '.sub.22',verify='no',verbose='no')

        sys.stdout = open(fn[:-5] + '.psf3.out', 'w')
        iraf.psf(fn[:-5]+'.sub.22',photfile=fn[:-5]+'.mag.1',pstfile=fn[:-5]+'.pst.2',psfimage=fn[:-5]+'.psf.3',opstfile \
Ejemplo n.º 19
0
            star_id = prts[0]
            xpos = prts[1]
            ypos = prts[2]
            #print star_id, xpos, ypos
            pstregfl.write('point(' + str(xpos) + ',' + str(ypos) +
                           ') # point=cross text={' + star_id + '}\n')

        pstregfl.close()
        os.system("/usr/local/bin//ds9 " + flnm + '.sub.0.fits' +
                  " -regions " + flnm + ".pst.1.reg" + " &")
        tfs = time.time()
        iraf.psf(image=flnm + '.sub.0.fits',
                 photfile=flnm + '.sub.0.mag',
                 pstfile=flnm + '.pst.1',
                 psfimage=flnm + '.psf.fits',
                 opstfile=flnm + '.pst.2',
                 groupfile=flnm + '.grf.psg',
                 interactive="no",
                 showplots="no",
                 verify="no")
        tfe = time.time()
        times[runnm + '_psf'] = tfe - tfs
        iraf.seepsf(psfimage=flnm + '.psf.fits',
                    image=flnm + '.image_of_psf.fits')

    if i == 0:
        shutil.copy(runnm + '.mag',
                    runnm + '.tot.mag')  # formatting reasons only
    else:
        print "========================================="
        print "...merging phot lists"
Ejemplo n.º 20
0
def compute_psf_image(params,g,psf_deg=1,psf_rad=8,
                      star_file='phot.mags',psf_image='psf.fits',edge_dist=5):
    iraf.digiphot()
    iraf.daophot()
    fp = params.loc_output+os.path.sep

    f_im = g.image*g.mask
    f = fp+'temp.ref.fits'
    write_image(f_im,f)

    g.fw = np.max([1.5,g.fw])
    g.fw = np.min([0.5*params.psf_max_radius,g.fw])

    logfile = fp+'psf.log'

    fd = fits.getdata(f)
    xmax = fd.shape[0] - edge_dist
    ymax = fd.shape[1] - edge_dist
    

    for d in ['temp.stars','temp.phot','temp.phot1','temp.phot2','temp.pst',
              'temp.opst','temp.opst2',
              'temp.psf.fits','temp.psf1.fits','temp.psf2.fits','temp.psg',
              'temp.psg2','temp.psg3','temp.psg5','temp.rej','temp.rej2',
              'temp.sub.fits','temp.sub1.fits',
              'temp.sub2.fits','temp.opst1','temp.opst3','temp.rej3',
              'temp.nst','temp.stars1','ref.mags',psf_image,'temp.als',
              'temp.als2']:
            if os.path.exists(fp+d):
                os.remove(fp+d)


    # locate stars
    iraf.daofind(image=f,output=fp+'temp.stars',interactive='no',verify='no',
                 threshold=3,sigma=params.star_detect_sigma,fwhmpsf=g.fw,
                 datamin=1,datamax=params.pixel_max,
                 epadu=params.gain,readnoise=params.readnoise,
                 noise='poisson')

    if params.star_file:
        als_recenter = 'no'
        all_template_stars = np.genfromtxt(params.star_file)
        all_new_stars = np.genfromtxt(fp+'temp.stars')
        
        if all_new_stars.shape[0] > params.star_file_number_match:
            new_stars = all_new_stars[all_new_stars[:,2].argsort()][:params.star_file_number_match]
        else:
            new_stars = all_new_stars

        if all_template_stars.shape[0] > params.star_file_number_match:
            template_stars = all_template_stars[all_template_stars[:,3].argsort()][:params.star_file_number_match]
        else:
            template_stars = all_template_stars

        tx, ty = compute_xy_shift(new_stars,template_stars[:,1:3],0.5,
                                  degree=params.star_file_transform_degree)

        if params.star_file_has_magnitudes:
            star_positions = all_template_stars[:,1:4]
            xx = (star_positions[:,0]-np.mean(new_stars[:,0]))/np.mean(new_stars[:,0])
            yy = (star_positions[:,1]-np.mean(new_stars[:,1]))/np.mean(new_stars[:,1])
            for m in range(params.star_file_transform_degree+1):
                for n in range(params.star_file_transform_degree+1-m):
                    star_positions[:,0] += tx[m,n]* xx**m * yy**n
                    star_positions[:,1] += ty[m,n]* xx**m * yy**n
            np.savetxt(fp+'temp.stars.1',star_positions,fmt='%10.3f %10.3f %10.3f')
        else:
            star_positions = all_template_stars[:,1:3]
            xx = (star_positions[:,0]-np.mean(new_stars[:,0]))/np.mean(new_stars[:,0])
            yy = (star_positions[:,1]-np.mean(new_stars[:,1]))/np.mean(new_stars[:,1])
            for m in range(params.star_file_transform_degree+1):
                for n in range(params.star_file_transform_degree+1-m):
                    star_positions[:,0] += tx[m,n]* xx**m * yy**n
                    star_positions[:,1] += ty[m,n]* xx**m * yy**n
            np.savetxt(fp+'temp.stars.1',star_positions,fmt='%10.3f %10.3f')
        all_template_stars[:,1] = star_positions[:,0]
        all_template_stars[:,2] = star_positions[:,1]
            
    else:
        
        als_recenter = 'yes'
        star_positions = np.genfromtxt(fp+'temp.stars')
        np.savetxt(fp+'temp.stars.1',star_positions[:,:2],fmt='%10.3f %10.3f')

    iraf.phot(image=f,output=fp+'temp.phot',coords=fp+'temp.stars.1',interactive='no',
              verify='no',
              sigma=params.star_detect_sigma,fwhmpsf=g.fw,apertures=g.fw,
              datamin=1,
              datamax=2*params.pixel_max,epadu=params.gain,annulus=3*g.fw,
              dannulus=3.0,
              readnoise=params.readnoise,noise='poisson')

    print 'fw = ',g.fw
    #fw = np.max([4.0,fw])
    #print 'fw = ',fw


    # select PSF stars
    iraf.pstselect(image=f,photfile=fp+'temp.phot',pstfile=fp+'temp.pst',maxnpsf=40,
                   interactive='no',verify='no',datamin=1,fitrad=2.0,
                   datamax=params.pixel_max,epadu=params.gain,psfrad=np.max([3.0,g.fw]),
                   readnoise=params.readnoise,noise='poisson')

    if params.star_file and params.star_file_has_magnitudes:

        # We don't need to do the photometry - only make the PSF

        # Initial PSF estimate to generate PSF groups
        #psfrad=3*np.max([g.fw,1.8])
        iraf.psf(image=f,photfile=fp+'temp.phot',pstfile=fp+'temp.pst',psfimage=fp+'temp.psf',
                 function=params.psf_profile_type,opstfile=fp+'temp.opst',
                 groupfile=fp+'temp.psg',
                 interactive='no',
                 verify='no',varorder=0 ,psfrad=2*np.max([g.fw,1.8]),
                 datamin=-10000,datamax=0.95*params.pixel_max,
                 scale=1.0)

        # construct a file of the psf neighbour stars
        slist = []
        psf_stars = np.loadtxt(fp+'temp.opst',usecols=(0,1,2))

        for star in range(psf_stars.shape[0]):

            xp = psf_stars[star,1]
            yp = psf_stars[star,2]
            xmin = np.max([np.int(xp-10*g.fw),0])
            xmax = np.min([np.int(xp+10*g.fw),f_im.shape[0]])
            ymin = np.max([np.int(yp-10*g.fw),0])
            ymax = np.min([np.int(yp+10*g.fw),f_im.shape[1]])

            p = star_positions[np.logical_and(np.logical_and(star_positions[:,0]>xmin,
                                                             star_positions[:,0]<xmax),
                                              np.logical_and(star_positions[:,1]>ymin,
                                                             star_positions[:,1]<ymax))]
            slist.append(p)

        group_stars = np.concatenate(slist)
        np.savetxt(fp+'temp.nst',group_stars,fmt='%10.3f %10.3f %10.3f')
        
        
        # subtract PSF star neighbours
        iraf.substar(image=f,photfile=fp+'temp.nst',psfimage=fp+'temp.psf',
                     exfile=fp+'temp.opst',fitrad=2.0,
                     subimage=fp+'temp.sub1',verify='no',datamin=1,
                     datamax=params.pixel_max,epadu=params.gain,
                     readnoise=params.readnoise,noise='poisson')
        
        # final PSF
        iraf.psf(image=fp+'temp.sub1',photfile=fp+'temp.phot',pstfile=fp+'temp.opst',
                 psfimage=psf_image,psfrad=2*g.fw,
                 function=params.psf_profile_type,opstfile=fp+'temp.opst2',
                 groupfile=fp+'temp.psg2',
                 interactive='no',
                 verify='no',varorder=0,
                 datamin=1,datamax=0.95*params.pixel_max,
                 scale=1.0)

        np.savetxt(fp+'ref.mags',all_template_stars,fmt='%7d %10.3f %10.3f %10.3f')
        stars = all_template_stars

    else:




        # initial PSF estimate
        iraf.psf(image=f,photfile=fp+'temp.phot',pstfile=fp+'temp.pst',psfimage=fp+'temp.psf',
                 function=params.psf_profile_type,opstfile=fp+'temp.opst',
                 groupfile=fp+'temp.psg1',
                 interactive='no',
                 verify='no',varorder=0 ,psfrad=2*g.fw,
                 datamin=1,datamax=0.95*params.pixel_max,
                 scale=1.0)


        # separation distance of near neighbours
        separation = np.max([rewrite_psg(fp+'temp.psg1',fp+'temp.psg2'),3])
        print 'separation = ',separation

        # subtract all stars using truncated PSF
        iraf.allstar(image=f,photfile=fp+'temp.phot',psfimage=fp+'temp.psf',
                     allstarfile=fp+'temp.als',rejfile='',
                     subimage=fp+'temp.sub',verify='no',psfrad=2*g.fw,fitrad=2.0,
                     recenter='yes',groupsky='yes',fitsky='yes',sannulus=7,wsannulus=10,
                     datamin=1,datamax=params.pixel_max,
                     epadu=params.gain,readnoise=params.readnoise,
                     noise='poisson')

        if params.star_file:

            os.system('cp '+fp+'temp.phot '+fp+'temp.phot2') 

        else:
        
            # locate new stars
            iraf.daofind(image=fp+'temp.sub',output=fp+'temp.stars1',interactive='no',verify='no',
                         threshold=3,sigma=params.star_detect_sigma,fwhmpsf=2*g.fw,
                         datamin=1,datamax=params.pixel_max,
                         epadu=params.gain,readnoise=params.readnoise,
                         noise='poisson')


            # magnitudes for new stars
            iraf.phot(image=fp+'temp.sub',output=fp+'temp.phot1',coords=fp+'temp.stars1',
                      interactive='no',
                      verify='no',sigma=params.star_detect_sigma,
                      fwhmpsf=g.fw,datamin=1,
                      datamax=params.pixel_max,epadu=params.gain,
                      readnoise=params.readnoise,noise='poisson')

            # join star lists together
            iraf.pconcat(infiles=fp+'temp.phot,'+fp+'temp.phot1',outfile=fp+'temp.phot2')

        # new PSF estimate to generate PSF groups
        iraf.psf(image=f,photfile=fp+'temp.phot2',pstfile=fp+'temp.pst',psfimage=fp+'temp.psf2',
                 function=params.psf_profile_type,opstfile=fp+'temp.opst2',
                 groupfile=fp+'temp.psg3',
                 interactive='no',
                 verify='no',varorder=0 ,psfrad=2*g.fw,
                 datamin=-10000,datamax=0.95*params.pixel_max,
                 scale=1.0)

        # magnitudes for PSF group stars
        iraf.nstar(image=f,groupfile=fp+'temp.psg3',psfimage=fp+'temp.psf2',
                   nstarfile=fp+'temp.nst',
                   rejfile='',verify='no',psfrad=2*g.fw,fitrad=2.0,
                   recenter='no',
                   groupsky='yes',fitsky='yes',sannulus=7,wsannulus=10,
                   datamin=1,datamax=params.pixel_max,
                   epadu=params.gain,readnoise=params.readnoise,noise='poisson')

        # subtract PSF star neighbours
        iraf.substar(image=f,photfile=fp+'temp.nst',psfimage=fp+'temp.psf2',
                     exfile=fp+'temp.opst2',fitrad=2.0,
                     subimage=fp+'temp.sub1',verify='no',datamin=1,
                     datamax=params.pixel_max,epadu=params.gain,
                     readnoise=params.readnoise,noise='poisson')
        
        # final PSF
        iraf.psf(image=fp+'temp.sub1',photfile=fp+'temp.phot2',
                 pstfile=fp+'temp.opst2',
                 psfimage=psf_image,psfrad=2*g.fw,
                 function=params.psf_profile_type,opstfile=fp+'temp.opst3',
                 groupfile=fp+'temp.psg5',
                 interactive='no',
                 verify='no',varorder=0,
                 datamin=1,datamax=0.95*params.pixel_max,
                 scale=1.0)

        # final photometry

        
        iraf.allstar(image=g.fullname,photfile=fp+'temp.phot2',psfimage=psf_image,
                     allstarfile=fp+'temp.als2',rejfile='',
                     subimage=fp+'temp.sub2',verify='no',psfrad=2*g.fw,
                     recenter=als_recenter,groupsky='yes',fitsky='yes',sannulus=7,
                     wsannulus=10,fitrad=2.0,
                     datamin=params.pixel_min,datamax=params.pixel_max,
                     epadu=params.gain,readnoise=params.readnoise,
                     noise='poisson')

        psfmag = 10.0
        for line in open(fp+'temp.als2','r'):
            sline = line.split()
            if sline[1] == 'PSFMAG':
                psfmag = float(sline[3])
                break

        if params.star_file:
            
            iraf.psort(infiles=fp+'temp.als2',field='ID')
            os.system('cp '+fp+'temp.als2 '+fp+'temp.als3') 

        else:
        
            selection = 'XCE >= '+str(edge_dist)+' && XCE <= '+str(xmax)+' && YCE >= '+str(edge_dist)+' && YCE <= '+str(ymax)+' && MAG != INDEF'
            iraf.pselect(infiles=fp+'temp.als2',outfiles=fp+'temp.als3',expr=selection)
            iraf.psort(infiles=fp+'temp.als3',field='MAG')   
            iraf.prenumber(infile=fp+'temp.als3')
            
        s = iraf.pdump(infiles=fp+'temp.als3',Stdout=1,
                       fields='ID,XCENTER,YCENTER,MAG,MERR,MSKY,SHARPNESS,CHI',expr='yes')
        sf = [k.replace('INDEF','22.00') for k in s]
        stars = np.zeros([len(sf),5])
        for i, line in enumerate(sf):
            stars[i,:] = np.array(map(float,sf[i].split()[1:6]))

        s = iraf.pdump(infiles=fp+'temp.als3',Stdout=1,
                       fields='ID,XCENTER,YCENTER,MAG,MERR,SHARPNESS,CHI,MSKY',expr='yes')
        sf = [k.replace('INDEF','22.00') for k in s]
        with open(fp+'ref.mags','w') as fid:
            for s in sf:
                fid.write(s+'\n')

    return stars
Ejemplo n.º 21
0
def psffit(img, fwhm, psfstars, hdr, interactive, _datamax=45000, psffun='gauss', fixaperture=False):
    import agnkey

    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)
    zmag = 0.
    varord = 0  # -1 analitic 0 - numeric

    if fixaperture:
        print 'use fix aperture 5 8 10'
        hdr = agnkey.util.readhdr(img+'.fits')
        _pixelscale = agnkey.util.readkey3(hdr, 'PIXSCALE')
        a1, a2, a3, a4, = float(5. / _pixelscale), float(5. / _pixelscale), float(8. / _pixelscale), float(
                    10. / _pixelscale)
#        a1, a2, a3, a4, = int(5), int(8), int(10), int(12)
    else:
        a1, a2, a3, a4, = int(fwhm + 0.5), int(fwhm * 2 + 0.5), int(fwhm * 3 + 0.5), int(fwhm * 4 + 0.5)


    _center='no'
    iraf.fitskypars.annulus = a4
    iraf.fitskypars.dannulus = a4
    iraf.noao.digiphot.daophot.daopars.sannulus = int(a4)
    iraf.noao.digiphot.daophot.daopars.wsannul = int(a4)
    iraf.fitskypars.salgori = 'mean'  #mode,mean,gaussian
    iraf.photpars.apertures = '%d,%d,%d' % (a2, a3, a4)
    #    iraf.photpars.apertures = '%d,%d,%d'%(a2,a3,a4)
    iraf.datapars.datamin = -100
    iraf.datapars.datamax = _datamax
    iraf.datapars.readnoise = agnkey.util.readkey3(hdr, 'ron')
    iraf.datapars.epadu = agnkey.util.readkey3(hdr, 'gain')
    iraf.datapars.exposure = 'exptime'  #agnkey.util.readkey3(hdr,'exptime')
    iraf.datapars.airmass = 'airmass'
    iraf.datapars.filter = 'filter2'
    iraf.centerpars.calgori = 'gauss'
    iraf.centerpars.cbox = 1
    iraf.daopars.recenter = _center
    iraf.photpars.zmag = zmag
    
    iraf.delete('_psf.ma*,' + img + '.psf.fit?,_psf.ps*,_psf.gr?,_psf.n*,_psf.sub.fit?', verify=False)
    iraf.phot(img+'[0]', '_psf.coo', '_psf.mag', interac=False, verify=False, verbose=False)

    iraf.daopars.psfrad = a4
    iraf.daopars.functio = psffun
    iraf.daopars.fitrad = a1
    iraf.daopars.fitsky = 'yes'
    iraf.daopars.sannulus = int(a4)
    iraf.daopars.wsannul = int(a4)
    iraf.daopars.recenter = _center
    iraf.daopars.varorder = varord
    if interactive:
        shutil.copyfile('_psf.mag', '_psf.pst')
        print '_' * 80
        print '>>> Mark good stars with "a" or "d"-elete. Then "f"-it,' + \
              ' "w"-write and "q"-uit (cursor on ds9)'
        print '-' * 80
    else:
        iraf.pstselect(img+'.fits[0]', '_psf.mag', '_psf.pst', psfstars, interac=False, verify=False)

    iraf.psf(img+'.fits[0]', '_psf.mag', '_psf.pst', img + '.psf', '_psf.psto', '_psf.psg', interac=interactive,
             verify=False, verbose=False)

#    if os.path.isfile(img + '.psf.fits'):
#        print 'file there'

    iraf.group(img+'.fits[0]', '_psf.mag', img + '.psf.fits', '_psf.grp', verify=False, verbose=False)
    iraf.nstar(img+'.fits[0]', '_psf.grp', img + '.psf.fits', '_psf.nst', '_psf.nrj', verify=False, verbose=False)

    photmag = iraf.txdump("_psf.mag", 'xcenter,ycenter,id,mag,merr', expr='yes', Stdout=1)
    pst = iraf.txdump("_psf.pst", 'xcenter,ycenter,id', expr='yes', Stdout=1)
    fitmag = iraf.txdump("_psf.nst", 'xcenter,ycenter,id,mag,merr', expr='yes', Stdout=1)
    return photmag, pst, fitmag