Ejemplo n.º 1
0
def transform(images, out_images, coord_fits, data_path='.',  params={}):
    """
    Run iraf transform to rectify 2D spectrum.

    Parameters
    ----------
    images : str
        Images to transform.
    out_images : str
        Output image file names.
    coord_fits:
        Name of coordinate fits in database.
    data_path : str
        Directory that contains the data.
    params : dict
        Iraf fitcoords  parameters.
    """

    _check_working_dir(data_path)

    logger.info('running iraf transform')

    iraf.transform.unlearn()
    iraf.transform.x1 = params.pop('x1', 'INDEF')
    iraf.transform.x2 = params.pop('x2', 'INDEF')
    iraf.transform.dx = params.pop('dx', 'INDEF')
    iraf.transform.nx = params.pop('nx', 'INDEF')
    iraf.transform.flux = params.pop('flux', 'yes')
    iraf.transform.interptype = params.pop('interptype', 'linear')

    iraf.transform(input=images, output=out_images, fitnames=coord_fits)
Ejemplo n.º 2
0
def transform(lst):
    f = open(lst)
    l = f.readlines()
    f.close()
    namelst = ['ftbo' + i for i in l]
    outputlst = ['wftbo' + i for i in l]
    #    namelst = [i.split('.')[0] + 'otbf.fits' for i in l]
    #    outputlst = [i.split('.')[0] + 'otbfw.fits' for i in l]
    f = open("temp1.txt", 'w')
    for i in namelst:
        f.write(i + '\n')
    f.close()
    f = open("temp2.txt", 'w')
    for i in outputlst:
        f.write(i + '\n')
    f.close()
    iraf.twodspec()
    iraf.longslit(dispaxis=2)
    # for i in namelst:
    #    print '#' * 30, i, '===>', i.split('.')[0] + 'w.fits'
    #    iraf.transform(input = i, output = i.split('.')[0] + 'w.fits',
    #            minput = '', moutput = '', fitnames = 'LampLamp',
    #            database = 'database', interptype = 'spline3',
    #            flux = 'yes')
    iraf.transform(input='@temp1.txt',
                   output='@temp2.txt',
                   minput='',
                   moutput='',
                   fitnames='LampLamp',
                   database='database',
                   interptype='spline3',
                   flux='yes')
Ejemplo n.º 3
0
def transform(lst):
    f = open(lst)
    l = f.readlines()
    f.close()

    namelst = ['ftb' + i for i in l]
    outputlst = ['wftb' + i for i in l]
    f = open("temp1.txt", 'w')
    for i in namelst:
        f.write(i + '\n')
    f.close()
    f = open("temp2.txt", 'w')
    for i in outputlst:
        f.write(i + '\n')
    f.close()

    iraf.twodspec()
    iraf.longslit(dispaxis=2)
    #
    iraf.transform(input='@temp1.txt',
                   output='@temp2.txt',
                   minput='',
                   moutput='',
                   fitnames='LampLamp',
                   database='database',
                   interptype='spline3',
                   flux='yes')
Ejemplo n.º 4
0
def wal(lstfile):
    iraf.noao()
    iraf.twodspec()
    iraf.longslit()
    iraf.identify(images = 'Lamp'
        , section = 'middle column', database = 'database'
        , coordlist = 'linelists$idhenear.dat', units = '', nsum = 10
        , match = -3.0, maxfeatures = 50, zwidth = 100.0
        , ftype = 'emission', fwidth = 20.0, cradius = 5.0
        , threshold = 0.0, minsep = 2.0, function = 'chebyshev'
        , order = 6, sample = '*', niterate = 0
        , low_reject = 3.0, high_reject = 3.0, grow = 0.0
        , autowrite = False, graphics = 'stdgraph', cursor = ''
        , crval = '', cdelt = '')
    iraf.reidentify(reference = 'Lamp'
        , images = 'Lamp', interactive = 'no', section = 'column'
        , newaps = True, override = True, refit = True, trace = False
        , step = 10, nsum = 10, shift = 0.0, search = 0.0, nlost = 5
        , cradius = 7.0, threshold = 0.0, addfeatures = False
        , coordlist = 'linelists$idhenear.dat', match = -3.0, maxfeatures = 50
        , minsep = 2.0, database = 'database', logfiles = 'logfile'
        , plotfile = '', verbose = False, graphics = 'stdgraph', cursor = ''
        , answer = 'yes', crval = '', cdelt = '', mode = 'al')
    iraf.fitcoords(images = 'Lamp'
        , fitname = 'Lamp', interactive = True, combine = False, database = 'database'
        , deletions = 'deletions.db', function = 'chebyshev', xorder = 6
        , yorder = 6, logfiles = 'STDOUT,logfile', plotfile = 'plotfile'
        , graphics = 'stdgraph', cursor = '', mode = 'al')
    iraf.longslit(dispaxis = 2)
    iraf.transform(input = '%ftbo%ftbo%@' + lstfile
        , output = '%wftbo%wftbo%@' + lstfile, minput = '', moutput = ''
        , fitnames = 'LampLamp', database = 'database', interptype = 'spline3'
        , flux = True)
Ejemplo n.º 5
0
def transform(science_list,object_match,arc_fc_dict,arc_coords,fcstar='star'):
    '''Transforms filename to t+filename using noao>twodspec>longslit>transform'''
    irf_prm.set_transform(iraf.transform)
    for obj in science_list:
        fcarc = arc_fc_dict[object_match[obj]]
        dx_param = arc_coords[object_match[obj]]
        #These should be the same for each observing mode
        #Because then they're all mapped together for
        #Accurate flux calibration and imcombining
        iraf.transform.x1 = dx_param[0]
        iraf.transform.x2 = dx_param[1]
        iraf.transform.dx = dx_param[2]
        iraf.transform(input=obj,output='t'+obj,fitnames=fcstar+','+fcarc)
    return
Ejemplo n.º 6
0
 def reduce2d(self, obj, arc, do_error=None):
     images = obj.name  
     do_error = do_error if do_error is not None else self.do_error
     hduorig= fits.open(images)
     os.remove(images)
     hduimg = fits.PrimaryHDU(data=hduorig[0].data,header=hduorig[0].header)
     hduimg.writeto(images)
     hduvarimg = fits.PrimaryHDU(data=hduorig[1].data,header=hduorig[0].header)
     rt.rmexist([obj.var])
     hduvarimg.writeto(obj.var)    
     rt.prepare_image(images, do_error=do_error)
     self.rssidentify(arc)
     nxpix = obj.header['NAXIS1']
     rt.loadparam(self.rssconfig, ['iraf.transform', 'iraf.fit1d'])
     config= self.rssconfig
     if self.do_error:
         iraf.errorpars.errtype='uniform'
         iraf.errorpars.resample='no'
         iraf.samplepars.axis=1
         iraf.samplepars.setParam('naverage', config['iraf.fit1d']['naverage'])
         iraf.samplepars.setParam('low_reject', config['iraf.fit1d']['low_reject'])
         iraf.samplepars.setParam('high_reject', config['iraf.fit1d']['high_reject'])
         iraf.samplepars.setParam('niterate', config['iraf.fit1d']['niterate'])
         iraf.samplepars.setParam('grow', config['iraf.fit1d']['grow'])                   
     rt.rmexist([obj.wave, obj.bkg, obj.wave_var, obj.bkg_var])
     # Wavelength calibration	   
     iraf.transform(obj.noext, obj.wave, fitnames = arc.noext, logfiles = self.logfile)
     iraf.fit1d(obj.wave, obj.sky, "fit", axis=2)                    
     iraf.imarith(obj.wave, "-", obj.sky, obj.bkg)
     # Calibrated error file
     if do_error:
         iraf.transform(obj.var, obj.wave_var, fitnames = arc.noext, logfiles = self.logfile)
         iraf.gfit1d(obj.wave, 'tmptab.tab', function=config['iraf.fit1d']['function'], 
                     order=config['iraf.fit1d']['order'], xmin=1, xmax=nxpix, interactive='no')		       
         iraf.tabpar('tmptab.tab',"rms", 1, Stdout=self.logfile)
         rmsval = float(iraf.tabpar.value)
         tmpval=rmsval*rmsval
         print('RMS of the fit (for VAR plane propagation) = %s ' %rmsval)
         iraf.imexpr("a+b",obj.bkg_var, a=obj.wave_var, b=tmpval)
         print("**** Done with image %s ****" % (images)) 
Ejemplo n.º 7
0
def wal(lstfile, lampname):
    iraf.noao()
    iraf.twodspec()
    iraf.longslit()
    # iraf.identify(images = 'Lamp.fits', section = 'middle column',
    #     database = 'database', coordlist = 'linelists$idhenear.dat',
    #     nsum = 10, match = -3.0, maxfeatures = 50, zwidth = 100.0,
    #     ftype = 'emission', fwidth = 20.0, cradius = 7.0, threshold = 0.0,
    #     minsep = 2.0, function = 'chebyshev', order = 6, sample = '*',
    #     niterate = 0, low_reject = 3.0, high_reject = 3.0, grow = 0.0,
    #     autowrite = 'no')

    #    iraf.reidentify(reference = 'Lamp', images = 'Lamp', interactive = 'no',
    #            section = 'column', newaps = 'yes', override = 'yes', refit = 'yes',
    #            trace = 'no', step = 10, nsum = 10, shift = 0.0, search = 0.0,
    #            nlost = 5, cradius = 7.0, threshold = 0.0, addfeatures = 'no',
    #            coordlist = 'linelists$idhenear.dat', match = -3.0,
    #            maxfeatures = 50, minsep = 2.0, database = 'database')

    iraf.identify(images=lampname,
                  section='middle column',
                  database='database',
                  coordlist='linelists$idhenear.dat',
                  units='',
                  nsum=10,
                  match=-3.0,
                  maxfeatures=50,
                  zwidth=100.0,
                  ftype='emission',
                  fwidth=20.0,
                  cradius=7.0,
                  threshold=0.0,
                  minsep=2.0,
                  function='chebyshev',
                  order=6,
                  sample='*',
                  niterate=0,
                  low_reject=3.0,
                  high_reject=3.0,
                  grow=0.0,
                  autowrite=False,
                  graphics='stdgraph',
                  cursor='',
                  crval='',
                  cdelt='')
    iraf.reidentify(reference=lampname,
                    images=lampname,
                    interactive='no',
                    section='column',
                    newaps=True,
                    override=True,
                    refit=True,
                    trace=False,
                    step=10,
                    nsum=10,
                    shift=0.0,
                    search=0.0,
                    nlost=5,
                    cradius=7.0,
                    threshold=0.0,
                    addfeatures=False,
                    coordlist='linelists$idhenear.dat',
                    match=-3.0,
                    maxfeatures=50,
                    minsep=2.0,
                    database='database',
                    logfiles='logfile',
                    plotfile='',
                    verbose=False,
                    graphics='stdgraph',
                    cursor='',
                    answer='yes',
                    crval='',
                    cdelt='',
                    mode='al')
    iraf.fitcoords(images=lampname,
                   fitname=lampname,
                   interactive=True,
                   combine=False,
                   database='database',
                   deletions='deletions.db',
                   function='chebyshev',
                   xorder=6,
                   yorder=6,
                   logfiles='STDOUT,logfile',
                   plotfile='plotfile',
                   graphics='stdgraph',
                   cursor='',
                   mode='al')
    iraf.longslit(dispaxis=2)
    iraf.transform(input='%ftbo%ftbo%@' + lstfile,
                   output='%wftbo%wftbo%@' + lstfile,
                   minput='',
                   moutput='',
                   fitnames=lampname + lampname,
                   database='database',
                   interptype='spline3',
                   flux=True)
Ejemplo n.º 8
0
def transform(basename, waveref, spatialref, overwrite=False):
    # input: input fits file basename to be corrected.
    # wavefef: wavelength reference basename.
    # spatialref referrence: spatial referrence basename.

    print('\n#############################')
    print('Transforming')

    hdl = fits.open(basename + '.ov.fits')
    if not fi.check_version(hdl):
        return False
    if not fi.check_version_f(waveref + '.ov.fits'):
        return False
    if not fi.check_version_f(spatialref + '.fcmb.fits'):
        return False

    hdr = hdl[0].header
    binfct1 = hdr['BIN-FCT1']
    disperser = hdr['DISPERSR']
    filter1 = hdr['FILTER01']
    filter2 = hdr['FILTER02']
    filter3 = hdr['FILTER03']
    hdl.close()

    # entering the channel image directory.
    print('\t Entering the channel image directory, \"' + fi.chimagedir +
          '\".')
    os.chdir(fi.chimagedir)

    ny = 5500
    # 300R + SO58
    if disperser == 'SCFCGRMR01' and filter1 == 'NONE' and \
       filter2 == 'SCFCFLSO58' and filter3 == 'NONE':
        y1 = 5600.
        dy = 1.34
        ny = 3800

    # 300R + L600
    if disperser == 'SCFCGRMR01' and filter1 == 'SCFCFLL600' and \
       filter2 == 'NONE' and filter3 == 'NONE':
        y1 = 2800.
        dy = 0.636
        ny = 4000

    # 300B+SY47
    if disperser == 'SCFCGRMB01' and filter1 == 'NONE' and \
       filter2 == 'SCFCFLSY47' and filter3 == 'NONE':
        y1 = 4500.
        dy = 1.34
        ny = 4000

    # 300B + NONE
    if disperser == 'SCFCGRMB01' and filter1 == 'NONE' and \
       filter2 == 'NONE' and filter3 == 'NONE':
        y1 = 3500.
        dy = 1.34
        ny = 3500

    # VPH850 + SO58
    if disperser == 'SCFCGRHD85' and filter1 == 'NONE' and \
       filter2 == 'SCFCFLSO58' and filter3 == 'NONE':
        y1 = 5600.
        dy = 1.17
        ny = 4600

    # VPH520
    if disperser == 'SCFCGRHD52' and filter1 == 'NONE' and \
       filter2 == 'NONE' and filter3 == 'NONE':
        y1 = 4100.0
        dy = 0.39

    # VPH650+SY47
    if disperser == 'SCFCGRHD65' and filter1 == 'NONE' and \
       filter2 == 'SCFCFLSY47' and filter3 == 'NONE':
        y1 = 5200.0
        dy = 0.60

    # VPH900 + SO58
    if disperser == 'SCFCGRHD90' and filter1 == 'NONE' and \
       filter2 == 'SCFCFLSO58' and filter3 == 'NONE':
        y1 = 7400.0
        dy = 0.74

    # Not to display items in IRAF packages
    sys.stdout = open('/dev/null', 'w')
    iraf.noao()
    iraf.twodspec()
    iraf.longslit()
    sys.stdout = sys.__stdout__  # Back to the stadard output

    for i in range(1, 25):
        checkfile = basename + '.ch%02d.wc.fits' % i
        if os.path.isfile(checkfile) and not overwrite:
            print('\t ' + checkfile + ' already exits. Skiped.')
        else:
            if overwrite:
                try:
                    os.remove(basename + '.ch%02d.wc.fits' % i)
                except:
                    pass

            iraf.transform(basename+'.ch%02d'%i, basename+'.ch%02d.wc'%i,\
                    waveref+'.ch%02d,'%i+spatialref+'.ch%02dedge'%i,\
                    interpt='linear', database='database',\
                    x1=1.0, x2='INDEF', dx=1.0, nx=int(200.0/binfct1), xlog='no',\
                    y1=y1, y2='INDEF', dy=dy, ny=ny,ylog='no',\
                    flux='no', blank=0, logfile='transform.log')

            hdl = fits.open(basename + '.ch%02d.wc.fits' % i, mode='update')
            #hdl.info()
            hdl[0].header['COMPBASE']=(waveref, \
                                       'Frame ID of the comparison frame.')
            hdl[0].header['DISTBASE']=(spatialref, \
                                       'Frame ID used for distortion correction.')
            hdl[0].header['CUNIT2'] = ('Angstrom')
            print('\t ' + basename + '.ch%02d.wc.fits was created.' % i)

    print('\t Going back to the original directory.')
    os.chdir('..')
    return True
Ejemplo n.º 9
0
    print "transforming images " + image_to_reduce
    
    ### Add the parameter dispaxis to the image header
    ### else iraf.transform would query for it
    ### 1 indicates that the x axis is the dispersion axis
    iraf.hedit(images = image_to_reduce,fields="DISPAXIS",value="1",add=1,addonly=0,delete=0,verify=0,show=1,update=1)

    iraf.transform(
        input = image_to_reduce,\
        output = output_images,\
        minput = "",\
        moutput = "",\
        fitnames = im_slice + "_" + string.split(arc_name,".")[0],\
        database = "database",\
        interptype = "spline3",\
        x1 = "INDEF",\
        x2 = "INDEF",\
        dx = "INDEF",\
        nx = "INDEF",\
        xlog = 0,\
        y1 = "INDEF",\
        y2 = "INDEF",\
        dy = "INDEF",\
        ny = "INDEF",\
        ylog = 0,\
        flux = 1,\
        blank = "INDEF",\
        logfile = "STDOUT,logfile",\
        mode = "al")

Ejemplo n.º 10
0
    file = item.split('\n')[0]
    shutil.copy(file, 'spec' + str(i) + '.fits')
    i += 1

#assign 2d dispersion solution - from now IRAF

print('Applying wavelength solution...')
print('.')
print('.')

iraf.noao.twodspec.longslit
for file in os.listdir(os.getcwd()):
    if file.startswith('spec'):
        iraf.transform(file,
                       output='w' + file,
                       database="wavelength",
                       fitnames="He_Ne_ThAr_bsHe_Ne_ThAr_bs",
                       flux='yes')

#minor tweak to wavelength solution

iraf.hedit('wspec*.fits',
           fields='CRVAL2',
           value='2573.5979',
           verify='no',
           show='no')

#
#FROM NOW -> iraf
print('.')
print('.')