Ejemplo n.º 1
0
def test_pf_kurucz_H2O():
    with pt.cd('outputs/'):
        pf_data, isotopes, temp = pf.kurucz(
            f'{pc.ROOT}tests/inputs/mock_h2opartfn.dat',
            outfile='PF_kurucz_H2O.dat')
    np.testing.assert_equal(temp, np.arange(10, 51, 10.0))
    np.testing.assert_allclose(
        pf_data,
        np.array([[1.328, 3.349, 6.192, 9.417, 12.962],
                  [1.33, 3.361, 6.217, 9.457, 13.017],
                  [1.332, 3.373, 6.24, 9.492, 13.066],
                  [1.399, 2.945, 5.085, 7.617, 10.476]]))
    np.testing.assert_equal(
        isotopes, np.array(['1H1H16O', '1H1H17O', '1H1H18O', '1H2H16O']))

    pf_read, iso, temp_read = io.read_pf('outputs/PF_kurucz_H2O.dat')
    np.testing.assert_allclose(
        pf_data,
        np.array([[1.328, 3.349, 6.192, 9.417, 12.962],
                  [1.33, 3.361, 6.217, 9.457, 13.017],
                  [1.332, 3.373, 6.24, 9.492, 13.066],
                  [1.399, 2.945, 5.085, 7.617, 10.476]]))
    np.testing.assert_equal(temp_read, np.arange(10, 51, 10.0))
    np.testing.assert_equal(
        iso, np.array(['1H1H16O', '1H1H17O', '1H1H18O', '1H2H16O']))
Ejemplo n.º 2
0
def main():
    cfile = 'run_HATP-41b_tsiaras/mcmc_HATP-41b_tsiaras_w00000-mc.cfg'
    folder, cfile = os.path.split(cfile)
    _, planet, dset = folder.split('_')
    with pt.cd(folder):
        pyrat = pb.run(cfile, run_step='init', no_logfile=True)

    with np.load(pyrat.ret.mcmcfile) as mcmc:
        post, zchain, zmask = mc3.utils.burn(mcmc)
        texnames = mcmc['texnames']
        bestp = mcmc['bestp']
        imol = np.in1d(mcmc['ifree'], pyrat.ret.imol)

    posteriors = pyrat.ret.posterior = post
    u, uind, uinv = np.unique(posteriors[:, 0],
                              return_index=True,
                              return_inverse=True)
    nunique = np.size(u)
    # Get mean molecular mass:
    ZX_ratio = np.zeros(nunique, np.double)
    params = pyrat.ret.params
    for k in range(nunique):
        params[imol] = posteriors[uind[k], imol]
        ZX_ratio[k] = ZX(params, pyrat)
    iN2 = pyrat.ret.pnames.index('log(N2)')
    # Metal mass fraction relative to solar values, i.e., [Z/X]:
    posteriors[:, iN2] = ZX_ratio[uinv]
    bestp[iN2] = ZX(bestp, pyrat)
    texnames[iN2] = r"$[Z/X]$"

    posteriors = roll(posteriors, indices=pyrat.ret.imol[:-1])
    bestp = roll(bestp, indices=pyrat.ret.imol[:-1])
    texnames = roll(texnames, indices=pyrat.ret.imol[:-1])

    texnames[4] = texnames[4].replace('f', 'X')
    rect = [0.105, 0.11, 0.99, 0.99]
    ranges = [(100, 3000), (1.49, 1.68), (-4.5, 2.6), (-5.5, 2.5),
              (-7., -0.45)]

    plt.figure(316, (6, 6))
    plt.clf()
    axes, cax = mc3.plots.pairwise(posteriors,
                                   pnames=texnames,
                                   ranges=ranges,
                                   fignum=8,
                                   rect=rect,
                                   nbins=20)
    ax = axes[1][2]
    plt.text(0.15, 0.125, 'cloudy', rotation=45, transform=ax.transAxes)
    plt.text(0.70, 0.25, 'heavy', rotation=45, transform=ax.transAxes)
    plt.text(0.75, 0.67, 'deplet', rotation=90, transform=ax.transAxes)
    ax = axes[3][3]
    plt.text(0.05, 0.30, 'cloudy', rotation=305, transform=ax.transAxes)
    plt.text(0.55, 0.75, 'heavy', rotation=0, transform=ax.transAxes)
    plt.text(0.65, 0.10, 'deplet', rotation=0, transform=ax.transAxes)

    plt.savefig(f'plots/WFC3_{planet}_{dset}_correlation.pdf')
    plt.savefig(f'plots/WFC3_{planet}_{dset}_correlation.png', dpi=300)
Ejemplo n.º 3
0
def test_pf_tips():
    expected_temp = np.array([1] + [i for i in range(5, 19, 5)] +
                             [i for i in range(20, 5001, 10)], float)
    with open(pc.ROOT + 'pyratbay/data/tips_2017.pkl', 'rb') as p:
        expected_pf = pickle.load(p)['H2O']
    with pt.cd('outputs/'):
        pf_data, isotopes, temp = pf.tips('H2O', outfile='default')
    np.testing.assert_equal(temp, expected_temp)
    np.testing.assert_equal(pf_data[0], expected_pf['161'])
    assert isotopes == list(expected_pf.keys())

    pf_read, iso, temp_read = io.read_pf('outputs/PF_tips_H2O.dat')
    np.testing.assert_allclose(pf_read[0, :], expected_pf['161'], rtol=1e-7)
    np.testing.assert_allclose(temp_read, expected_temp, rtol=1e-7)
    assert list(iso) == list(expected_pf.keys())
Ejemplo n.º 4
0
def test_pf_exomol_listed_single():
    epf = f'{pc.ROOT}tests/outputs/14N-1H4__MockBYTe.pf'
    expected_temp = np.arange(1, 6)
    expected_pf = np.logspace(0, 1, 5)
    mock_pf(epf, expected_temp, expected_pf)

    with pt.cd('outputs/'):
        pf_data, isotopes, temp = pf.exomol([epf], outfile='default')
    np.testing.assert_allclose(pf_data[0, :], expected_pf)
    np.testing.assert_allclose(temp, expected_temp)
    assert list(isotopes) == ['41111']

    pf_read, iso, temp_read = io.read_pf('outputs/PF_exomol_NH4.dat')
    np.testing.assert_allclose(pf_read[0, :], expected_pf, rtol=1e-5)
    np.testing.assert_allclose(temp_read, expected_temp, rtol=1e-7)
    assert list(iso) == ['41111']
Ejemplo n.º 5
0
def test_pf_exomol_two():
    epf1 = f'{pc.ROOT}tests/outputs/14N-1H4__MockBYTe.pf'
    epf2 = f'{pc.ROOT}tests/outputs/15N-1H4__MockBYTe.pf'
    expected_temp1 = np.arange(1, 6)
    expected_temp2 = np.arange(1, 9)
    expected_pf1 = np.logspace(0, 1, 5)
    expected_pf2 = np.logspace(0, 1, 8)
    mock_pf(epf1, expected_temp1, expected_pf1)
    mock_pf(epf2, expected_temp2, expected_pf2)

    with pt.cd('outputs/'):
        pf_data, isotopes, temp = pf.exomol([epf1, epf2], outfile='default')
    np.testing.assert_allclose(pf_data[0, :], expected_pf1, rtol=1e-5)
    np.testing.assert_allclose(pf_data[1, :], expected_pf2[:5], rtol=1e-5)
    np.testing.assert_allclose(temp, expected_temp1)
    assert list(isotopes) == ['41111', '51111']

    pf_read, iso, temp_read = io.read_pf('outputs/PF_exomol_NH4.dat')
    np.testing.assert_allclose(pf_read[0, :], expected_pf1, rtol=1e-5)
    np.testing.assert_allclose(pf_read[1, :], expected_pf2[:5], rtol=1e-5)
    np.testing.assert_allclose(temp_read, expected_temp1)
    assert list(iso) == ['41111', '51111']
Ejemplo n.º 6
0
def test_pands(capfd):
    with pt.cd('outputs/'):
        pf.kurucz(f'{ROOT}tests/inputs/mock_h2opartfn.dat', outfile='default')
    pb.run('configs/tli_pands_test.cfg')
    captured = capfd.readouterr()
    caps = [
        "Read command-line arguments from configuration file:",
        "'configs/tli_pands_test.cfg'",
        "Reading input database files:",
        "tests/inputs/mock_h2ofastfix.bin",
        "There are 1 input database file(s).",
        "Initial TLI wavelength (um):   2.500 ( 4000.000 cm-1)",
        "Final   TLI wavelength (um):   2.501 ( 3998.401 cm-1)",
        "Database (1/1): 'Partridge & Schwenke (1997)' (H2O molecule)",
        "Number of temperatures: 5",
        "Number of isotopes: 4",
        "Process P&S H2O database between records 38 and 10,220.",
        "[9625  207  219  132]",
        "Writing 10,183 transition lines.",
        "/pands_H2O_2.500-2.501um_test.tli'.",
    ]
    for cap in caps:
        assert cap in captured.out
Ejemplo n.º 7
0
def test_pf_kurucz_TiO():
    with pt.cd('outputs/'):
        pf_data, isotopes, temp = pf.kurucz(
            f'{pc.ROOT}tests/inputs/mock_tiopart.dat', outfile='default')
    np.testing.assert_allclose(
        pf_data,
        np.array([[28.829, 54.866, 81.572, 110.039, 141.079],
                  [28.97, 55.151, 82.002, 110.625, 141.834],
                  [29.107, 55.425, 82.417, 111.19, 142.564],
                  [29.24, 55.692, 82.821, 111.741, 143.273],
                  [29.369, 55.95, 83.212, 112.273, 143.96]]))
    np.testing.assert_equal(temp, np.arange(10, 51, 10.0))
    np.testing.assert_equal(isotopes, np.array(['66', '76', '86', '96', '06']))

    pf_read, iso, temp_read = io.read_pf('outputs/PF_kurucz_TiO.dat')
    np.testing.assert_allclose(
        pf_read,
        np.array([[28.829, 54.866, 81.572, 110.039, 141.079],
                  [28.97, 55.151, 82.002, 110.625, 141.834],
                  [29.107, 55.425, 82.417, 111.19, 142.564],
                  [29.24, 55.692, 82.821, 111.741, 143.273],
                  [29.369, 55.95, 83.212, 112.273, 143.96]]))
    np.testing.assert_equal(temp_read, np.arange(10, 51, 10.0))
    np.testing.assert_equal(iso, np.array(['66', '76', '86', '96', '06']))
Ejemplo n.º 8
0
    'run_feng2020/mcmc_WASP43b_integrated_phase0.81.cfg',
    'run_feng2020/mcmc_WASP43b_integrated_phase0.88.cfg',
    'run_feng2020/mcmc_WASP43b_integrated_phase0.94.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.06.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.12.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.19.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.25.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.31.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.38.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.44.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.50.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.56.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.62.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.69.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.75.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.81.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.88.cfg',
    'run_feng2020/mcmc_WASP43b_resolved_phase0.94.cfg',
]

for cfg in retrievals:
    with pt.cd(os.path.dirname(cfg)):
        pyrat = pb.run(os.path.basename(cfg), run_step='init', no_logfile=True)

        mcmc = np.load(pyrat.ret.mcmcfile)
        pyrat.ret.posterior, _, _ = mc3.utils.burn(mcmc)
        pyrat.percentile_spectrum()
        pfile = pyrat.ret.mcmcfile.replace('.npz', '.pickle')
        io.save_pyrat(pyrat, pfile)
        mcmc.close()
    'run_jwst_09TP_01Q',
    'run_jwst_16TP_16Q',
]

modes = [
    'integrated',
    'resolved',
]

nmodels = len(model_names)
nmodes = len(modes)
nphase = len(obs_phase)

k = 2
model = f'mcmc_model_WASP43b_{modes[0]}_phase{obs_phase[0]:.2f}.cfg'
with pt.cd(model_names[k]):
    pyrat = pb.run(model, run_step='init', no_logfile=True)
nspec = pyrat.obs.ndata
nlayers = pyrat.atm.nlayers
nprofiles = 5

data = np.zeros((nmodels, nmodes, nphase, nspec))
uncerts = np.zeros((nmodels, nmodes, nphase, nspec))
temp_posteriors = np.zeros((nmodels, nmodes, nphase, nprofiles, nlayers))
posteriors = np.zeros((nmodels, nmodes, nphase), dtype=object)

#for k,j,i in product(range(nmodels), range(nmodes), range(nphase)):
for j, i in product(range(nmodes), range(nphase)):
    if k != 2 and i > 8:
        continue
    model = f'mcmc_model_WASP43b_{modes[j]}_phase{obs_phase[i]:.2f}.cfg'
Ejemplo n.º 10
0
    'run_WASP-101b_wakeford',
    'run_WASP-103b_kreidberg',
    'run_XO-1b_tsiaras',
]

ntargets = len(targets)

# Extract values:
names = [None] * ntargets
flat_chisq = np.zeros(ntargets)
flat_rchisq = np.zeros(ntargets)
flat_bic = np.zeros(ntargets)

for i in range(ntargets):
    cfile = [f for f in os.listdir(targets[i]) if f.endswith(".cfg")][0]
    with cd(targets[i]):
        pyrat = pb.run(cfile, run_step='dry', no_logfile=True)

    data = pyrat.obs.data
    uncert = pyrat.obs.uncert
    indparams = [data]
    params = np.array([np.mean(data)])
    pstep = np.array([1.0])
    mc3_fit = mc3.fit(data, uncert, sfit, params, indparams, pstep)

    dof = len(data) - len(params)
    names[i] = cfile.split('_')[1] + ' ' + cfile.split('_')[2]
    flat_chisq[i] = mc3_fit['best_chisq']
    flat_rchisq[i] = mc3_fit['best_chisq'] / dof
    flat_bic[i] = mc3_fit['best_chisq'] + len(params) * np.log(len(data))
Ejemplo n.º 11
0
def main():
    # Only those with ADI > 3:
    cfiles = [
        'run_HATP-18b_tsiaras/mcmc_HATP-18b_tsiaras_w00000-0c.cfg',
        'run_HATP-32b_tsiaras/mcmc_HATP-32b_tsiaras_w00000-0c.cfg',
        'run_HATP-38b_bruno/mcmc_HATP-38b_bruno_w00000-0c.cfg',
        'run_HATP-41b_tsiaras/mcmc_HATP-41b_tsiaras_w00000-0c.cfg',
        'run_K2-018b_benneke/mcmc_K2-018b_benneke_w00000-0c.cfg',
        'run_WASP-043b_stevenson/mcmc_WASP-043b_stevenson_w00000-0c.cfg',
        'run_WASP-063b_kilpatrick/mcmc_WASP-063b_kilpatrick_w000h0-0c.cfg',
        'run_WASP-069b_tsiaras/mcmc_WASP-069b_tsiaras_w00000-0c.cfg',
        'run_WASP-103b_kreidberg/mcmc_WASP-103b_kreidberg_w00000-0c.cfg',
        'run_XO-1b_tsiaras/mcmc_XO-1b_tsiaras_w00000-0c.cfg',
    ]
    ntargets = len(cfiles)

    names = np.array([None for _ in range(ntargets)])
    posteriors = [None for _ in range(ntargets)]
    teq = np.zeros(ntargets)

    for i in range(ntargets):
        folder, cfile = os.path.split(cfiles[i])
        _, planet, dset = folder.split('_')
        name = f'{planet} {dset.capitalize()}'
        names[i] = name.replace('-0', '-')
        with pt.cd(folder):
            pyrat = pb.run(cfile, run_step='init', no_logfile=True)
            teq[i], _ = pa.equilibrium_temp(pyrat.phy.tstar, pyrat.phy.rstar,
                                            pyrat.phy.smaxis)
            with np.load(pyrat.ret.mcmcfile) as mcmc:
                posteriors[i], zchain, zmask = mc3.utils.burn(mcmc)

    tposteriors = np.array([post[:, 0] for post in posteriors])
    ci1 = np.zeros((2, ntargets))
    for i in range(ntargets):
        pdf, xpdf, HPDmin = mc3.stats.cred_region(tposteriors[i])
        ci1[:, i] = -np.amin(xpdf[pdf > HPDmin]), np.amax(xpdf[pdf > HPDmin])

    # Print some stats:
    decimals = [0, 3, 2, 2, 2, 2]
    split = [None, None, -4, None, None, None, None, -2, -4, None]

    table = []
    for j, posterior in enumerate(posteriors):
        texts = []
        for i in range(len(posterior.T)):
            dec = decimals[i]
            text = ''
            pdf, xpdf, hpd_min = mc3.stats.cred_region(posterior[:, i])
            if i == 2 and split[j] is not None:
                x = xpdf[xpdf < split[j]]
                p = pdf[xpdf < split[j]]
                mode = x[np.argmax(p)]
                lo = mode - np.amin(x[p > hpd_min])
                hi = -(mode - np.amax(x[p > hpd_min]))
                text = f'${mode:.{dec}f}_{{-{lo:.{dec}f}}}^{{+{hi:.{dec}f}}}$ and '
                pdf = pdf[xpdf > split[j]]
                xpdf = xpdf[xpdf > split[j]]
            mode = xpdf[np.argmax(pdf)]
            lo = mode - np.amin(xpdf[pdf > hpd_min])
            hi = -(mode - np.amax(xpdf[pdf > hpd_min]))
            text += f'${mode:.{dec}f}_{{-{lo:.{dec}f}}}^{{+{hi:.{dec}f}}}$'
            texts.append(text)
        text = "  &  ".join(texts)
        table.append(text)
    table_text = " \\\\\n".join(table)
    print(table_text)

    # ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    # Temperatures:
    lw = 2.0
    fs = 14
    y = np.zeros(ntargets)

    plt.figure(22, (6.5, 4.75))
    plt.clf()
    plt.subplots_adjust(0.12, 0.1, 0.99, 0.99)
    ax = plt.subplot(111)
    plt.errorbar(teq,
                 y,
                 yerr=ci1,
                 capsize=5.0,
                 capthick=lw,
                 lw=lw,
                 ls='none',
                 color='orangered',
                 label='This work')
    plt.plot(teq, teq, "o", color='mediumblue')
    plt.ylim(ymin=0)
    ax.set_xlim(200, 2560)
    ax.tick_params(labelsize=fs - 2, direction='in', which='both')
    for xt, name in zip(teq, names):
        name = name.split()[0]
        plt.text(xt - 61,
                 xt + 45,
                 name.split()[0],
                 va='bottom',
                 rotation=90,
                 fontsize=fs - 4)
    ax.set_xlabel('Equilibrium temperature (K)', fontsize=fs)
    ax.set_ylabel('Retrieved temperature (K)', fontsize=fs)
    plt.savefig('plots/WFC3_sample_temperature.pdf')

    # ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    # H2O abundances:
    idx_H2O = 2
    H2O_posts = [post[:, idx_H2O] for post in posteriors]

    nx = 1
    ny = ntargets
    rect = [0.1, 0.06, 0.95, 0.99]
    margin = 0.0
    ranges = [(-12, 0) for _ in range(ntargets)]
    pnames = ['' for _ in range(ntargets)]
    fs = 13

    plt.figure(32, (6, 8))
    plt.clf()
    axes = [
        mc3.plots.subplotter(rect, margin, i + 1, nx, ny)
        for i in range(ntargets)
    ]

    for i in range(ntargets):
        mc3.plots.histogram(H2O_posts[i],
                            pnames=pnames[i:i + 1],
                            quantile=0.683,
                            ranges=ranges[i:i + 1],
                            nbins=60,
                            axes=axes[i:i + 1],
                            lw=2.0,
                            fs=fs - 1,
                            theme='blue')
        plt.text(0.02, 0.75, names[i], transform=axes[i].transAxes)
        if i < ntargets - 1:
            axes[i].set_xticklabels([])
        axes[i].set_yticks([])
    axes[i].set_xlabel('$\\log_{10}(X_{\\rm H2O})$', fontsize=fs)
    axes[4].set_ylabel('Marginal posterior density' + 15 * ' ', fontsize=fs)
    plt.setp(axes[i].xaxis.get_majorticklabels(), rotation=0)
    plt.savefig('plots/WFC3_sample_H2O_abundance.pdf')
Ejemplo n.º 12
0
nprofiles = 3
nlayers = 61
nwave = 17048

data = np.zeros((nmodes, nphase, nspec))
uncerts = np.zeros((nmodes, nphase, nspec))
tpost = np.zeros((nmodes, nphase, nprofiles, nlayers))
posteriors = np.zeros((nmodes, nphase), dtype=object)
median_fr = np.zeros((nmodes, nphase, nwave))
hi_fr = np.zeros((nmodes, nphase, nwave))
lo_fr = np.zeros((nmodes, nphase, nwave))

for j, i in product(range(nmodes), range(nphase)):
    pickle_file = f'MCMC_WASP43b_{modes[j]}_phase{obs_phase[i]:.2f}.pickle'
    print(f'{modes[j]}: phase {obs_phase[i]:.2f}')
    with pt.cd('run_feng2020/'):
        pyrat = io.load_pyrat(pickle_file)

    posteriors[j, i] = pyrat.ret.posterior[:, -4:]
    rprs = pyrat.phy.rplanet / pyrat.phy.rstar
    starflux = pyrat.spec.starflux
    median_fr[j, i] = pyrat.ret.spec_median / starflux * rprs**2
    lo_fr[j, i] = pyrat.ret.spec_low1 / starflux * rprs**2
    hi_fr[j, i] = pyrat.ret.spec_high1 / starflux * rprs**2

    data[j, i] = pyrat.obs.data
    uncerts[j, i] = pyrat.obs.uncert
    ifree = pyrat.ret.pstep[pyrat.ret.itemp] > 0
    itemp = np.arange(np.sum(ifree))
    tpost[j, i] = pa.temperature_posterior(pyrat.ret.posterior[:, itemp],
                                           pyrat.atm.tmodel,
    'run_WASP-063b_kilpatrick/mcmc_WASP-063b_kilpatrick_w000h0-mc.cfg',
    'run_WASP-063b_tsiaras/mcmc_WASP-063b_tsiaras_w000h0-mc.cfg',
    'run_WASP-067b_bruno/mcmc_WASP-067b_bruno_w00000-mc.cfg',
    'run_WASP-067b_tsiaras/mcmc_WASP-067b_tsiaras_w00000-mc.cfg',
    'run_WASP-069b_tsiaras/mcmc_WASP-069b_tsiaras_w00000-mc.cfg',
    'run_WASP-074b_tsiaras/mcmc_WASP-074b_tsiaras_w00000-mc.cfg',

    'run_WASP-080b_tsiaras/mcmc_WASP-080b_tsiaras_w00000-mc.cfg',
    'run_WASP-101b_tsiaras/mcmc_WASP-101b_tsiaras_w00000-mc.cfg',
    'run_WASP-101b_wakeford/mcmc_WASP-101b_wakeford_w00000-mc.cfg',
    'run_WASP-103b_kreidberg/mcmc_WASP-103b_kreidberg_wmdm00-mc.cfg',
    'run_XO-1b_tsiaras/mcmc_XO-1b_tsiaras_w00000-mc.cfg',
    ]
ntargets = len(cfiles)

for cfile in cfiles:
    folder, cfg = os.path.split(cfile)
    _, planet, dset = folder.split('_')
    with pt.cd(folder):
        pyrat = pb.run(cfg, run_step='init', no_logfile=True)
        with np.load(pyrat.ret.mcmcfile) as mcmc:
            post, zchain, zmask = mc3.utils.burn(mcmc)
            accept_rate = mcmc['acceptance_rate']
        pyrat.ret.posterior = post
        # I want to evaluate less than ~1e5 unique samples:
        nmax = int(1e5 / (6 * 0.01 * accept_rate))
        pyrat.percentile_spectrum(nmax)
        pfile = pyrat.ret.mcmcfile.replace('.npz', '.pickle')
        io.save_pyrat(pyrat, pfile)

Ejemplo n.º 14
0
def test_pf_tips_outfile(outfile):
    with pt.cd('outputs/'):
        pf_data, isotopes, temp = pf.tips('HCN', outfile=outfile)
    assert 'PF_tips_HCN.dat' in os.listdir('outputs/')
    os.remove('outputs/PF_tips_HCN.dat')