Ejemplo n.º 1
0
def test_transforming():
    k = TEST_CASES[6][0]

    def vscaling_fn(x):
        return x.sum(dim=1)

    def iwarping_fn(x):
        return x**2

    owarping_coef = [2, 0, 1, 3, 0]

    K = k(X, Z)
    K_iwarp = k(iwarping_fn(X), iwarping_fn(Z))
    K_owarp = 2 + K**2 + 3 * K**3
    K_vscale = vscaling_fn(X).unsqueeze(1) * K * vscaling_fn(Z).unsqueeze(0)

    assert_equal(K_iwarp.data, Warping(k, iwarping_fn=iwarping_fn)(X, Z).data)
    assert_equal(K_owarp.data,
                 Warping(k, owarping_coef=owarping_coef)(X, Z).data)
    assert_equal(K_vscale.data,
                 VerticalScaling(k, vscaling_fn=vscaling_fn)(X, Z).data)
    assert_equal(K.exp().data, Exponent(k)(X, Z).data)

    # test get_subkernel
    k1 = Sum(Warping(k, iwarping_fn=iwarping_fn), TEST_CASES[7][0])
    assert k1.get_subkernel(k.name) is k
Ejemplo n.º 2
0
    def __init__(self,
                 input_dim,
                 feature_dim=None,
                 mean_fn=None,
                 embed_fn=None):
        super(DMEGP, self).__init__()
        # store params
        self.input_dim = input_dim
        self.feature_dim = feature_dim

        # define mean function and embedding function
        self.mean_fn = mean_fn
        self.embed_fn = embed_fn

        # define kernel function
        if embed_fn == None:
            feature_dim = input_dim
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
        else:
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
            kernel = Warping(kernel, iwarping_fn=self.embed_fn)
            if mean_fn != None:
                self.mean_fn = Warping_mean(self.mean_fn, self.embed_fn)

        # define gaussian process regression model
        self.gp_model = GPRegression(
            X=torch.ones(1, feature_dim),  # dummy
            y=None,
            kernel=kernel,
            mean_function=self.mean_fn)
Ejemplo n.º 3
0
    def define_new_GP(self):
        # define kernel function
        if self.embed_fn == None:
            feature_dim = self.input_dim
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
        else:
            feature_dim = self.feature_dim
            embed_fn = copy.deepcopy(self.embed_fn)
            kernel = RBF(feature_dim, lengthscale=torch.ones(feature_dim))
            kernel = Warping(kernel, iwarping_fn=embed_fn)
            if self.mean_fn != None:
                mean_fn = copy.deepcopy(self.mean_fn)

        # define gaussian process regression model
        gp_model = GPRegression(
            X=torch.ones(1, feature_dim),  # dummy
            y=None,
            kernel=kernel,
            mean_function=mean_fn)
        return gp_model