Ejemplo n.º 1
0
    def linear_model_formula(self, y, design, target_labels):

        if self.use_softplus:
            mu = {l: rmv(self.softplus(self.regressor[l]), y) for l in target_labels}
        else:
            mu = {l: rmv(self.regressor[l], y) for l in target_labels}
        scale_tril = {l: rtril(self.scale_tril[l]) for l in target_labels}

        return mu, scale_tril
Ejemplo n.º 2
0
Archivo: guides.py Proyecto: zyxue/pyro
    def linear_model_formula(self, y, design, target_labels):

        tikhonov_diag = torch.diag(self.softplus(self.tikhonov_diag))
        xtx = torch.matmul(design.transpose(-1, -2), design) + tikhonov_diag
        xtxi = rinverse(xtx, sym=True)
        mu = rmv(xtxi, rmv(design.transpose(-1, -2), y))

        # Extract sub-indices
        mu = tensor_to_dict(self.w_sizes, mu, subset=target_labels)
        scale_tril = {l: rtril(self.scale_tril[l]) for l in target_labels}

        return mu, scale_tril
Ejemplo n.º 3
0
def test_rtril():
    A = torch.tensor([[1., 2.], [-2., 0]])
    assert_equal(rtril(A), torch.tril(A), prec=1e-8)
    expanded = lexpand(A, 5, 4)
    expected = lexpand(torch.tril(A), 5, 4)
    assert_equal(rtril(expanded), expected, prec=1e-8)