Ejemplo n.º 1
0
 def testing():
     x = pyro.to_funsor(torch.tensor([0.0, 1.0]), funsor.Real, dim_to_name={-1: "x"})
     assert set(x.inputs) == {"x"}
     px = pyro.to_funsor(
         torch.ones(2, 3), funsor.Real, dim_to_name={-2: "x", -1: "y"}
     )
     assert px.inputs["x"].dtype == 2 and px.inputs["y"].dtype == 3
Ejemplo n.º 2
0
 def testing():
     for i in pyro.markov(range(5)):
         v1 = pyro.to_data(Tensor(torch.ones(2), OrderedDict([(str(i), funsor.Bint[2])]), 'real'))
         v2 = pyro.to_data(Tensor(torch.zeros(2), OrderedDict([('a', funsor.Bint[2])]), 'real'))
         fv1 = pyro.to_funsor(v1, funsor.Real)
         fv2 = pyro.to_funsor(v2, funsor.Real)
         print(i, v1.shape)  # shapes should alternate
         if i % 2 == 0:
             assert v1.shape == (2,)
         else:
             assert v1.shape == (2, 1, 1)
         assert v2.shape == (2, 1)
         print(i, fv1.inputs)
         print('a', v2.shape)  # shapes should stay the same
         print('a', fv2.inputs)
Ejemplo n.º 3
0
 def testing():
     for i in pyro.markov(range(5)):
         fv1 = pyro.to_funsor(torch.zeros(2), funsor.Real, dim_to_name={-1: str(i)})
         fv2 = pyro.to_funsor(torch.ones(2), funsor.Real, dim_to_name={-1: "a"})
         v1 = pyro.to_data(fv1)
         v2 = pyro.to_data(fv2)
         print(i, v1.shape)  # shapes should alternate
         if i % 2 == 0:
             assert v1.shape == (2,)
         else:
             assert v1.shape == (2, 1, 1)
         assert v2.shape == (2, 1)
         print(i, fv1.inputs)
         print('a', v2.shape)  # shapes should stay the same
         print('a', fv2.inputs)
Ejemplo n.º 4
0
 def testing():
     for i in pyro.markov(range(12)):
         if i % 4 == 0:
             v2 = pyro.to_data(Tensor(torch.zeros(2), OrderedDict([('a', funsor.Bint[2])]), 'real'))
             fv2 = pyro.to_funsor(v2, funsor.Real)
             assert v2.shape == (2,)
             print('a', v2.shape)
             print('a', fv2.inputs)
Ejemplo n.º 5
0
 def testing():
     for i in pyro.markov(range(12)):
         if i % 4 == 0:
             fv2 = pyro.to_funsor(torch.zeros(2), funsor.Real, dim_to_name={-1: 'a'})
             v2 = pyro.to_data(fv2)
             assert v2.shape == (2,)
             print('a', v2.shape)
             print('a', fv2.inputs)