Ejemplo n.º 1
0
    def plot_discriminators(self,
                            log=False,
                            printROC=False,
                            privateWork=False,
                            signal_class=None,
                            nbins=None,
                            bin_range=None,
                            sigScale=-1):
        ''' plot all events classified as one category '''
        if not bin_range:
            bin_range = [round(1. / self.data.n_output_neurons, 2), 1.]
        if not nbins:
            nbins = int(25 * (1. - bin_range[0]))

        plotDiscrs = plottingScripts.plotDiscriminators(
            data=self.data,
            prediction_vector=self.model_prediction_vector,
            event_classes=self.event_classes,
            nbins=nbins,
            bin_range=bin_range,
            signal_class=signal_class,
            event_category=self.category_label,
            plotdir=self.plot_path,
            logscale=log,
            sigScale=sigScale)

        bkg_hist, sig_hist = plotDiscrs.plot(ratio=False,
                                             printROC=printROC,
                                             privateWork=privateWork)
Ejemplo n.º 2
0
	def plot_discriminators(self, log = False):
		''' plot all events classified as one category '''
		nbins = 15
		bin_range = [0.2, 0.7]

		plotDiscrs = plottingScripts.plotDiscriminators(
			data                = self.data,
			prediction_vector   = self.mainnet_predicted_vector,
			event_classes       = self.event_classes,
			nbins               = nbins,
			bin_range           = bin_range,
			signal_class        = "ttHbb",
			event_category      = self.categoryLabel,
			plotdir             = self.plot_path,
			logscale            = log)

		plotDiscrs.set_printROCScore(True)
		plotDiscrs.plot(ratio = False)
Ejemplo n.º 3
0
    def plot_discriminators(self,
                            log=False,
                            plot_nonTrainData=False,
                            signal_class="ttHbb"):
        ''' plot all events classified as one category '''
        nbins = 18
        bin_range = [0.1, 1.]

        plotDiscrs = plottingScripts.plotDiscriminators(
            data=self.data,
            prediction_vector=self.model_prediction_vector,
            event_classes=self.event_classes,
            nbins=nbins,
            bin_range=bin_range,
            signal_class=signal_class,
            event_category=self.categoryLabel,
            plotdir=self.plot_path,
            logscale=log,
            plot_nonTrainData=plot_nonTrainData)

        plotDiscrs.set_printROCScore(True)
        plotDiscrs.plot(ratio=False)