Ejemplo n.º 1
0
    def setup_class(cls):
        mmap = MoveMap()
        mmap.set_bb(True)

        cls.pose = Pose()
        make_pose_from_sequence(cls.pose, 'PYTEST', "fa_standard", True)

        cls.small_mv = SmallMover(mmap, 1., 1)
        cls.rep_mv = RepeatMover(cls.small_mv, 3)
Ejemplo n.º 2
0
    def test_set_attributes(self):
        kT = 100.
        n = 2
        new_mm = MoveMap()
        new_mm.set_bb(True)

        self.shear_mv.temperature = kT
        assert self.shear_mv.temperature == kT

        self.shear_mv.nmoves = n
        assert self.shear_mv.nmoves == n

        self.shear_mv.movemap = new_mm
        output_mmap = self.shear_mv.movemap(self.pose)
        assert output_mmap.get_bb(1) is True
Ejemplo n.º 3
0
    def setup_class(cls):
        mmap = MoveMap()

        cls.pose = Pose()
        make_pose_from_sequence(cls.pose, 'PYTEST', "fa_standard", True)

        cls.shear_mv = ShearMover(mmap, 1., 1)
Ejemplo n.º 4
0
def _minimize_step(sf, pose):
    mmap = MoveMap()
    mmap.set_bb(True)
    mmap.set_chi(False)
    mmap.set_jump(True)

    min_mover = MinMover(mmap, sf, "lbfgs_armijo_nonmonotone", 0.0001, True)
    min_mover.max_iter(1000)
    min_mover.apply(pose)
Ejemplo n.º 5
0
class TestMinMover():
    pose = get_pose('PYTEST')
    mmap = MoveMap()
    mmap.set_bb(True)
    sfxn = get_score_function()

    min_mv = MinMover(movemap=mmap, sfxn=sfxn)

    def test_attributes(self):
        assert self.min_mv.score_function() == self.min_mv.sfxn
        assert self.min_mv.movemap(self.pose).get_bb(1)
Ejemplo n.º 6
0
def variation(eaObj, varcfg):
    # setting the constant length of fragments being replaced
    eaObj.varFragLength = int(varcfg['fragLength'])
    # uses our previously defined value to set the fragment length of the fragment set in pyrosetta using data
    eaObj.varFragments = core.fragment.ConstantLengthFragSet(
        eaObj.varFragLength)
    # reads our fragment file from the path generated using our previously defined values for the protein's id and the length specified for each fragment (3 or 9)
    eaObj.varFragments.read_fragment_file(
        eaObj.proteinPath +
        "{0}/aat000_0{1}_05.200_v1_3".format(eaObj.pdbid, eaObj.varFragLength))
    eaObj.movemap = MoveMap()  # Enables movement of the abstract Pose object.
    # Allows all backbone torsion angles to vary
    eaObj.movemap.set_bb(int(varcfg['bbAngle']) == 1)
    # Allows all side-chain torsion angles (χ) to vary
    eaObj.movemap.set_chi(int(varcfg['chiAngle']) == 1)
    eaObj.varMover = protocols.simple_moves.ClassicFragmentMover(
        eaObj.varFragments, eaObj.movemap
    )  # Using the fragments extracted, it will move a Pose according to the allowed movement from MoveMap()
Ejemplo n.º 7
0
def relax(pose):
    sf = create_score_function("ref2015")
    sf.set_weight(rosetta.core.scoring.atom_pair_constraint, 5)
    sf.set_weight(rosetta.core.scoring.dihedral_constraint, 1)
    sf.set_weight(rosetta.core.scoring.angle_constraint, 1)

    mmap = MoveMap()
    mmap.set_bb(True)
    mmap.set_chi(True)
    mmap.set_jump(True)

    relax = rosetta.protocols.relax.FastRelax()
    relax.set_scorefxn(sf)
    relax.max_iter(200)
    relax.dualspace(True)
    relax.set_movemap(mmap)

    switch = SwitchResidueTypeSetMover("fa_standard")
    switch.apply(pose)
    relax.apply(pose)
Ejemplo n.º 8
0
  def __init__(self, net, pose, fix=None, glycinate=False, max_iter=100,
               n_moves=1, scorefxn=None, kT=0.1, k=15, dropout=0.5, relax=True):
    super(NetPackMover, self).__init__(net, pose, k=k, dropout=dropout)
    self.relax = relax
    self.n_moves = n_moves
    self.max_iter = max_iter
    self.kT = kT
    self.scorefxn = scorefxn
    self.fix = fix if fix is not None else []
    self.step = 0

    self.fastrelax = ...
    if relax or glycinate:
      fastrelax = FastRelax()
      fastrelax.set_scorefxn(self.scorefxn)
      mm = MoveMap()
      mm.set_bb(False)
      mm.set_chi(True)
      #for fixed in self.fix:
      #  mm.set_chi(fixed, False)
      fastrelax.set_movemap(mm)
      self.fastrelax = fastrelax

    if glycinate:
      self.dropout = 1.0
      mask = torch.tensor([
        1 - int(self.fixed_position(idx))
        for idx in range(len(pose.sequence()))
      ], dtype=torch.bool)
      for idx, residue in enumerate(pose.residues):
        residue_name = self.sample_residue(pose, idx, mask=mask, argmax=True)
        if not self.fixed_position(idx):
          mutate_residue(pose, idx + 1, residue_name, pack_radius=10.0, pack_scorefxn=scorefxn)
        mask[idx] = 0
      self.dropout = dropout
      self.fastrelax.apply(pose)
    self.monte_carlo = MonteCarlo(pose, scorefxn, kT)
    self.glycinate = glycinate
Ejemplo n.º 9
0
def sample_folding(sequence,
                   long_frag_filename,
                   long_frag_length,
                   short_frag_filename,
                   short_frag_length,
                   kT=3.0,
                   long_inserts=1,
                   short_inserts=3,
                   cycles=40,
                   jobs=1,
                   job_output='fold_output'):
    """
    Performs
        exporting structures to a PyMOL instance
        Output structures are named  <job_output>_(job#).pdb
    """
    # 1. create a pose from the desired sequence (fullatom)
    # the method pose_from_sequence produces a complete IDEALIZED
    #    protein conformation of the input sequence, the ResidueTypeSet (second
    #    argument below) may be varied, and this method supports non-proteogenic
    #    chemistry (though it is still a Rosetta Residue). however this syntax
    #    is more involved and not robust to user errors, and not presented here
    # small differences in bond lengths and bond angles WILL change the results,
    #### if you desire an alternate starting conformation, alter steps
    ####     1. and 2. as you please
    pose = pose_from_sequence(sequence, 'fa_standard')

    # 2. linearize the pose by setting backbone torsions to large values
    # the method make_pose_from_sequence does not create the new pose's
    #    PDBInfo object, so its done here, without it an error occurs later
    pose.pdb_info(rosetta.core.pose.PDBInfo(pose.total_residue()))
    for i in range(1, pose.total_residue() + 1):
        pose.set_omega(i, 180)
        pose.set_phi(i, -150)  # reasonably straight
        pose.set_psi(i, 150)
        #### if you want to see the decoy scores, the PDBInfo needs these lines
        #pose.pdb_info().chain(i, 'A')    # necessary to color by score
        #pose.pdb_info().number(i, i)    # for PDB numbering
    ####

    # 3. create a (fullatom) reference copy of the pose
    test_pose = Pose()
    test_pose.assign(pose)
    test_pose.pdb_info().name('linearized pose')

    # 4. create centroid <--> fullatom conversion Movers
    to_centroid = SwitchResidueTypeSetMover('centroid')
    # centroid Residue objects, of amino acids, have all their sidechain atoms
    #    replaced by a single representative "atom" to speed up calculations
    to_fullatom = SwitchResidueTypeSetMover('fa_standard')

    # 5. convert the poses to centroid
    to_centroid.apply(pose)
    to_centroid.apply(test_pose)

    # 6. create the MoveMap, all backbone torsions free
    movemap = MoveMap()
    movemap.set_bb(True)
    # minimizing the centroid chi angles (the sidechain centroid atoms) is
    #    almost always USELESS since this compression is performed for speed,
    #    not accuracy and clashes usually occur when converting to fullatom

    # 7. setup the ClassicFragmentMovers
    # for the long fragments file
    # this "try--except" is used to catch improper fragment files
    try:
        fragset_long = core.fragment.ConstantLengthFragSet(
            long_frag_length, long_frag_filename)
        #### the ConstantLengthFragSet is overloaded, this same
        ####    ConstantLengthFragSet can be obtained with different syntax
        # to obtain custom fragments, see Generating Fragment Files below
    except:
        raise IOError('Make sure long_frag_length matches the fragments in\n\
            long_frag_file and that long_frag_file is valid')
    long_frag_mover = protocols.simple_moves.ClassicFragmentMover(
        fragset_long, movemap)
    # and for the short fragments file
    # this "try--except" is used to catch improper fragment files
    try:
        fragset_short = core.fragment.ConstantLengthFragSet(
            short_frag_length, short_frag_filename)
    except:
        raise IOError('Make sure short_frag_length matches the fragments in\n\
            short_frag_file and that short_frag_file is valid')
    short_frag_mover = protocols.simple_moves.ClassicFragmentMover(
        fragset_short, movemap)

    # 8. setup RepeatMovers for the ClassicFragmentMovers
    insert_long_frag = protocols.moves.RepeatMover(long_frag_mover,
                                                   long_inserts)
    insert_short_frag = protocols.moves.RepeatMover(short_frag_mover,
                                                    short_inserts)

    # 9. create a PyMOL_Observer for exporting structures to PyMOL (optional)
    # the PyMOL_Observer object owns a PyMOLMover and monitors pose objects for
    #    structural changes, when changes are detected the new structure is
    #    sent to PyMOL
    # fortunately, this allows investigation of full protocols since
    #    intermediate changes are displayed, it also eliminates the need to
    #    manually apply the PyMOLMover during a custom protocol
    # unfortunately, this can make the output difficult to interpret (since you
    #    aren't explicitly telling it when to export) and can significantly slow
    #    down protocols since many structures are output (PyMOL can also slow
    #    down if too many structures are provided and a fast machine may
    #    generate structures too quickly for PyMOL to read, the
    #    "Buffer clean up" message
    # uncomment the line below to use PyMOL_Observer
    ##    AddPyMOLObserver(test_pose, True)

    # 10. create ScoreFunctions
    # for low-resolution, centroid, poses necessary for the TrialMover's
    #    MonteCarlo object (see below)
    scorefxn_low = create_score_function('score3')
    # for high-resolution, fullatom, poses necessary for scoring final output
    #    from the PyJobDistributor (see below)
    scorefxn_high = get_fa_scorefxn(
    )  #  create_score_function('standard', 'score12')

    # 11. setup a RepeatMover on a TrialMover of a SequenceMover
    # -setup a TrialMover
    #    a. create a SequenceMover of the fragment insertions
    #### add any other moves you desire
    folding_mover = protocols.moves.SequenceMover()
    folding_mover.add_mover(insert_long_frag)
    folding_mover.add_mover(insert_short_frag)
    #    b. create a MonteCarlo object to define success/failure
    # must reset the MonteCarlo object for each trajectory!
    mc = MonteCarlo(test_pose, scorefxn_low, kT)
    # c. create the TrialMover
    trial = TrialMover(folding_mover, mc)

    #### for each trajectory, try cycles number of applications

    # -create the RepeatMover
    folding = protocols.moves.RepeatMover(trial, cycles)

    # 12. create a (Py)JobDistributor
    jd = PyJobDistributor(job_output, jobs, scorefxn_high)

    # 13. store the score evaluations for output
    # printing the scores as they are produced would be difficult to read,
    #    Rosetta produces a lot of verbose output when running
    scores = [0] * (jobs + 1)
    scores[0] = scorefxn_low(pose)

    # 14. perform folding by
    counter = 0  # for exporting to PyMOL
    while not jd.job_complete:
        # a. set necessary variables for the new trajectory
        # -reload the starting pose
        test_pose.assign(pose)
        # -change the pose's PDBInfo.name, for the PyMOL_Observer
        counter += 1
        test_pose.pdb_info().name(job_output + '_' + str(counter))
        # -reset the MonteCarlo object (sets lowest_score to that of test_pose)
        mc.reset(test_pose)

        #### if you create a custom protocol, you may have additional
        ####    variables to reset, such as kT

        #### if you create a custom protocol, this section will most likely
        ####    change, many protocols exist as single Movers or can be
        ####    chained together in a sequence (see above) so you need
        ####    only apply the final Mover
        # b. apply the refinement protocol
        folding.apply(test_pose)

        ####
        # c. export the lowest scoring decoy structure for this trajectory
        # -recover the lowest scoring decoy structure
        mc.recover_low(test_pose)
        # -store the final score for this trajectory
        scores[counter] = scorefxn_low(test_pose)
        # -convert the decoy to fullatom
        # the sidechain conformations will all be default,
        #    normally, the decoys would NOT be converted to fullatom before
        #    writing them to PDB (since a large number of trajectories would
        #    be considered and their fullatom score are unnecessary)
        # here the fullatom mode is reproduced to make the output easier to
        #    understand and manipulate, PyRosetta can load in PDB files of
        #    centroid structures, however you must convert to fullatom for
        #    nearly any other application
        to_fullatom.apply(test_pose)
        # -guess what cysteines are involved in disulfide bridges
        guess_disulfides(test_pose)
        # -output the fullatom decoy structure into a PDB file
        jd.output_decoy(test_pose)
        # -export the final structure to PyMOL
        test_pose.pdb_info().name(job_output + '_' + str(counter) + '_fa')

        #### if you want to see the decoy scores, uncomment the line below
        #scorefxn_high( test_pose )

    # 15. output the score evaluations
    print('===== Centroid Scores =====')
    print('Original Score\t:\t', scores[0])
    for i in range(1, len(scores)):  # print out the job scores
        # the "[:14].ljust(14)" is to force the text alignment
        print( (job_output + '_' + str( i ))[:14].ljust(14) +\
            '\t:\t', scores[i] )

    return scores  # for other protocols
Ejemplo n.º 10
0
#Load and clean up pdb file
name = pdb_file + '.pdb'
cleaning.cleanATOM(name)
clean_name = pdb_file + ".clean.pdb"
#rna_set = core.chemical.ChemicalManager.get_instance().residue_type_set("coarse_rna").get()
#rna_set = core.chemical.ChemicalManager.get_instance().residue_type_set("fa_standard")

initial_pose = pose_from_pdb(clean_name)
print initial_pose
print toolbox.get_secstruct(initial_pose)
#Set up ScoreFunction
sf = get_fa_scorefxn()

#Set up MoveMap.
mm = MoveMap()
#change these for more or less flexability
mm.set_bb(True)
mm.set_chi(True)

#Pack and minimize initial pose to remove clashes.
pre_pre_packing_score = sf(initial_pose)
print "1"
task = standard_packer_task(initial_pose)
task.restrict_to_repacking()
task.or_include_current(True)
print "2"
pack_rotamers_mover = protocols.simple_moves.RotamerTrialsMover(sf, task)
pack_rotamers_mover.apply(initial_pose)
print "3"
Ejemplo n.º 11
0
scorefxn_high = protocols.loops.get_fa_scorefxn(
)  #  create_score_function_ws_patch( 'standard', 'score12' )

pymol = PyMOLMover()  # If Pymol server is running, centroid stage will display

loop_begin = 145
loop_end = 155
loop_cut = 150
my_loop = protocols.loops.Loop(loop_begin, loop_end, loop_cut)
my_loops = protocols.loops.Loops()
my_loops.add_loop(my_loop)
print(my_loop)

protocols.loops.set_single_loop_fold_tree(p, my_loop)

movemap = MoveMap()
movemap.set_bb_true_range(loop_begin, loop_end)
movemap.set_chi(True)

print(p.fold_tree())

print("setting up movers")
# use the KinematicMover explicitly in centroid stage
kic_mover = KinematicMover()

#centroid/fullatom conversion movers
to_centroid = protocols.simple_moves.SwitchResidueTypeSetMover('centroid')
to_fullatom = protocols.simple_moves.SwitchResidueTypeSetMover('fa_standard')
recover_sidechains = protocols.simple_moves.ReturnSidechainMover(starting_p)

#set up sidechain packer movers
Ejemplo n.º 12
0
def sample_docking(pdb_filename, partners,
        translation = 3.0, rotation = 8.0,
        jobs = 1, job_output = 'dock_output'):
    """
    Performs protein-protein docking using the Rosetta standard DockingProtocol
        on the proteins in  <pdb_filename>  using the relative chain
        <partners>  with an initial perturbation using  <translation>
        Angstroms and  <rotation>  degrees.  <jobs>  trajectories are performed
        with output structures named  <job_output>_(job#).pdb.
        structures are exported to a PyMOL instance.

    """
    # 1. creates a pose from the desired PDB file
    pose = Pose()
    pose_from_file(pose, pdb_filename)

    # 2. setup the docking FoldTree
    # using this method, the jump number 1 is automatically set to be the
    #    inter-body jump
    dock_jump = 1
    # the exposed method setup_foldtree takes an input pose and sets its
    #    FoldTree to have jump 1 represent the relation between the two docking
    #    partners, the jump points are the residues closest to the centers of
    #    geometry for each partner with a cutpoint at the end of the chain,
    # the second argument is a string specifying the relative chain partners
    #    such as "A_B" of "LH_A", ONLY TWO BODY DOCKING is supported and the
    #    partners MUST have different chain IDs and be in the same pose (the
    #    same PDB), additional chains can be grouped with one of the partners,
    #    the "_" character specifies which bodies are separated
    # the third argument...is currently unsupported but must be set (it is
    #    supposed to specify which jumps are movable, to support multibody
    #    docking...but Rosetta doesn't currently)
    # the FoldTrees setup by this method are for TWO BODY docking ONLY!
    protocols.docking.setup_foldtree(pose, partners, Vector1([dock_jump]))

    # 3. create centroid <--> fullatom conversion Movers
    to_centroid = SwitchResidueTypeSetMover('centroid')
    to_fullatom = SwitchResidueTypeSetMover('fa_standard')
    # and a Mover to recover sidechain conformations
    #    when a protocol samples backbone torsion space in centroid,
    #    the sidechain conformations are neglected, when it is transferred
    #    to fullatom, we typically set the sidechain conformations to their
    #    "original" values and perform sidechain packing,
    #    a ReturnSidechainMover saves a pose's sidechains (in this case
    #    staring_pose) and when applied, inserts these conformations
    #    into the input pose
    recover_sidechains = protocols.simple_moves.ReturnSidechainMover(pose)

    # 4. convert to centroid
    to_centroid.apply(pose)

    # 5. create a (centroid) test pose
    test_pose = Pose()
    test_pose.assign(pose)

    # 6. create ScoreFunctions for centroid and fullatom docking
    scorefxn_low = create_score_function('interchain_cen')
    scorefxn_high = create_score_function('docking')

    # PyRosetta3: scorefxn_high_min = create_score_function_ws_patch('docking', 'docking_min')
    scorefxn_high_min = create_score_function('docking', 'docking_min')

    # 7. create Movers for producing an initial perturbation of the structure
    # the DockingProtocol (see below) can do this but several Movers are
    #    used to demonstrate their syntax
    # these Movers randomize the orientation (rotation) of each docking partner
    randomize_upstream = RigidBodyRandomizeMover(pose, dock_jump,
        partner_upstream)
    randomize_downstream = RigidBodyRandomizeMover(pose, dock_jump,
        partner_downstream)
    # this Mover translates one docking partner away from the other in a random
    #    direction a distance specified by the second argument (in Angstroms)
    #    and rotates this partner randomly by the third argument (in degrees)
    dock_pert = RigidBodyPerturbMover(dock_jump, translation, rotation)
    # this Mover randomizes a pose's partners (rotation)
    spin = RigidBodySpinMover(dock_jump)
    # this Mover uses the axis defined by the inter-body jump (jump 1) to move
    #    the docking partners close together
    slide_into_contact = protocols.docking.DockingSlideIntoContact(dock_jump)

    # 8. setup the MinMover
    # the MoveMap can set jumps (by jump number) as degrees of freedom
    movemap = MoveMap()
    movemap.set_jump(dock_jump, True)
    # the MinMover can minimize score based on a jump degree of freedom, this
    #    will find the distance between the docking partners which minimizes
    #    the score
    minmover = protocols.minimization_packing.MinMover()
    minmover.movemap(movemap)
    minmover.score_function(scorefxn_high_min)

    # 9. create a SequenceMover for the perturbation step
    perturb = protocols.moves.SequenceMover()
    perturb.add_mover(randomize_upstream)
    perturb.add_mover(randomize_downstream)
    perturb.add_mover(dock_pert)
    perturb.add_mover(spin)
    perturb.add_mover(slide_into_contact)
    perturb.add_mover(to_fullatom)
    perturb.add_mover(recover_sidechains)
    perturb.add_mover(minmover)

    # 10. setup the DockingProtocol
    # ...as should be obvious by now, Rosetta applications have no central
    #    standardization, the DockingProtocol object can be created and
    #    applied to perform Rosetta docking, many of its options and settings
    #    can be set using the DockingProtocol setter methods
    # here, on instance is created with all default values and the movable jump
    #    is manually set to jump 1 (just to be certain), the centroid docking
    #    ScoreFunction is set and the fullatom docking ScoreFunction is set
    dock_prot = protocols.docking.DockingProtocol()    # contains many docking functions
    dock_prot.set_movable_jumps(Vector1([1]))    # set the jump to jump 1
    dock_prot.set_lowres_scorefxn(scorefxn_low)
    dock_prot.set_highres_scorefxn(scorefxn_high_min)
    #### you can alternatively access the low and high resolution sections of
    ####    the DockingProtocol, both are applied by the DockingProtocol but
    ####    a novel protocol may only require centroid (DockingLowRes) or
    ####    fullatom (DockingHighRes), uncomment the lines below and their
    ####    application below
    #docking_low = DockingLowRes()
    #docking_low.set_movable_jumps(Vector1([1]))
    #docking_low.set_scorefxn(scorefxn_low)
    #docking_high = DockingHighRes()
    #docking_high.set_movable_jumps(Vector1([1]))
    #docking_high.set_scorefxn(scorefxn_high)

    # 11. setup the PyJobDistributor
    jd = PyJobDistributor(job_output, jobs, scorefxn_high)
    temp_pose = Pose()    # a temporary pose to export to PyMOL
    temp_pose.assign(pose)
    to_fullatom.apply(temp_pose)    # the original pose was fullatom
    recover_sidechains.apply(temp_pose)    # with these sidechains
    jd.native_pose = temp_pose    # for RMSD comparison

    # 12. setup a PyMOL_Observer (optional)
    # the PyMOL_Observer object owns a PyMOLMover and monitors pose objects for
    #    structural changes, when changes are detected the new structure is
    #    sent to PyMOL
    # fortunately, this allows investigation of full protocols since
    #    intermediate changes are displayed, it also eliminates the need to
    #    manually apply the PyMOLMover during a custom protocol
    # unfortunately, this can make the output difficult to interpret (since you
    #    aren't explicitly telling it when to export) and can significantly slow
    #    down protocols since many structures are output (PyMOL can also slow
    #    down if too many structures are provided and a fast machine may
    #    generate structures too quickly for PyMOL to read, the
    #    "Buffer clean up" message
    # uncomment the line below to use the PyMOL_Observer
##    AddPyMOLObserver(test_pose, True)

    # 13. perform protein-protein docking
    counter = 0    # for pretty output to PyMOL
    while not jd.job_complete:
        # a. set necessary variables for this trajectory
        # -reset the test pose to original (centroid) structure
        test_pose.assign(pose)
        # -change the pose name, for pretty output to PyMOL
        counter += 1
        test_pose.pdb_info().name(job_output + '_' + str(counter))

        # b. perturb the structure for this trajectory
        perturb.apply(test_pose)

        # c. perform docking
        dock_prot.apply(test_pose)
        #### alternate application of the DockingProtocol pieces
        #docking_low.apply(test_pose)
        #docking_high.apply(test_pose)

        # d. output the decoy structure
        to_fullatom.apply(test_pose)    # ensure the output is fullatom
        # to PyMOL
        test_pose.pdb_info().name(job_output + '_' + str( counter ) + '_fa')
        # to a PDB file
        jd.output_decoy(test_pose)
Ejemplo n.º 13
0
def mutate(pdb_name, n_muts=100):
    OUT = open(mydir + '/data/deltas.txt', 'w')
    #takes name of pdb file without the extention
    init(extra_options='-mute basic -mute core')
    # Constants
    PACK_RADIUS = 10.0
    #Amino acids, notice there is no C
    AAs = ("A", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P", "Q",
           "R", "S", "T", "V", "W", "Y")
    #Number of mutations to accept
    max_accept_mut = 600
    #Population size
    N = 100
    #Beta (temp term)
    beta = 1
    pdb = pdb_name + ".pdb"
    cleanATOM(pdb)
    pdb_clean_name = pdb_name + '.clean.pdb'
    initial_pose = pose_from_pdb(pdb_clean_name)

    #Set up ScoreFunction
    sf = get_fa_scorefxn()

    #Set up MoveMap.
    mm = MoveMap()
    #change these for more or less flexability
    mm.set_bb(True)
    mm.set_chi(True)

    #Pack and minimize initial pose to remove clashes.
    pre_pre_packing_score = sf(initial_pose)

    task = standard_packer_task(initial_pose)
    task.restrict_to_repacking()
    task.or_include_current(True)
    pack_rotamers_mover = RotamerTrialsMover(sf, task)
    pack_rotamers_mover.apply(initial_pose)

    min_mover = MinMover()
    min_mover.movemap(mm)
    min_mover.score_function(sf)
    min_mover.min_type('dfpmin_armijo_nonmonotone')
    min_mover.apply(initial_pose)

    post_pre_packing_score = sf(initial_pose)

    #Set threshold for selection
    threshold = pre_pre_packing_score / 2

    #number of residues to select from
    n_res = initial_pose.total_residue()

    max_accept_mut = 1500
    #start sim
    i = 0
    gen = 0
    columns = ['Number', 'Selection', 'P_fix', 'P_fix_MH']
    print >> OUT, '\t'.join(columns)
    while i < max_accept_mut:
        #update the number of generations that have pased
        gen += 1

        #pick a place to mutate
        mut_location = random.randint(1, n_res)

        #get the amino acid at that position
        res = initial_pose.residue(mut_location)
        #don't mess with C, just choose again
        if res.name1() == 'C':
            mut_location = random.randint(1, n_res)
            #get the amino acid at that position
            res = initial_pose.residue(mut_location)

        #choose the amino acid to mutate to
        new_mut_key = random.randint(0, len(AAs) - 1)

        proposed_res = AAs[new_mut_key]

        #don't bother mutating to the same amino acid it just takes more time
        if proposed_res == res.name1():
            new_mut_key = random.randint(0, len(AAs) - 1)
            proposed_res = AAs[new_mut_key]

        #make the mutation
        mutant_pose = mutate_residue(initial_pose, mut_location, proposed_res,
                                     PACK_RADIUS, sf)
        #score mutant
        variant_score = sf(mutant_pose)

        probability = calc_prob_fix(variant_score, post_pre_packing_score, N,
                                    beta, threshold)
        probability_mh = calc_prob_mh(variant_score, post_pre_packing_score, N,
                                      beta, threshold)
        f_i = calc_x_fix(post_pre_packing_score, beta, threshold)
        f_j = calc_x_fix(variant_score, beta, threshold)
        s = math.log(f_j) - math.log(f_i)
        #test to see if mutation is accepted
        if np.isnan(probability) == True:
            continue
        rndm = random.random()
        if (i < 100):
            if (rndm < probability):
                initial_pose = mutant_pose
                post_pre_packing_score = variant_score
            else:
                continue
        # Assuming 100 burn in phase, take this if out if you want to store everything
        else:
            data = [str(i), str(s), str(probability), str(probability_mh)]
            print >> OUT, '\t'.join(data)
            #save name and energy change
            #data.append(variant_name + "," + str(variant_score) + "," + str(variant_score - post_pre_packing_score) + "," + str(probability) + "," + str(gen) + "\n")
            #pdb_name=str(i)+".pdb"
            #mutant_pose.dump_pdb(pdb_name)

        print i, s, probability, rndm
        #update number of accepts
        i += 1

    OUT.close()
Ejemplo n.º 14
0
test = Pose()
test.assign(start)

start.pdb_info().name("start")
test.pdb_info().name("test")

pmm = PyMOLMover()
pmm.apply(start)
pmm.apply(test)
pmm.keep_history(True)
print( pmm )

# Small and Shear Moves
kT = 1.0
n_moves = 1
movemap = MoveMap()
movemap.set_bb(True)
small_mover = SmallMover(movemap, kT, n_moves)
shear_mover = ShearMover(movemap, kT, n_moves)

small_mover.angle_max("H", 5)
small_mover.angle_max("E", 5)
small_mover.angle_max("L", 5)

small_mover.apply(test)
print( small_mover )
print( shear_mover )

test2 = Pose()
test2.assign(start)
test2.pdb_info().name("test2")
Ejemplo n.º 15
0
init(
    extra_options="-constant_seed"
)  # WARNING: option '-constant_seed' is for testing only! MAKE SURE TO REMOVE IT IN PRODUCTION RUNS!!!!!
import os
os.chdir('.test.output')

print('Refinement ----------------------------------------------')

kT = 1.0
n_moves = 10

pose = core.import_pose.pose_from_file("../test/data/test_fragments.pdb")
pose_frag = core.import_pose.pose_from_file("../test/data/test_fragments.pdb")

print('setting up a move map')
movemap = MoveMap()
print('setting all backbone movement to true, and residue 10 to false')
movemap.set_bb(True)
movemap.set_bb(10, False)
print('outputting movemap')
movemap.show(pose.total_residue())

fragset3mer = core.fragment.ConstantLengthFragSet(
    3, "../test/data/test3_fragments")  # "aatestA03_05.200_v1_3")
fragset9mer = core.fragment.ConstantLengthFragSet(
    9, "../test/data/test9_fragments")  # "aatestA09_05.200_v1_3")
print('mover: ClassicFragmentMover, 3mer')
movemap.set_bb(True)
mover_3mer = protocols.simple_moves.ClassicFragmentMover(fragset3mer, movemap)
mover_3mer.apply(pose_frag)
Ejemplo n.º 16
0
def movemap(pose, PDB_out=False):
    """
    Demonstrates the syntax necessary for basic usage of the MoveMap object
        performs these changes with a demonstrative backbone minimization
        using  <pose>  and writes structures to PDB files if  <PDB_out>  is True

    """

    #########
    # MoveMap
    # a MoveMap encodes what data is allowed to change in a Pose, referred to as
    #    its degrees of freedom
    # a MoveMap is separate from a Pose and is usually required by a Mover so
    #    that the correct degrees of freedom are manipulated, in this way,
    #    MoveMap and Pose objects often work in parallel
    # several MoveMap's can correspond to the same Pose
    # a MoveMap stores information on a per-residue basis about the
    #    backbone ({phi, psi, omega}) and chi ({chi_i}) torsion angle sets
    #    the MoveMap can only set these sets of torsions to True or False, it
    #    cannot set freedom for the individual angles (such as phi free and psi
    #    fixed)
    # the MoveMap has no upper-limit on its residue information, it defaults to
    #    all residues (up to residue 99999999) backbone and chi False
    # you can view the MoveMap per-residue torsion settings by using the
    #    MoveMap.show( Pose.total_residue() ) method (the input argument is the
    #    highest residue to output, it does not support viewing a range)
    pose_move_map = MoveMap()
    # change all backbone torsion angles
    pose_move_map.set_bb(True)
    # change all chi angle torsion angles (False by default)
    pose_move_map.set_chi(False)
    # change a single backbone torsion angles
    #pose_move_map.set_bb(1, True)    # example syntax
    # change a single residue's chi torsion angles
    #pose_move_map.set_chi(1, True)    # example syntax
    pose_move_map.show(pose.total_residue())

    # perform gradient based minimization on the "median" residues, this
    #    method (MinMover) determines the gradient of an input pose using a
    #    ScoreFunction for evaluation and a MoveMap to define the degrees of
    #    freedom
    # create a standard ScoreFunction
    scorefxn = get_fa_scorefxn(
    )  #  create_score_function_ws_patch('standard', 'score12')
    # redefine the MoveMap to include the median half of the residues
    # turn "off" all backbone torsion angles
    pose_move_map.set_bb(False)  # reset to backbone False
    # turn "on" a range of residue backbone torsion angles
    pose_move_map.set_bb_true_range(int(pose.total_residue() / 4),
                                    int(pose.total_residue() * 3 / 4))
    # create the MinMover
    minmover = protocols.minimization_packing.MinMover()
    minmover.score_function(scorefxn)
    minmover.movemap(pose_move_map)

    # create a copy of the pose
    test_pose = Pose()
    test_pose.assign(pose)
    # apply minimization
    scorefxn(test_pose)  # to prevent verbose output on the next line

    pymover = PyMOLMover()
    #### uncomment the line below and "comment-out" the two lines below to
    ####    export the structures into different PyMOL states of the same object
    #pymover.keep_history = True    # enables viewing across states

    #### comment-out the line below, changing PDBInfo names tells the
    ####    PyMOLMover to produce new objects
    test_pose.pdb_info().name('original')
    pymover.apply(test_pose)
    print('\nPre minimization score:', scorefxn(test_pose))

    minmover.apply(test_pose)
    if PDB_out:
        test_pose.dump_pdb('minimized.pdb')

    print('Post minimization score:', scorefxn(test_pose))
    #### comment-out the line below
    test_pose.pdb_info().name('minimized')
    pymover.apply(test_pose)
Ejemplo n.º 17
0
def sample_refinement(pdb_filename,
                      kT=1.0,
                      smallmoves=3,
                      shearmoves=5,
                      backbone_angle_max=7,
                      cycles=9,
                      jobs=1,
                      job_output='refine_output'):
    """
    Performs fullatom structural refinement on the input  <pdb_filename>  by
        perturbing backbone torsion angles with a maximum perturbation of
        <backbone_angle_max>  for  <cycles>  trials of
        <smallmoves>  perturbations of a random residue's phi or psi and
        <shearmoves>  perturbations of a random residue's phi and the preceding
        residue's psi followed by gradient based backbone torsion angle
        minimization and sidechain packing with an acceptance criteria scaled
        by  <kT>.  <jobs>  trajectories are performed, continually exporting
        structures to a PyMOL instance.
        Output structures are named  <job_output>_(job#).pdb.
    """
    # 1. create a pose from the desired PDB file
    pose = Pose()
    pose_from_file(pose, pdb_filename)

    # 2. create a reference copy of the pose in fullatom
    starting_pose = Pose()
    starting_pose.assign(pose)

    # 3. create a standard ScoreFunction
    #### implement the desired ScoreFunction here
    scorefxn = get_fa_scorefxn()  #  create_score_function('standard')

    #### If you wish to use the ClassRelax protocol, uncomment the following
    ####    line and comment-out the protocol setup below
    #refinement = protocols.relax.ClassicRelax( scorefxn )

    #### Setup custom high-resolution refinement protocol
    #### backbone refinement protocol

    # 4. create a MoveMap, all backbone torsions free
    movemap = MoveMap()
    movemap.set_bb(True)

    # 5. create a SmallMover
    # a SmallMover perturbs a random (free in the MoveMap) residue's phi or psi
    #    torsion angle for an input number of times and accepts of rejects this
    #    change based on the Metropolis Criteria using the "rama" ScoreType and
    #    the parameter kT
    # set the maximum angle to backbone_angle_max, apply it smallmoves times
    smallmover = protocols.simple_moves.SmallMover(movemap, kT, smallmoves)
    # angle_max is secondary structure dependent, however secondary structure
    #    has not been evaulated in this protocol, thus they are all set
    #    to the same value0
    smallmover.angle_max(backbone_angle_max)  # sets all at once
    #### use the overloaded version of the SmallMover.angle_max method if you
    ####    want to use secondary structure biased moves
    #smallmover.angle_max('H', backbone_angle_max)
    #smallmover.angle_max('E', backbone_angle_max)
    #smallmover.angle_max('L', backbone_angle_max)

    # 6. create a ShearMover
    # a ShearMover is identical to a SmallMover except that the angles perturbed
    #    are instead a random (free in the MoveMap) residue's phi and the
    #    preceding residue's psi, this reduces the downstream structural change
    # set the maximum angle to backbone_angle_max, apply it shearmoves times
    shearmover = protocols.simple_moves.ShearMover(movemap, kT, shearmoves)
    # same angle_max restictions as SmallMover
    shearmover.angle_max(backbone_angle_max)
    #### use the overloaded version of the SmallMover.angle_max method if you
    ####    want to use secondary structure biased moves
    #shearmover.angle_max('H', backbone_angle_max)
    #shearmover.angle_max('E', backbone_angle_max)
    #shearmover.angle_max('L', backbone_angle_max)

    # 7. create a MinMover, for backbone torsion minimization
    minmover = protocols.minimization_packing.MinMover()
    minmover.movemap(movemap)
    minmover.score_function(scorefxn)

    #### sidechain refinement protocol, simple packing

    # 8. setup a PackRotamersMover
    to_pack = standard_packer_task(starting_pose)
    to_pack.restrict_to_repacking()  # prevents design, packing only
    to_pack.or_include_current(True)  # considers the original sidechains
    packmover = protocols.minimization_packing.PackRotamersMover(
        scorefxn, to_pack)

    #### assess the new structure
    # 9. create a PyMOLMover
    pymover = PyMOLMover()
    # uncomment the line below to load structures into successive states
    #pymover.keep_history(True)
    #### the PyMOLMover slows down the protocol SIGNIFICANTLY but provides
    ####    very informative displays
    #### the keep_history flag (when True) tells the PyMOLMover to store new
    ####    structures into successive states, for a single trajectory, this
    ####    allows you to see intermediate changes (depending on where the
    ####    PyMOLMover is applied), when using a JobDistributor or otherwise
    ####    displaying multiple trajectories with a single protocol, the output
    ####    can get confusing to interpret, by changing the pose's PDBInfo.name
    ####    the structure will load into a new PyMOL state
    #### try uncommenting the lines below to see different output
    #pymover.update_energy(True)    # see the total score in color

    # 10. export the original structure, and scores, to PyMOL
    pymover.apply(pose)
    scorefxn(pose)
    pymover.send_energy(pose)

    # 11. setup a RepeatMover on a TrialMover of a SequenceMover (wow!)
    # -setup a TrialMover
    #    a. create a SequenceMover of the previous moves
    #### add any other moves you desire
    combined_mover = SequenceMover()
    combined_mover.add_mover(smallmover)
    combined_mover.add_mover(shearmover)
    combined_mover.add_mover(minmover)
    combined_mover.add_mover(packmover)
    #### explore the protocol using the PyMOLMover, try viewing structures
    ####    before they are accepted or rejected
    combined_mover.add_mover(pymover)
    #    b. create a MonteCarlo object to define success/failure
    mc = MonteCarlo(pose, scorefxn, kT)  # must reset for each trajectory!
    # c. create the TrialMover
    trial = TrialMover(combined_mover, mc)

    #### explore the protocol using the PyMOLMover, try viewing structures
    ####    after acceptance/rejection, comment-out the lines below
    #original_trial = TrialMover(combined_mover, mc)
    #trial = SequenceMover()
    #trial.add_mover(original_trial)
    #trial.add_mover(pymover)

    #### for each trajectory, try cycles number of applications

    # -create the RepeatMover
    refinement = RepeatMover(trial, cycles)
    ####

    # 12. create a (Py)JobDistributor
    jd = PyJobDistributor(job_output, jobs, scorefxn)
    jd.native_pose = starting_pose

    # 13. store the score evaluations for output
    # printing the scores as they are produced would be difficult to read,
    #    Rosetta produces a lot of verbose output when running
    scores = [0] * (jobs + 1)
    scores[0] = scorefxn(starting_pose)

    # 14. perform the refinement protocol
    counter = 0  # for exporting to PyMOL
    while not jd.job_complete:
        # a. set necessary variables for the new trajectory
        # -reload the starting pose
        pose.assign(starting_pose)
        # -change the pose's PDBInfo.name, for the PyMOLMover
        counter += 1
        pose.pdb_info().name(job_output + '_' + str(counter))
        # -reset the MonteCarlo object (sets lowest_score to that of p)
        mc.reset(pose)
        #### if you create a custom protocol, you may have additional
        ####    variables to reset, such as kT

        #### if you create a custom protocol, this section will most likely
        ####    change, many protocols exist as single Movers or can be
        ####    chained together in a sequence (see above) so you need
        ####    only apply the final Mover
        # b. apply the refinement protocol
        refinement.apply(pose)
        ####

        # c. output the lowest scoring decoy structure for this trajectory
        # -recover and output the decoy structure to a PDB file
        mc.recover_low(pose)
        jd.output_decoy(pose)
        # -export the final structure to PyMOL for each trajectory
        pose.pdb_info().name(job_output + '_' + str(counter) + '_final')
        pymover.apply(pose)
        pymover.send_energy(pose)  # see the total score in color

        # -store the final score for this trajectory
        scores[counter] = scorefxn(pose)

    # 15. output the score evaluations
    print('Original Score\t:\t', scores[0])
    for i in range(1, len(scores)):  # print out the job scores
        print(job_output + '_' + str(i) + '\t:\t', scores[i])

    return scores  # for other protocols
Ejemplo n.º 18
0
def sample_single_loop_modeling(pdb_filename,
                                loop_begin,
                                loop_end,
                                loop_cutpoint,
                                frag_filename,
                                frag_length,
                                outer_cycles_low=2,
                                inner_cycles_low=5,
                                init_temp_low=2.0,
                                final_temp_low=0.8,
                                outer_cycles_high=5,
                                inner_cycles_high=10,
                                init_temp_high=2.2,
                                final_temp_high=0.6,
                                jobs=1,
                                job_output='loop_output'):
    """
    Performs simple single loop construction on the input  <pdb_filename>
        with loop from  <loop_begin>  to  <loop_end>  with a
        cutpoint at  <loop_cutpoint>  using fragments of length  <frag_length>
        in the file  <frag_filename>.  <jobs>  trajectories are performed,
        each using a low resolution (centroid) simulated annealing with
        <outer_cycles>  rounds and  <inner_cycles>  steps per round decrementing
        "temperature" from  <init_temp>  to  <final_temp>  geometrically.
        Output structures are named  <job_output>_(job#).pdb.

    """
    # 1. create a pose from the desired PDB file
    p = Pose()
    pose_from_file(p, pdb_filename)

    # 2. create a reference copy of the pose in fullatom
    starting_p = Pose()
    starting_p.assign(p)

    #### if you are constructing multiple loops simultaneously, changes will
    ####    occur in most of the steps below

    # 3. create the Loop object
    #    (note: Loop objects merely specify residues, they contain no
    #         conformation data)
    my_loop = protocols.loops.Loop(loop_begin, loop_end, loop_cutpoint)
    #### if using multiple loops, add additional Loop objects
    # 4. use the Loop to set the pose FoldTree
    protocols.loops.set_single_loop_fold_tree(p, my_loop)
    #### alternate FoldTree setup, if you uncomment the lines below,
    ####    comment-out the set_single_loop_foldtree line above (line 189)
    #### -create an empty FoldTree
    #ft = FoldTree()
    #### -make it a single edge the length of pose
    #ft.simple_tree(p.total_residue())
    #### -insert a jump corresponding to the single loop region
    #ft.add_jump(loop_begin - 2, loop_end + 2, loop_cutpoint)
    #### -give the pose this FoldTree (set it to this object), this will
    ####     erase any previous FoldTree held by the pose
    #p.fold_tree(ft)
    #### there is also a fold_tree_from_loops method in exposed which sets up
    ####    a FoldTree but it is different from set_single_loop_foldtree in
    ####    that is creates jumps +/- 1 residue from their corresponding loop
    ####    endpoints and requires a third argument, the FoldTree to setup

    # 5. sets the cut-point residues as cut-point variants
    protocols.loops.add_single_cutpoint_variant(p, my_loop)

    # 6. create the MoveMap, allow the loop region backbone and
    #    all chi torsions to be free
    movemap = MoveMap()
    movemap.set_bb_true_range(loop_begin, loop_end)
    movemap.set_chi(True)  # sets all chi torsions free

    # 7. setup the fragment Mover
    # this "try--except" is used to catch improper fragment files
    try:
        fragset = core.fragment.ConstantLengthFragSet(frag_length,
                                                      frag_filename)
        #### the ConstantLengthFragSet is overloaded, this same
        ####    ConstantLengthFragSet can be obtained with different syntax
        # to obtain custom fragments, see Generating Fragment Files below
    except:
        raise IOError('Make sure frag_length matches the fragments in\n\
            frag_file and that frag_file is valid')
    fragment_mover = protocols.simple_moves.ClassicFragmentMover(
        fragset, movemap)

    # 8. create a Mover for loop modeling using CCD (low resolution)
    ccd_closure = protocols.loops.loop_closure.ccd.CCDLoopClosureMover(
        my_loop, movemap)

    # 9. create ScoreFunctions
    # for centroid, use the default centroid ScoreFunction with chainbreak on
    scorefxn_low = create_score_function('cen_std')
    # the chainbreak ScoreType exists to penalize broken bonds
    # try creating a broken pose in the interpreter and use a ScoreFunction
    #    with a chainbreak score to investigate its impact, the score is 0.0
    #    except when a bond is broken
    # this penalizes failures caused by CCD failing to close the loop
    scorefxn_low.set_weight(core.scoring.chainbreak, 1)
    # for fullatom, used for packing and scoring final output
    scorefxn_high = get_fa_scorefxn(
    )  #  create_score_function_ws_patch('standard', 'score12')

    # 10. setup sidechain packing Mover
    task_pack = core.pack.task.TaskFactory.create_packer_task(starting_p)
    task_pack.restrict_to_repacking()  # prevents design, packing only
    task_pack.or_include_current(True)  # considers original sidechains
    pack = protocols.minimization_packing.PackRotamersMover(
        scorefxn_high, task_pack)

    # 11. setup the high resolution refinement
    # by creating a Loops object,
    #    (note: Loops is basically a list of Loop objects),
    sample_loops = protocols.loops.Loops()
    # giving it the loop to remodel,
    sample_loops.add_loop(my_loop)
    # and creating a fullatom CCD Mover (high resolution)
    # this Mover is somewhat abnormal since it handles everything itself, it:
    #    -creates its own MoveMap for the loop regions
    #    -creates its own ScoreFunction (default to get_fa_scorefxn())
    #    -creates its own FoldTree for the pose based on the loops
    #    -creates its own MonteCarlo object for monitoring the pose
    #    -performs "simulated annealing" with 3 outer cycles and 90 inner
    #        cycles, very similar to the protocol outlined ere
    #    -creates its own backbone Movers (SmallMover, ShearMover)
    #    -creates its own PackRotamersMover, it does NOT restrict repacking
    #        to the loop regions and can alter all sidechain conformations
    loop_refine = LoopMover_Refine_CCD(sample_loops)
    # some of these parameters or objects can be set but the protocol
    #    executed by this Mover is effectively untouchable
    #loop_refine.set_score_function(scorefxn_high)    # in beta v2 and above
    loop_refine.temp_initial(init_temp_high)
    loop_refine.temp_final(init_temp_high)
    loop_refine.outer_cycles(outer_cycles_high)
    loop_refine.max_inner_cycles(inner_cycles_high)

    # 12. create centroid <--> fullatom conversion Movers
    to_centroid = SwitchResidueTypeSetMover('centroid')
    to_fullatom = SwitchResidueTypeSetMover('fa_standard')
    # and a Mover to recover sidechain conformations
    #    when a protocol samples backbone torsion space in centroid,
    #    the sidechain conformations are neglected, when it is transferred
    #    to fullatom, we typically set the sidechain conformations to their
    #    "original" values and perform sidechain packing,
    #    a ReturnSidechainMover saves a pose's sidechains (in this case
    #    staring_pose) and when applied, inserts these conformations
    #    into the input pose
    recover_sidechains = protocols.simple_moves.ReturnSidechainMover(
        starting_p)

    # 13. create a reference copy of the pose in centroid
    # the first stage of each trajectory is in centroid
    #    so a centroid reference is needed and the pose must start in centroid
    to_centroid.apply(p)
    starting_p_centroid = Pose()
    starting_p_centroid.assign(p)

    # 14. create the geometric "temperature" increment for simulated annealing
    gamma = pow((final_temp_low / init_temp_low),
                (1.0 / (outer_cycles_low * inner_cycles_low)))

    # 15. create a PyMOLMover for exporting structures to PyMOL
    pymov = PyMOLMover()
    # uncomment the line below to load structures into successive states
    #pymov.keep_history(True)
    scorefxn_high(starting_p)  # for exporting the scores
    pymov.apply(starting_p)
    pymov.send_energy(starting_p)

    # 16. create a (Py)JobDistributor
    # a PyJobDistributor uses the job_output argument to name all output files
    #    and performs the specified number (int) of jobs
    # a ScoreFunction is required since the PyJobDistributor output .fasc file
    #    contains scoring information about each output PDB
    jd = PyJobDistributor(job_output, jobs, scorefxn_high)
    jd.native_pose = starting_p

    # 17. perform the loop modeling protocol
    counter = 0  # for exporting to PyMOL
    while not jd.job_complete:
        # a. set necessary variables for the new trajectory
        # -reload the starting pose (centroid)
        p.assign(starting_p_centroid)
        # -change the pose's PDBInfo.name, for exporting to PyMOL
        counter += 1
        p.pdb_info().name(job_output + '_' + str(counter) + '_cen')
        # -reset the starting "temperature" (to init_temp)
        kT = init_temp_low
        # -create a MonteCarlo object for this trajectory
        #    a MonteCarlo object assesses pass/fail by the Metropolis Criteria
        #    and also records information on the lowest scoring pose
        mc = MonteCarlo(p, scorefxn_low, kT)

        # b. "randomize" the loop
        #### this section may change if you intend to use multiple loops or
        ####    alter the sampling method to "randomize" the loop
        # -by breaking it open,
        for i in range(loop_begin, loop_end + 1):
            p.set_phi(i, -180)
            p.set_psi(i, 180)
        pymov.apply(p)
        # -and then inserting fragments
        #    the number of insertions performed is somewhat arbitrary
        for i in range(loop_begin, loop_end + 1):
            fragment_mover.apply(p)
        pymov.apply(p)
        ####

        # low resolution loop modeling:
        # c. simulated annealing incrementing kT geometrically
        #    from init_temp to final_temp
        #### this section may change if you intend to use multiple loops or
        ####    alter the sampling method for low resolution modeling
        for i in range(1, outer_cycles_low + 1):
            # -start with the lowest scoring pose
            mc.recover_low(p)  # loads mc's lowest scoring pose into p
            # -take several steps of in the simulated annealing by
            for j in range(1, inner_cycles_low + 1):
                # >increasing the "temperature"
                kT = kT * gamma
                mc.set_temperature(kT)
                # >inserting a fragment,
                fragment_mover.apply(p)
                pymov.apply(p)
                # >performing CCD,
                ccd_closure.apply(p)
                pymov.apply(p)
                # >and assessing the Metropolis Criteria
                mc.boltzmann(p)
        ####

        # the LoopMover_Refine_CCD makes A LOT of moves, DO NOT expect to
        #    see useful results if you use the PyMOLMover keep_history option, the large
        #    number of intermediates will slow processing to a halt

        # d. convert the best structure (lowest scoring) into fullatom by:
        # -recovering the best (centroid) structure (lowest scoring),
        mc.recover_low(p)  # loads mc's lowest scoring pose into p
        # -switching the ResidueTypeSet to fullatom (from centroid),
        to_fullatom.apply(p)
        # -recovering the original sidechain conformations,
        recover_sidechains.apply(p)
        # -and packing the result (since the backbone conformation has changed)
        pack.apply(p)
        pymov.apply(p)
        p.pdb_info().name(job_output + '_' + str(counter) + '_fa')

        # high-resolution refinement:
        #### this section may change if you intend to use multiple loops or
        ####    alter the sampling method for high resolution refinement
        # e. apply the LoopMover_Refine_CCD
        loop_refine.apply(p)

        # f. output the decoy (pose result from this trajectory)
        #    include the loop RMSD (Lrsmd)
        # -output a PDB file using the PyJobDistributor
        lrms = protocols.loops.loop_rmsd(p, starting_p, sample_loops, True)
        jd.additional_decoy_info = ' Lrmsd: ' + str(lrms)
        jd.output_decoy(p)
        # -export the structure to PyMOL
        pymov.apply(p)
        pymov.send_energy(p)
Ejemplo n.º 19
0
# Low-Resolution (Centroid) Scoring
ras = pose_from_file("../test/data/workshops/6Q21.clean.pdb")
score2 = get_score_function()
print(score2(ras))
print(ras.residue(5))

switch = SwitchResidueTypeSetMover("centroid")
switch.apply(ras)
print(ras.residue(5))

score3 = create_score_function("score3")
print(score3(ras))

switch2 = SwitchResidueTypeSetMover("fa_standard")
switch2.apply(ras)
print(ras.residue(5))

# Protein Fragments
fragset = core.fragment.ConstantLengthFragSet(3)
fragset.read_fragment_file("../test/data/workshops/aat000_03_05.200_v1_3")

movemap = MoveMap()
movemap.set_bb(True)
mover_3mer = protocols.simple_moves.ClassicFragmentMover(fragset, movemap)

pose = pose_from_sequence("RFPMMSTFKVLLCGAVLSRIDAG", "centroid")
for res in range(1, p.total_residue() + 1):
    pose.set_omega(res, 180)

mover_3mer.apply(pose)
Ejemplo n.º 20
0
print( "_____ Check point 1" )
pert_mover = rigid_moves.RigidBodyPerturbMover(jump_num, 8, 3)
#pert_mover.apply(pose)

randomize1 = rigid_moves.RigidBodyRandomizeMover(pose, jump_num, rigid_moves.partner_upstream)
randomize2 = rigid_moves.RigidBodyRandomizeMover(pose, jump_num, rigid_moves.partner_downstream)

print( "_____ Check point 2" )
#randomize1.apply(pose)
#randomize2.apply(pose)
slid = protocols.docking.DockingSlideIntoContact(jump_num)
slide = protocols.docking.FaDockingSlideIntoContact(jump_num)
slide.apply(pose)

movemap = MoveMap()
movemap.set_jump(jump_num, True)

scorefxn = create_score_function("ref2015")
scorefxn( pose )

print( "_____ Check point 3" )
print( 'Making MinMover...' )
min_mover = protocols.minimization_packing.MinMover()
min_mover.movemap(movemap)
min_mover.score_function(scorefxn)

#min_mover.apply(pose)

print( 'Done Applying MinMover!' )