Ejemplo n.º 1
0
def run(n_sim, model, tspan, simulator='cuda'):
    v = False
    if 'cl' in simulator:
        sim = OpenCLSSASimulator(model,
                                 tspan=tspan,
                                 verbose=v,
                                 precision=np.float64)
    elif simulator == 'cuda':
        sim = CudaSSASimulator(model,
                               tspan=tspan,
                               verbose=v,
                               precision=np.float64)
    elif simulator == 'bng':
        sim = BngSimulator(model, tspan=tspan, verbose=v)
    elif simulator == 'stochkit':
        sim = StochKitSimulator(model, tspan=tspan, verbose=v)
    else:
        return
    st = time.time()
    if simulator in ('bng', 'stochkit'):
        sim.run(tspan, n_runs=n_sim)
    else:
        # sim.run(tspan, number_sim=n_sim)
        traj = sim.run(tspan, number_sim=n_sim)
        # print(traj.dataframe.min())
    # quit()
    total_time = time.time() - st

    return total_time, sim._time
    def main(self):
        observables = self.make_model()
        write_columns(observables)
        write_model_attributes(self.model.rules, "rules")
        write_model_attributes(self.model.parameters, "parameters")
        write_model_attributes(self.model.observables, "observables")
        np.savetxt("time", self.tspan, fmt='%f')

        self.model.parameters['Ls_0'].value = self.ls
        sim = BngSimulator(self.model, tspan=self.tspan, cleanup=False)
        simulation_results = sim.run(n_runs=self.runs,
                                     method='ssa',
                                     cleanup=False,
                                     output_dir=os.getcwd())

        # sim = StochKitSimulator(model, tspan=self.tspan)
        # simulation_results = sim.run(n_runs=self.runs)

        if len(observables) > 1:

            ls_results = []
            lf_results = []
            for i in range(self.runs):
                ls_results.append(
                    simulation_results.observables[i][observables[0]])
                lf_results.append(
                    simulation_results.observables[i][observables[1]])

            output = np.mean(ls_results, axis=0) + np.mean(lf_results, axis=0)
        else:
            results = []
            for i in range(self.runs):
                results.append(
                    simulation_results.observables[i][observables[0]])
            output = np.mean(results, axis=0)
            print(results)
            print(output)

        np.savetxt("output", [output[-1]], fmt='%f')
Ejemplo n.º 3
0
def bngNF(model,
          start=0,
          finish=10,
          points=10,
          n_runs=20,
          path='/opt/conda/bin/'):
    set_path('bng', path)

    sims = BngSimulator(model,
                        linspace(start, finish,
                                 points + 1)).run(method='nf',
                                                  n_runs=n_runs).dataframe
    sims = modes(sims, n_runs)
    return {'sims': sims['sims'], 'avrg': sims['avrg'], 'stdv': sims['stdv']}
Ejemplo n.º 4
0
def produceGraph(model, filename, methods, observe, parameters):
    # make a graph
    # parameters is list will run multiple times and put them on the same graph
    model=model.reload()
    for graph in observe:
        for name, monomer in graph.items():
            model.add_component(Observable(f'obs{name}', monomer))
    t = np.linspace(0, 100)
    graphs = len(observe)
    fig, axs = plt.subplots(2, 2, constrained_layout=True, figsize=(10,6))
    fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.6, hspace=0.3)
    # fig.tight_layout(pad=5.0)

    # hack for when there is only one subplot
    if graphs == 1:
        axs = [axs]
    for i, parameter_set in enumerate(parameters):
        for method in methods:
        # test without glutathionine and sHSP enabled
            simulationResult = BngSimulator(model).run(
                tspan=t,
                method=method,
                param_values=parameter_set
            )
            for i, name in enumerate(simulationResult.observables.dtype.names):
                num = getGraph(observe, name)
                if (num == 0):
                    axs[0][0].plot(t, simulationResult.all[name], label=f'{method.upper()} {name} High Temp')
                elif (num == 1):
                    axs[0][1].plot(t, simulationResult.all[name], label=f'{method.upper()} {name} High Temp')
                elif (num == 2):
                    axs[1][0].plot(t, simulationResult.all[name], label=f'{method.upper()} {name} High Temp')
                else:
                    axs[1][1].plot(t, simulationResult.all[name], label=f'{method.upper()} {name} High Temp')
                

    for i in range(0, 2):
        for j in range(0,2):
            axs[i][j].set_xlabel('Time in seconds')
            axs[i][j].set_ylabel('Number of molecules')
            axs[i][j].legend()
            axs[i][j].set_ylim(bottom=0)
    axs[0][0].set_ylim(ymin=0, ymax=10**7)

    fig.savefig(f'export/{filename}.png')
Ejemplo n.º 5
0
n_runs = n_genes
len_tspan = len(tspan)
HO_tot = np.array(len_tspan * [0])
skew = np.empty((len_tspan, n_runs), dtype=float)
color = np.empty((len_tspan, n_runs), dtype=str)

# batch_size = int(n_runs/n_levels)
np.random.seed(44)
# for batch in range(n_levels):
start = 0
for batch in range(len(N_GENES)):
    #     size = batch_size if batch < n_levels-1 else n_runs-(n_levels-1)*batch_size
    size = N_GENES[batch]
    model = create_model(N_STATES[batch], K_SKEW[batch])
    sim = BngSimulator(model, tspan, verbose=True)
    x = sim.run(
        n_runs=size,
        netgen_args={'max_iter': 1000000},
        seed=np.random.choice(int(1e6), size=size, replace=False)  #,
        #                 param_values={ k.name : 0 for k in kf_skew[len(kf_skew)-k_remove[batch]:] }
        #                         if k_remove[batch] > 0 else None
    )
    observables = [x.observables] if size == 1 else x.observables
    species = [x.species] if size == 1 else x.species
    for t in range(len_tspan):
        for n in range(size):
            # Total HO genes
            HO_tot[t] += observables[n][t][0]
            # Skew and color
            idx = np.where(species[n][t] == species[n][t].max())[0][0]
Ejemplo n.º 6
0
def test_save_load():
    tspan = np.linspace(0, 100, 101)
    model = tyson_oscillator.model
    test_unicode_name = u'Hello \u2603 and \U0001f4a9!'
    model.name = test_unicode_name
    sim = ScipyOdeSimulator(model, integrator='lsoda')
    simres = sim.run(tspan=tspan, param_values={'k6': 1.0})

    sim_rob = ScipyOdeSimulator(robertson.model, integrator='lsoda')
    simres_rob = sim_rob.run(tspan=tspan)

    # Reset equations from any previous network generation
    robertson.model.reset_equations()
    A = robertson.model.monomers['A']

    # NFsim without expressions
    nfsim1 = BngSimulator(robertson.model)
    nfres1 = nfsim1.run(n_runs=2, method='nf', tspan=np.linspace(0, 1))
    # Test attribute saving (text, float, list)
    nfres1.custom_attrs['note'] = 'NFsim without expressions'
    nfres1.custom_attrs['pi'] = 3.14
    nfres1.custom_attrs['some_list'] = [1, 2, 3]

    # NFsim with expressions
    nfsim2 = BngSimulator(expression_observables.model)
    nfres2 = nfsim2.run(n_runs=1, method='nf', tspan=np.linspace(0, 100, 11))

    with tempfile.NamedTemporaryFile() as tf:
        # Cannot have two file handles on Windows
        tf.close()

        simres.save(tf.name, dataset_name='test', append=True)

        # Try to reload when file contains only one dataset and group
        SimulationResult.load(tf.name)

        simres.save(tf.name, append=True)

        # Trying to overwrite an existing dataset gives a ValueError
        assert_raises(ValueError, simres.save, tf.name, append=True)

        # Trying to write to an existing file without append gives an IOError
        assert_raises(IOError, simres.save, tf.name)

        # Trying to write a SimulationResult to the same group with a
        # different model name results in a ValueError
        assert_raises(ValueError, simres_rob.save, tf.name,
                      dataset_name='robertson', group_name=model.name,
                      append=True)

        simres_rob.save(tf.name, append=True)

        # Trying to load from a file with more than one group without
        # specifying group_name should raise a ValueError
        assert_raises(ValueError, SimulationResult.load, tf.name)

        # Trying to load from a group with more than one dataset without
        # specifying a dataset_name should raise a ValueError
        assert_raises(ValueError, SimulationResult.load, tf.name,
                      group_name=model.name)

        # Load should succeed when specifying group_name and dataset_name
        simres_load = SimulationResult.load(tf.name, group_name=model.name,
                                            dataset_name='test')
        assert simres_load._model.name == test_unicode_name

        # Saving network free results requires include_obs_exprs=True,
        # otherwise a warning should be raised
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            nfres1.save(tf.name, dataset_name='nfsim_no_obs', append=True)
            assert len(w) == 1
            assert issubclass(w[-1].category, UserWarning)

        nfres1.save(tf.name, include_obs_exprs=True,
                    dataset_name='nfsim test', append=True)

        # NFsim load
        nfres1_load = SimulationResult.load(tf.name,
                                            group_name=nfres1._model.name,
                                            dataset_name='nfsim test')

        # NFsim with expression
        nfres2.save(tf.name, include_obs_exprs=True, append=True)
        nfres2_load = SimulationResult.load(tf.name,
                                            group_name=nfres2._model.name)

    _check_resultsets_equal(simres, simres_load)
    _check_resultsets_equal(nfres1, nfres1_load)
    _check_resultsets_equal(nfres2, nfres2_load)
Ejemplo n.º 7
0
# make a graph without any text to display on the wiki

from pysb import *
from pysb.simulator import BngSimulator
import matplotlib.pyplot as plt
import numpy as np
from base_model import *


t = np.linspace(0, 100)
fig, axs = plt.subplots(1, 1)
model.add_component(Observable(f'obsATP', ATP()))
model.add_component(Observable(f'obsADP', ADP()))
simulationResult = BngSimulator(model).run(
    tspan=t,
    method='ssa',
    param_values={**tempValues(1), **{'ROS'}
)

for name in simulationResult.observables.dtype.names:
    axs.plot(t, simulationResult.all[name])

ax

fig.savefig(f'export/blank_graph.png')
Ejemplo n.º 8
0
def bngODE(model, start=0, finish=10, points=10, path='/opt/conda/bin/'):
    set_path('bng', path)
    return BngSimulator(model,
                        linspace(start, finish,
                                 points + 1)).run(method='ode').dataframe
Ejemplo n.º 9
0
def test_save_load():
    tspan = np.linspace(0, 100, 101)
    # Make a copy of model so other tests etc. don't see the changed name.
    model = copy.deepcopy(tyson_oscillator.model)
    test_unicode_name = u'Hello \u2603 and \U0001f4a9!'
    model.name = test_unicode_name
    sim = ScipyOdeSimulator(model, integrator='lsoda')
    simres = sim.run(tspan=tspan, param_values={'k6': 1.0})

    sim_rob = ScipyOdeSimulator(robertson.model, integrator='lsoda')
    simres_rob = sim_rob.run(tspan=tspan)

    # Reset equations from any previous network generation
    robertson.model.reset_equations()
    A = robertson.model.monomers['A']

    # NFsim without expressions
    nfsim1 = BngSimulator(robertson.model)
    nfres1 = nfsim1.run(n_runs=2, method='nf', tspan=np.linspace(0, 1))
    # Test attribute saving (text, float, list)
    nfres1.custom_attrs['note'] = 'NFsim without expressions'
    nfres1.custom_attrs['pi'] = 3.14
    nfres1.custom_attrs['some_list'] = [1, 2, 3]

    # NFsim with expressions
    nfsim2 = BngSimulator(expression_observables.model)
    nfres2 = nfsim2.run(n_runs=1, method='nf', tspan=np.linspace(0, 100, 11))

    with tempfile.NamedTemporaryFile() as tf:
        # Cannot have two file handles on Windows
        tf.close()

        simres.save(tf.name, dataset_name='test', append=True)

        # Try to reload when file contains only one dataset and group
        SimulationResult.load(tf.name)

        simres.save(tf.name, append=True)

        # Trying to overwrite an existing dataset gives a ValueError
        assert_raises(ValueError, simres.save, tf.name, append=True)

        # Trying to write to an existing file without append gives an IOError
        assert_raises(IOError, simres.save, tf.name)

        # Trying to write a SimulationResult to the same group with a
        # different model name results in a ValueError
        assert_raises(ValueError, simres_rob.save, tf.name,
                      dataset_name='robertson', group_name=model.name,
                      append=True)

        simres_rob.save(tf.name, append=True)

        # Trying to load from a file with more than one group without
        # specifying group_name should raise a ValueError
        assert_raises(ValueError, SimulationResult.load, tf.name)

        # Trying to load from a group with more than one dataset without
        # specifying a dataset_name should raise a ValueError
        assert_raises(ValueError, SimulationResult.load, tf.name,
                      group_name=model.name)

        # Load should succeed when specifying group_name and dataset_name
        simres_load = SimulationResult.load(tf.name, group_name=model.name,
                                            dataset_name='test')
        assert simres_load._model.name == test_unicode_name

        # Saving network free results requires include_obs_exprs=True,
        # otherwise a warning should be raised
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            nfres1.save(tf.name, dataset_name='nfsim_no_obs', append=True)
            assert len(w) == 1
            assert issubclass(w[-1].category, UserWarning)

        nfres1.save(tf.name, include_obs_exprs=True,
                    dataset_name='nfsim test', append=True)

        # NFsim load
        nfres1_load = SimulationResult.load(tf.name,
                                            group_name=nfres1._model.name,
                                            dataset_name='nfsim test')

        # NFsim with expression
        nfres2.save(tf.name, include_obs_exprs=True, append=True)
        nfres2_load = SimulationResult.load(tf.name,
                                            group_name=nfres2._model.name)

    _check_resultsets_equal(simres, simres_load)
    _check_resultsets_equal(nfres1, nfres1_load)
    _check_resultsets_equal(nfres2, nfres2_load)
Ejemplo n.º 10
0
    plt.ylabel('Population of %s' % name)


PARP, CPARP, Mito, mCytoC = [
    model.monomers[x] for x in ['PARP', 'CPARP', 'Mito', 'mCytoC']
]
klump = Parameter('klump', 10000, _export=False)
model.add_component(klump)

population_maps = [
    PopulationMap(PARP(b=None), klump),
    PopulationMap(CPARP(b=None), klump),
    PopulationMap(Mito(b=None), klump),
    PopulationMap(mCytoC(b=None), klump)
]

sim = BngSimulator(model, tspan=np.linspace(0, 20000, 101))
simres = sim.run(n_runs=20, method='nf', population_maps=population_maps)

trajectories = simres.all
tout = simres.tout

plot_mean_min_max('Bid_unbound')
plot_mean_min_max('PARP_unbound')
plot_mean_min_max('mSmac_unbound')
plot_mean_min_max('tBid_total')
plot_mean_min_max('CPARP_total')
plot_mean_min_max('cSmac_total')

plt.show()
Ejemplo n.º 11
0
    plt.legend(loc=0)
    plt.xlabel('Time')
    plt.ylabel('Population of %s' % name)

PARP, CPARP, Mito, mCytoC = [model.monomers[x] for x in
                             ['PARP', 'CPARP', 'Mito', 'mCytoC']]
klump = Parameter('klump', 10000, _export=False)
model.add_component(klump)

population_maps = [
    PopulationMap(PARP(b=None), klump),
    PopulationMap(CPARP(b=None), klump),
    PopulationMap(Mito(b=None), klump),
    PopulationMap(mCytoC(b=None), klump)
]

sim = BngSimulator(model, tspan=np.linspace(0, 20000, 101))
simres = sim.run(n_runs=20, method='nf', population_maps=population_maps)

trajectories = simres.all
tout = simres.tout

plot_mean_min_max('Bid_unbound')
plot_mean_min_max('PARP_unbound')
plot_mean_min_max('mSmac_unbound')
plot_mean_min_max('tBid_total')
plot_mean_min_max('CPARP_total')
plot_mean_min_max('cSmac_total')

plt.show()