Ejemplo n.º 1
0
    def test_jk(self):
        mf = df_jk.density_fit(mf0, auxbasis='weigend', gs=(5,)*3)
        dm = mf.get_init_guess()
        vj, vk = mf.get_jk(cell, dm)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 46.698942503368144, 8)
        self.assertAlmostEqual(ek1, 31.723584951501   , 8)

        numpy.random.seed(12)
        nao = cell.nao_nr()
        dm = numpy.random.random((nao,nao))
        dm = dm + dm.T
        vj1, vk1 = mf.get_jk(cell, dm, hermi=0)
        ej1 = numpy.einsum('ij,ji->', vj1, dm)
        ek1 = numpy.einsum('ij,ji->', vk1, dm)
        self.assertAlmostEqual(ej1, 242.04814846354407, 8)
        self.assertAlmostEqual(ek1, 280.16142282936778, 8)

        numpy.random.seed(1)
        kpt = numpy.random.random(3)
        mydf = df.DF(cell, [kpt])
        vj, vk = mydf.get_jk(dm, 1, kpt)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 231.44815444295386+0j, 8)
        self.assertAlmostEqual(ek1, 682.70050207852307+0j, 8)
Ejemplo n.º 2
0
    def test_jk_single_kpt(self):
        mf = df_jk.density_fit(mf0, auxbasis='weigend', gs=(5, ) * 3)
        mf.with_df.gs = cell.gs
        mf.with_df.eta = 0.3
        dm = mf.get_init_guess()
        vj, vk = mf.get_jk(cell, dm)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 46.69888588120217, 8)
        self.assertAlmostEqual(ek1, 31.72349032270801, 8)

        numpy.random.seed(12)
        nao = cell.nao_nr()
        dm = numpy.random.random((nao, nao))
        dm = dm + dm.T
        vj1, vk1 = mf.get_jk(cell, dm, hermi=0)
        ej1 = numpy.einsum('ij,ji->', vj1, dm)
        ek1 = numpy.einsum('ij,ji->', vk1, dm)
        self.assertAlmostEqual(ej1, 242.04678235140264, 8)
        self.assertAlmostEqual(ek1, 280.15934926575903, 8)

        numpy.random.seed(1)
        kpt = numpy.random.random(3)
        mydf = df.DF(cell, [kpt]).set(auxbasis='weigend')
        mydf.gs = cell.gs
        mydf.eta = 0.3
        vj, vk = mydf.get_jk(dm, 1, kpt, exxdiv=None)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 241.15121903857556 + 0j, 8)
        self.assertAlmostEqual(ek1, 279.64649194057051 + 0j, 8)
        vj, vk = mydf.get_jk(dm, 1, kpt, with_j=False, exxdiv='ewald')
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ek1, 691.64624456329909 + 0j, 6)
Ejemplo n.º 3
0
    def test_jk(self):
        mf = df_jk.density_fit(mf0, auxbasis='weigend', gs=(5, ) * 3)
        dm = mf.get_init_guess()
        vj, vk = mf.get_jk(cell, dm)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 46.698942503368144, 8)
        self.assertAlmostEqual(ek1, 31.723584951501, 8)

        numpy.random.seed(12)
        nao = cell.nao_nr()
        dm = numpy.random.random((nao, nao))
        dm = dm + dm.T
        vj1, vk1 = mf.get_jk(cell, dm, hermi=0)
        ej1 = numpy.einsum('ij,ji->', vj1, dm)
        ek1 = numpy.einsum('ij,ji->', vk1, dm)
        self.assertAlmostEqual(ej1, 242.04814846354407, 8)
        self.assertAlmostEqual(ek1, 280.16142282936778, 8)

        numpy.random.seed(1)
        kpt = numpy.random.random(3)
        mydf = df.DF(cell, [kpt])
        vj, vk = mydf.get_jk(dm, 1, kpt)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 231.44815444295386 + 0j, 8)
        self.assertAlmostEqual(ek1, 682.70050207852307 + 0j, 8)
Ejemplo n.º 4
0
    def test_jk_single_kpt(self):
        mf = df_jk.density_fit(mf0, auxbasis='weigend', gs=(5, ) * 3)
        mf.with_df.gs = cell.gs
        mf.with_df.eta = 0.3
        dm = mf.get_init_guess()
        vj, vk = mf.get_jk(cell, dm)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 46.69888588854387, 8)
        self.assertAlmostEqual(ek1, 31.72349032270801, 8)

        numpy.random.seed(12)
        nao = cell.nao_nr()
        dm = numpy.random.random((nao, nao))
        dm = dm + dm.T
        vj1, vk1 = mf.get_jk(cell, dm, hermi=0)
        ej1 = numpy.einsum('ij,ji->', vj1, dm)
        ek1 = numpy.einsum('ij,ji->', vk1, dm)
        self.assertAlmostEqual(ej1, 242.04675958582985, 8)
        self.assertAlmostEqual(ek1, 280.15934765887238, 8)

        numpy.random.seed(1)
        kpt = numpy.random.random(3)
        mydf = df.DF(cell, [kpt]).set(auxbasis='weigend')
        mydf.gs = cell.gs
        mydf.eta = 0.3
        vj, vk = mydf.get_jk(dm, 1, kpt, exxdiv=None)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 241.1511965365826 + 0j, 8)
        self.assertAlmostEqual(ek1, 279.64649180140344 + 0j, 8)
        vj, vk = mydf.get_jk(dm, 1, kpt, with_j=False, exxdiv='ewald')
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ek1, 691.64624442413174 + 0j, 6)
Ejemplo n.º 5
0
    def test_jk(self):
        mf = df_jk.density_fit(mf0, auxbasis='weigend', gs=(5, ) * 3)
        dm = mf.get_init_guess()
        vj, vk = mf.get_jk(cell, dm)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 46.698885887058495, 8)
        self.assertAlmostEqual(ek1, 31.723490322441389, 8)

        numpy.random.seed(12)
        nao = cell.nao_nr()
        dm = numpy.random.random((nao, nao))
        dm = dm + dm.T
        vj1, vk1 = mf.get_jk(cell, dm, hermi=0)
        ej1 = numpy.einsum('ij,ji->', vj1, dm)
        ek1 = numpy.einsum('ij,ji->', vk1, dm)
        self.assertAlmostEqual(ej1, 242.04675570748412, 8)
        self.assertAlmostEqual(ek1, 280.15933405636196, 8)

        numpy.random.seed(1)
        kpt = numpy.random.random(3)
        mydf = df.DF(cell, [kpt])
        vj, vk = mydf.get_jk(dm, 1, kpt, exxdiv=None)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 241.15119240999368 + 0j, 8)
        self.assertAlmostEqual(ek1, 279.64647733018984 + 0j, 8)
        vj, vk = mydf.get_jk(dm, 1, kpt, with_j=False, exxdiv='ewald')
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ek1, 691.98171156880562 + 0j, 8)
Ejemplo n.º 6
0
    def test_jk(self):
        mf = df_jk.density_fit(mf0, auxbasis='weigend', gs=(5,)*3)
        dm = mf.get_init_guess()
        vj, vk = mf.get_jk(cell, dm)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 46.698885887058495, 8)
        self.assertAlmostEqual(ek1, 31.723490322441389, 8)

        numpy.random.seed(12)
        nao = cell.nao_nr()
        dm = numpy.random.random((nao,nao))
        dm = dm + dm.T
        vj1, vk1 = mf.get_jk(cell, dm, hermi=0)
        ej1 = numpy.einsum('ij,ji->', vj1, dm)
        ek1 = numpy.einsum('ij,ji->', vk1, dm)
        self.assertAlmostEqual(ej1, 242.04675958581976, 8)
        self.assertAlmostEqual(ek1, 280.15934765885805, 8)

        numpy.random.seed(1)
        kpt = numpy.random.random(3)
        mydf = df.DF(cell, [kpt])
        vj, vk = mydf.get_jk(dm, 1, kpt, exxdiv=None)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 241.15119653657837+0j, 8)
        self.assertAlmostEqual(ek1, 279.64649180139776+0j, 8)
        vj, vk = mydf.get_jk(dm, 1, kpt, with_j=False, exxdiv='ewald')
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ek1, 691.6462444241248+0j, 6)
Ejemplo n.º 7
0
    def test_jk_single_kpt_high_cost(self):
        mf0 = pscf.RHF(cell)
        mf0.exxdiv = None
        mf = df_jk.density_fit(mf0, auxbasis='weigend', mesh=(11,)*3)
        mf.with_df.mesh = cell.mesh
        mf.with_df.eta = 0.3
        mf.with_df.exp_to_discard = 0.3
        dm = mf.get_init_guess()
        vj, vk = mf.get_jk(cell, dm)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        j_ref = 48.283789539266174  # rsjk result
        k_ref = 32.30441176447805   # rsjk result
        self.assertAlmostEqual(ej1, j_ref, 4)
        self.assertAlmostEqual(ek1, k_ref, 2)
        self.assertAlmostEqual(ej1, 48.283745538383684, 8)
        self.assertAlmostEqual(ek1, 32.30260871417842 , 8)

        numpy.random.seed(12)
        nao = cell.nao_nr()
        dm = numpy.random.random((nao,nao))
        dm = dm + dm.T
        vj1, vk1 = mf.get_jk(cell, dm, hermi=0)
        ej1 = numpy.einsum('ij,ji->', vj1, dm)
        ek1 = numpy.einsum('ij,ji->', vk1, dm)
        self.assertAlmostEqual(ej1, 242.04678235140264, 8)
        self.assertAlmostEqual(ek1, 280.15934926575903, 8)

        numpy.random.seed(1)
        kpt = numpy.random.random(3)
        mydf = df.DF(cell, [kpt]).set(auxbasis='weigend')
        mydf.linear_dep_threshold = 1e-7
        mydf.mesh = cell.mesh
        mydf.eta = 0.3
        mydf.exp_to_discard = mydf.eta
        vj, vk = mydf.get_jk(dm, 1, kpt, exxdiv=None)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 241.15121903857556+0j, 8)
        self.assertAlmostEqual(ek1, 279.64649194057051+0j, 8)
        vj, vk = mydf.get_jk(dm, 1, kpt, with_j=False, exxdiv='ewald')
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ek1, 691.64624456329909+0j, 6)
Ejemplo n.º 8
0
    def test_jk_single_kpt(self):
        mf = df_jk.density_fit(mf0, auxbasis='weigend', mesh=(11,)*3)
        mf.with_df.mesh = cell.mesh
        mf.with_df.eta = 0.3
        mf.with_df.exp_to_discard = 0.3
        dm = mf.get_init_guess()
        vj, vk = mf.get_jk(cell, dm)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 46.69888588120217, 8)
        self.assertAlmostEqual(ek1, 31.72349032270801, 8)

        numpy.random.seed(12)
        nao = cell.nao_nr()
        dm = numpy.random.random((nao,nao))
        dm = dm + dm.T
        vj1, vk1 = mf.get_jk(cell, dm, hermi=0)
        ej1 = numpy.einsum('ij,ji->', vj1, dm)
        ek1 = numpy.einsum('ij,ji->', vk1, dm)
        self.assertAlmostEqual(ej1, 242.04678235140264, 8)
        self.assertAlmostEqual(ek1, 280.15934926575903, 8)

        numpy.random.seed(1)
        kpt = numpy.random.random(3)
        mydf = df.DF(cell, [kpt]).set(auxbasis='weigend')
        mydf.linear_dep_threshold = 1e-7
        mydf.mesh = cell.mesh
        mydf.eta = 0.3
        mydf.exp_to_discard = mydf.eta
        vj, vk = mydf.get_jk(dm, 1, kpt, exxdiv=None)
        ej1 = numpy.einsum('ij,ji->', vj, dm)
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ej1, 241.15121903857556+0j, 8)
        self.assertAlmostEqual(ek1, 279.64649194057051+0j, 8)
        vj, vk = mydf.get_jk(dm, 1, kpt, with_j=False, exxdiv='ewald')
        ek1 = numpy.einsum('ij,ji->', vk, dm)
        self.assertAlmostEqual(ek1, 691.64624456329909+0j, 6)
Ejemplo n.º 9
0
Archivo: hf.py Proyecto: pedersor/pyscf
 def density_fit(self, auxbasis=None, with_df=None):
     from pyscf.pbc.df import df_jk
     return df_jk.density_fit(self, auxbasis, with_df=with_df)
Ejemplo n.º 10
0
 def density_fit(self, auxbasis=None, with_df=None):
     from pyscf.df.addons import aug_etb_for_dfbasis
     from pyscf.pbc.df import df_jk
     if auxbasis is None:
         auxbasis = aug_etb_for_dfbasis(self.cell, beta=1.8, start_at=0)
     return df_jk.density_fit(self, auxbasis, with_df)
Ejemplo n.º 11
0
Archivo: hf.py Proyecto: sunqm/pyscf
 def density_fit(self, auxbasis=None, with_df=None):
     from pyscf.pbc.df import df_jk
     return df_jk.density_fit(self, auxbasis, with_df=with_df)