def mean(self, grid, alpha, U, T):
        r"""
        Extraction of the expectation the given sparse grid function
        interpolating the product of function value and pdf.

        \int\limits_{[0, 1]^d} f_N(x) * pdf(x) dx
        """
        # extract correct pdf for moment estimation
        vol, W = self._extractPDFforMomentEstimation(U, T)
        D = T.getTransformations()
        # compute the integral of the product
        gs = grid.getStorage()
        acc = DataVector(gs.size())
        acc.setAll(1.)
        tmp = DataVector(gs.size())
        err = 0
        # run over all dimensions
        for i, dims in enumerate(W.getTupleIndices()):
            dist = W[i]
            trans = D[i]

            # get the objects needed for integration the current dimensions
            gpsi, basisi = project(grid, dims)

            if isinstance(dist, SGDEdist):
                # if the distribution is given as a sparse grid function we
                # need to compute the bilinear form of the grids
                # accumulate objects needed for computing the bilinear form
                gpsj, basisj = project(dist.grid, range(len(dims)))

                # compute the bilinear form
                bf = BilinearGaussQuadratureStrategy()
                A, erri = bf.computeBilinearFormByList(gpsi, basisi,
                                                       gpsj, basisj)
                # weight it with the coefficient of the density function
                self.mult(A, dist.alpha, tmp)
            else:
                # the distribution is given analytically, handle them
                # analytically in the integration of the basis functions
                if isinstance(dist, Dist) and len(dims) > 1:
                    raise AttributeError('analytic quadrature not supported for multivariate distributions')
                if isinstance(dist, Dist):
                    dist = [dist]
                    trans = [trans]

                lf = LinearGaussQuadratureStrategy(dist, trans)
                tmp, erri = lf.computeLinearFormByList(gpsi, basisi)

            # print error stats
            # print "%s: %g -> %g" % (str(dims), err, err + D[i].vol() * erri)
            # import ipdb; ipdb.set_trace()

            # accumulate the error
            err += D[i].vol() * erri

            # accumulate the result
            acc.componentwise_mult(tmp)

        moment = alpha.dotProduct(acc)
        return vol * moment, err
Ejemplo n.º 2
0
    def estimate(self, vol, grid, alpha, f, U, T):
        r"""
        Extraction of the expectation the given sparse grid function
        interpolating the product of function value and pdf.

        \int\limits_{[0, 1]^d} f(x) * pdf(x) dx
        """
        # first: discretize f
        fgrid, falpha, discError = discretize(grid, alpha, f, self.__epsilon,
                                              self.__refnums, self.__pointsNum,
                                              self.level, self.__deg, True)
        # extract correct pdf for moment estimation
        vol, W, pdfError = self.__extractDiscretePDFforMomentEstimation(U, T)
        D = T.getTransformations()

        # compute the integral of the product
        gs = fgrid.getStorage()
        acc = DataVector(gs.size())
        acc.setAll(1.)
        tmp = DataVector(gs.size())
        for i, dims in enumerate(W.getTupleIndices()):
            sgdeDist = W[i]
            # accumulate objects needed for computing the bilinear form
            gpsi, basisi = project(fgrid, dims)
            gpsj, basisj = project(sgdeDist.grid, range(len(dims)))
            A = self.__computeMassMatrix(gpsi, basisi, gpsj, basisj, W, D)
            # A = ScipyQuadratureStrategy(W, D).computeBilinearForm(fgrid)
            self.mult(A, sgdeDist.alpha, tmp)
            acc.componentwise_mult(tmp)

        moment = falpha.dotProduct(acc)
        return vol * moment, discError[1] + pdfError
Ejemplo n.º 3
0
    def computeSystemMatrixForVarianceProjected(self, gs, gpsi, basisi, gpsj,
                                                basisj, dist, trans, dims):
        if isinstance(dist, SGDEdist):
            # project distribution on desired dimensions
            # get the objects needed for integrating
            # the current dimensions
            gpsk, basisk = project(dist.grid, list(range(len(dims))))
            # compute the bilinear form
            # -> the measure needs to be uniform, since it is already
            #    encoded in the sparse grid density
            self.trilinearForm.setDistributionAndTransformation(
                [Uniform(0, 1)] * gs.getDimension(), None)
            A_idim, erri = self.trilinearForm.computeTrilinearFormByList(
                gs, gpsk, basisk, dist.alpha, gpsi, basisi, gpsj, basisj)
        else:
            # the distribution is given analytically, handle them
            # analytically in the integration of the basis functions
            if isinstance(dist, Dist) and len(dims) > 1:
                #                 print "WARNINING: results are just approximated -> not independent random variables"
                # marginalize the densities and continue
                marg_dists = [None] * len(dims)
                for i, idim in enumerate(dims):
                    marg_dists[i] = dist.marginalizeToDimX(idim)
                dist = marg_dists
                trans = trans.getTransformations()

            if isinstance(dist, Dist):
                dist = [dist]
                trans = [trans]

            self.bilinearForm.setDistributionAndTransformation(dist, trans)
            A_idim, erri = self.bilinearForm.computeBilinearFormByList(
                gs, gpsi, basisi, gpsj, basisj)
        return A_idim, erri
Ejemplo n.º 4
0
    def computeSystemMatrixForMeanProjected(self, gs, gpsi, basisi, dist,
                                            trans, dims):
        if isinstance(dist, SGDEdist):
            # if the distribution is given as a sparse grid function we
            # need to compute the bilinear form of the grids
            # accumulate objects needed for computing the bilinear form
            assert len(dims) == dist.grid.getStorage().getDimension()
            gpsj, basisj = project(dist.grid, list(range(len(dims))))

            # compute the bilinear form
            # -> the measure needs to be uniform, since it is already
            #    encoded in the sparse grid density
            self.bilinearForm.setDistributionAndTransformation(
                [Uniform(0, 1)] * gs.getDimension(), None)
            A, erri = self.bilinearForm.computeBilinearFormByList(
                gs, gpsi, basisi, gpsj, basisj)
            # weight it with the coefficient of the density function
            tmp = A.dot(dist.alpha)
        else:
            # the distribution is given analytically, handle them
            # analytically in the integration of the basis functions
            if isinstance(dist, Dist) and len(dims) > 1:
                #                 print "WARNINING: results are just approximated -> not independent random variables"
                # marginalize the densities and continue
                marg_dists = [None] * len(dims)
                for i, idim in enumerate(dims):
                    marg_dists[i] = dist.marginalizeToDimX(idim)
                dist = marg_dists
                trans = trans.getTransformations()

            if isinstance(dist, Dist):
                dist = [dist]
                trans = [trans]

            self.linearForm.setDistributionAndTransformation(dist, trans)
            tmp, erri = self.linearForm.computeLinearFormByList(
                gs, gpsi, basisi)

        return tmp, erri
    def var(self, grid, alpha, U, T, mean):
        r"""
        Extraction of the expectation the given sparse grid function
        interpolating the product of function value and pdf.

        \int\limits_{[0, 1]^d} (f(x) - E(f))^2 * pdf(x) dx
        """
        # extract correct pdf for moment estimation
        vol, W = self._extractPDFforMomentEstimation(U, T)
        D = T.getTransformations()

        # copy the grid, and add a trapezoidal boundary
#         ngrid = GridDescriptor().fromGrid(grid)\
#                                 .withBorder(BorderTypes.TRAPEZOIDBOUNDARY)\
#                                 .createGrid()
        # compute nodalValues
#         ngs = ngrid.getStorage()
#         nodalValues = DataVector(ngs.size())
#         p = DataVector(ngs.dim())
#         for i in xrange(ngs.size()):
#             ngs.get(i).getCoords(p)
#             nodalValues[i] = evalSGFunction(grid, alpha, p) - mean
#
#         # hierarchize the new function
#         nalpha = hierarchize(ngrid, nodalValues)

        ngs = grid.getStorage()
        ngrid, nalpha = grid, alpha

        # compute the integral of the product times the pdf
        acc = DataMatrix(ngs.size(), ngs.size())
        acc.setAll(1.)
        err = 0
        for i, dims in enumerate(W.getTupleIndices()):
            dist = W[i]
            trans = D[i]
            # get the objects needed for integrating
            # the current dimensions
            gpsi, basisi = project(ngrid, dims)

            if isinstance(dist, SGDEdist):
                # project distribution on desired dimensions
                # get the objects needed for integrating
                # the current dimensions
                gpsk, basisk = project(dist.grid, range(len(dims)))
                # compute the bilinear form
                tf = TrilinearGaussQuadratureStrategy([dist], trans)
                A, erri = tf.computeTrilinearFormByList(gpsk, basisk, dist.alpha,
                                                        gpsi, basisi,
                                                        gpsi, basisi)
            else:
                # we compute the bilinear form of the grids
                # compute the bilinear form
                if len(dims) == 1:
                    dist = [dist]
                    trans = [trans]

                bf = BilinearGaussQuadratureStrategy(dist, trans)
                A, erri = bf.computeBilinearFormByList(gpsi, basisi,
                                                       gpsi, basisi)
            # accumulate the results
            acc.componentwise_mult(A)

            # accumulate the error
            err += acc.sum() / (acc.getNrows() * acc.getNcols()) * erri

        # compute the variance
        tmp = DataVector(acc.getNrows())
        self.mult(acc, nalpha, tmp)
        moment = vol * nalpha.dotProduct(tmp)

        moment = moment - mean ** 2

        return moment, err
    def var(self, grid, alpha, U, T, mean):
        r"""
        Extraction of the expectation the given sparse grid function
        interpolating the product of function value and pdf.

        \int\limits_{[0, 1]^d} (f(x) - E(f))^2 * pdf(x) dx
        """
        # extract correct pdf for moment estimation
        vol, W = self._extractPDFforMomentEstimation(U, T)
        D = T.getTransformations()

        # copy the grid, and add a trapezoidal boundary
        #         ngrid = GridDescriptor().fromGrid(grid)\
        #                                 .withBorder(BorderTypes.TRAPEZOIDBOUNDARY)\
        #                                 .createGrid()
        # compute nodalValues
        #         ngs = ngrid.getStorage()
        #         nodalValues = DataVector(ngs.size())
        #         p = DataVector(ngs.dim())
        #         for i in xrange(ngs.size()):
        #             ngs.get(i).getCoords(p)
        #             nodalValues[i] = evalSGFunction(grid, alpha, p) - mean
        #
        #         # hierarchize the new function
        #         nalpha = hierarchize(ngrid, nodalValues)

        ngs = grid.getStorage()
        ngrid, nalpha = grid, alpha

        # compute the integral of the product times the pdf
        acc = DataMatrix(ngs.size(), ngs.size())
        acc.setAll(1.)
        err = 0
        for i, dims in enumerate(W.getTupleIndices()):
            dist = W[i]
            trans = D[i]
            # get the objects needed for integrating
            # the current dimensions
            gpsi, basisi = project(ngrid, dims)

            if isinstance(dist, SGDEdist):
                # project distribution on desired dimensions
                # get the objects needed for integrating
                # the current dimensions
                gpsk, basisk = project(dist.grid, range(len(dims)))
                # compute the bilinear form
                tf = TrilinearGaussQuadratureStrategy([dist], trans)
                A, erri = tf.computeTrilinearFormByList(
                    gpsk, basisk, dist.alpha, gpsi, basisi, gpsi, basisi)
            else:
                # we compute the bilinear form of the grids
                # compute the bilinear form
                if len(dims) == 1:
                    dist = [dist]
                    trans = [trans]

                bf = BilinearGaussQuadratureStrategy(dist, trans)
                A, erri = bf.computeBilinearFormByList(gpsi, basisi, gpsi,
                                                       basisi)
            # accumulate the results
            acc.componentwise_mult(A)

            # accumulate the error
            err += acc.sum() / (acc.getNrows() * acc.getNcols()) * erri

        # compute the variance
        tmp = DataVector(acc.getNrows())
        self.mult(acc, nalpha, tmp)
        moment = vol * nalpha.dotProduct(tmp)

        moment = moment - mean**2

        return moment, err
    def mean(self, grid, alpha, U, T):
        r"""
        Extraction of the expectation the given sparse grid function
        interpolating the product of function value and pdf.

        \int\limits_{[0, 1]^d} f_N(x) * pdf(x) dx
        """
        # extract correct pdf for moment estimation
        vol, W = self._extractPDFforMomentEstimation(U, T)
        D = T.getTransformations()
        # compute the integral of the product
        gs = grid.getStorage()
        acc = DataVector(gs.size())
        acc.setAll(1.)
        tmp = DataVector(gs.size())
        err = 0
        # run over all dimensions
        for i, dims in enumerate(W.getTupleIndices()):
            dist = W[i]
            trans = D[i]

            # get the objects needed for integration the current dimensions
            gpsi, basisi = project(grid, dims)

            if isinstance(dist, SGDEdist):
                # if the distribution is given as a sparse grid function we
                # need to compute the bilinear form of the grids
                # accumulate objects needed for computing the bilinear form
                gpsj, basisj = project(dist.grid, range(len(dims)))

                # compute the bilinear form
                bf = BilinearGaussQuadratureStrategy()
                A, erri = bf.computeBilinearFormByList(gpsi, basisi, gpsj,
                                                       basisj)
                # weight it with the coefficient of the density function
                self.mult(A, dist.alpha, tmp)
            else:
                # the distribution is given analytically, handle them
                # analytically in the integration of the basis functions
                if isinstance(dist, Dist) and len(dims) > 1:
                    raise AttributeError(
                        'analytic quadrature not supported for multivariate distributions'
                    )
                if isinstance(dist, Dist):
                    dist = [dist]
                    trans = [trans]

                lf = LinearGaussQuadratureStrategy(dist, trans)
                tmp, erri = lf.computeLinearFormByList(gpsi, basisi)

            # print error stats
            # print "%s: %g -> %g" % (str(dims), err, err + D[i].vol() * erri)
            # import ipdb; ipdb.set_trace()

            # accumulate the error
            err += D[i].vol() * erri

            # accumulate the result
            acc.componentwise_mult(tmp)

        moment = alpha.dotProduct(acc)
        return vol * moment, err