def add_solar_features(df):
    return \
        (df
         .withColumn('declination_angle',
                     radians(-23.45
                             * cos(((2 * pi)/365) * (dayofyear('date') + 10))))
         .withColumn('diff_local_time_UTC', timezone_from_date('date'))
         .withColumn('d', (2 * pi * dayofyear('date')) / 365)
         .withColumn('equation_of_time',
                     -7.655 * sin(col('d'))
                     + 9.873 * sin(2 * col('d') + 3.588))
         .drop('d')
         .withColumn('time_correction',
                     4 * (col('loc_long') - (15 * col('diff_local_time_UTC')))
                     + col('equation_of_time'))
         .withColumn('local_solar_hour',
                     col('hour') + 0.5 + col('time_correction') / 60)
         .withColumn('hour_angle', 0.2618 * (col('local_solar_hour') - 12))
         .drop('diff_local_time_UTC', 'equation_of_time', 'time_correction',
               'local_solar_hour')
         .withColumn('solar_elevation',
                     degrees(asin(sin('declination_angle')
                                  * sin(radians('loc_lat'))
                                  + cos('declination_angle')
                                  * cos(radians('loc_lat'))
                                  * cos('hour_angle'))))
         .drop('declination_angle', 'hour_angle'))
Ejemplo n.º 2
0
def add_solar_features(df):
    return (df.withColumn(
        "declination_angle",
        radians(-23.45 * cos(((2 * pi) / 365) * (dayofyear("date") + 10))),
    ).withColumn("diff_local_time_UTC", timezone_from_date("date")).withColumn(
        "d", (2 * pi * dayofyear("date")) / 365).withColumn(
            "equation_of_time",
            -7.655 * sin(col("d")) + 9.873 * sin(2 * col("d") + 3.588),
        ).drop("d").withColumn(
            "time_correction",
            4 * (col("loc_long") - (15 * col("diff_local_time_UTC"))) +
            col("equation_of_time"),
        ).withColumn(
            "local_solar_hour",
            col("hour") + 0.5 + col("time_correction") / 60).withColumn(
                "hour_angle", 0.2618 * (col("local_solar_hour") - 12)).drop(
                    "diff_local_time_UTC",
                    "equation_of_time",
                    "time_correction",
                    "local_solar_hour",
                ).withColumn(
                    "solar_elevation",
                    degrees(
                        asin(
                            sin("declination_angle") *
                            sin(radians("loc_lat")) +
                            cos("declination_angle") *
                            cos(radians("loc_lat")) * cos("hour_angle"))),
                ).drop("declination_angle", "hour_angle"))
Ejemplo n.º 3
0
def add_haversine_distances(df, lat_a, lon_a, lat_b, lon_b):
    """
    Although the Haversine distance is readily available from sklearn.metrics.pairwise.haversine_distances, the
    implementation below makes use only of in-built PySpark functions, so should be more efficient than passing the
    sklearn function in as a UDF.

    :param df:
    :param lat_a:
    :param lon_a:
    :param lat_b:
    :param lon_b:
    :return:
    """

    earth_radius_km = 6371.0

    return \
        df \
            .withColumn('dist_lat', F.radians(lat_a) - F.radians(lat_b)) \
            .withColumn('dist_lon', F.radians(lon_a) - F.radians(lon_b)) \
            .withColumn('area',
                        (F.sin(F.col('dist_lat') / 2) ** 2)
                        + (F.cos(F.radians(lat_a))
                           * F.cos(F.radians(lat_b))
                           * (F.sin(F.col('dist_lon') / 2) ** 2)
                           )
                        ) \
            .withColumn('central_angle', 2 * F.asin(F.sqrt(F.col('area')))) \
            .withColumn('distance_km', F.col('central_angle') * F.lit(earth_radius_km)) \
            .drop('dist_lat', 'dist_lon', 'area', 'central_angle')
def computeDistances(spark, dataframe):
    df = dataframe.withColumn("lat1",F.radians(F.col("start_station_latitude"))).withColumn("lat2",F.radians(F.col("end_station_latitude")))\
        .withColumn("lon1",F.radians(F.col("start_station_longitude"))).withColumn("lon2",F.radians(F.col("end_station_longitude")))\
        .withColumn("distance",F.round(F.asin(F.sqrt(
            (-F.cos(F.col("lat2") - F.col("lat1"))*0.5 + 0.5) +
              F.cos(F.col("lat1"))*
                F.cos(F.col("lat2"))*
                (-F.cos(F.col("lon2") - F.col("lon1"))*0.5 + 0.5)))
                  *(2*earth_radius_in_meters/meters_per_mile),2))
    df = df.drop(F.col("lat1")).drop(F.col("lat2")).drop(F.col("lon1")).drop(
        F.col("lon2"))
    return df
Ejemplo n.º 5
0
def haversine(lon1, lat1, lon2, lat2):
    lon1, lat1, lon2, lat2 = map(toRadians, [
        lon1.cast("float"),
        lat1.cast("float"),
        lon2.cast("float"),
        lat2.cast("float")
    ])
    dlon = lon2 - lon1
    dlat = lat2 - lat1
    a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
    c = 2 * asin(sqrt(a))
    m = 6367000 * c
    return m.cast("decimal(10,2)")  # meters
Ejemplo n.º 6
0
def haversine(lng1: Column, lat1: Column, lng2: Column, lat2: Column):
    radius = 6378137
    #将度数转成弧度
    radLng1 = f.radians(lng1)
    radLat1 = f.radians(lat1)
    radLng2 = f.radians(lng2)
    radLat2 = f.radians(lat2)

    result = f.asin(
        f.sqrt(
            f.pow(f.sin((radLat1 - radLat2) / 2.0), 2) +
            f.cos(radLat1) * f.cos(radLat2) *
            f.pow(f.sin((radLng1 - radLng2) / 2.0), 2))) * 2.0 * radius
    return result
Ejemplo n.º 7
0
def dist(lat1, long1, lat2, long2):
    """
    Calculate the great circle distance between two points 
    on the earth (specified in decimal degrees)
    """
    # convert decimal degrees to radians 
    lat1, long1, lat2, long2 = map(f.toRadians, [lat1, long1, lat2, long2])
    # haversine formula 
    dlon = long2 - long1 
    dlat = lat2 - lat1 
    a = f.sin(dlat/2)**2 + f.cos(lat1) * f.cos(lat2) * f.sin(dlon/2)**2
    c = 2 * f.asin(f.sqrt(a)) 
    # Radius of earth in kilometers is 6371
    km = 6371* c
    return f.round(km, 3)
def add_distance_column(dfs, order_column='timestamp'):
    # Radians lat/lon
    dfs = dfs.withColumn('latitude2', F.radians('latitude')).withColumn(
        'longitude2', F.radians('longitude'))

    # Groups GPS locations into chucks. A chunk is formed by groups of points that are distant no more than roam_dist
    w = Window.partitionBy(['userID']).orderBy(order_column)
    dfs = dfs.withColumn('next_lat', F.lead('latitude2', 1).over(w))
    dfs = dfs.withColumn('next_lon', F.lead('longitude2', 1).over(w))

    # Haversine distance
    dfs = dfs.withColumn('distance_next', EARTH_RADIUS * 2 * F.asin(F.sqrt(
        F.pow(F.sin((col('next_lat') - col('latitude2')) / 2.0), 2) + F.cos('latitude2') * F.cos('next_lat') * F.pow(
            F.sin((col('next_lon') - col('longitude2')) / 2.0), 2))))
    dfs = dfs.withColumn('distance_prev', F.lag('distance_next', default=0).over(w)).drop(
        'latitude2').drop('longitude2').drop('next_lon').drop('next_lat').drop('distance_next')
    return dfs
Ejemplo n.º 9
0
def distance(lat1, lon1, lat2, lon2, unit='miles'):
    '''
    Measure simple haversine distance between two points. Default unit = miles.
    '''
    units = {
        'miles': 3963.19,
        'kilometers': 6378.137,
        'meters': 6378137,
        'feet': 20902464
    }

    phi_1 = py.radians(lat1)
    phi_2 = py.radians(lat2)
    delta_phi = py.radians(lat2 - lat1)
    delta_lambda = py.radians(lon2 - lon1)

    area = py.sin(delta_phi/2.0) ** 2 \
    + py.cos(phi_1) * py.cos(phi_2) * \
    py.sin(delta_lambda / 2.0) ** 2

    central_angle = 2 * py.asin((area**0.5))
    radius = units[unit.lower()]

    return py.abs(py.round((central_angle * radius), 4))
Ejemplo n.º 10
0
def main():
    # Parameters for the algorithm
    roam_dist = 100  # meters
    min_stay = 10  # minutes
    # Parameters for the paths
    input_path = '/path_to_parquet'  # parquet file
    output_path = '/path_to_parquet_out'  # parquet file

    spark = SparkSession \
     .builder \
     .appName("Stop locations") \
     .getOrCreate()

    # Read data
    source_df = spark.read.parquet(input_path)
    source_df = source_df.select(
        'user_id', 'timestamp',
        F.radians('latitude').alias('lat'),
        F.radians('longitude').alias("lon")).orderBy('timestamp')
    source_df.cache()

    # Filter out all the data that is not necessary (e.g. positions equals to others in a time-distance less than min_stay
    w = Window.partitionBy(['user_id']).orderBy('timestamp')

    source_df = source_df.select("user_id", "timestamp", "lat", "lon",
                                 F.lead("lat", 1).over(w).alias("next_lat"),
                                 F.lead("lon", 1).over(w).alias("next_lon"))

    dist_df = source_df.withColumn(
        "distance_next", EARTH_RADIUS * 2 * F.asin(
            F.sqrt(
                F.pow(F.sin((col("next_lat") - col("lat")) / 2.0), 2) +
                F.cos("lat") * F.cos("next_lat") *
                F.pow(F.sin((col("next_lon") - col("lon")) / 2.0), 2))))

    dist_df = dist_df.withColumn("distance_prev",
                                 F.lag("distance_next").over(w))
    exclude_df = dist_df.where((
        (col("distance_next") < 5) & (col("distance_prev") < 5))
                               | ((col("distance_next") > roam_dist)
                                  & (col("distance_prev") > roam_dist)))

    df = source_df.join(exclude_df, ['user_id', 'timestamp'],
                        "left_anti").select("user_id", "timestamp", "lat",
                                            "lon")

    # Transform to RDD, in order to apply the function get_stop_location
    # RDD that contains: (user_id, [timestamp, lat, lon, lat_degrees, lon_degrees])
    df_rdd = df.orderBy(['user_id', 'timestamp']).rdd.map(tuple)
    df_rdd = df_rdd.map(lambda x: (x[0], [[x[1], x[2], x[3]]]))
    # RDD that contains: (user_id, [[timestamp, lat, lon], ..., [timestamp, lat, lon]]), sorted by timestamp
    grouped_rdd = df_rdd.reduceByKey(lambda x, y: x + y)

    stop_locations_rdd = grouped_rdd.map(lambda x: (
        x[0],
        get_stop_location(
            x[1], min_stay_duration=min_stay, roaming_distance=roam_dist)))

    stop_locations_rdd = stop_locations_rdd.flatMapValues(lambda x: x).map(
        lambda x: (x[0], x[1][0], x[1][1], x[1][2], x[1][3]))

    # Output schema
    schema = StructType([
        StructField('user_id', StringType(), False),
        StructField('lat', DoubleType(), False),
        StructField('lon', DoubleType(), False),
        StructField('from', TimestampType(), False),
        StructField('to', TimestampType(), False)
    ])
    result_df = spark.createDataFrame(stop_locations_rdd, schema)

    result_df = result_df.withColumn('lat', F.degrees('lat'))
    result_df = result_df.withColumn('lon', F.degrees('lon'))

    result_df.write.save(output_path)
Ejemplo n.º 11
0
def geodistance(df, target_name,lng1, lat1, lng2, lat2):
  result =  df.withColumn("dlon", radians(col(lng1)) - radians(col(lng2))) \
    .withColumn("dlat", radians(col(lat1)) - radians(col(lat2))) \
    .withColumn(target_name, asin(sqrt(sin(col("dlat") / 2) ** 2 + cos(radians(col(lat2)))* cos(radians(col(lat1))) * sin(col("dlon") / 2) ** 2)) * 2 * 3963 * 5280) \
    .drop("dlon", "dlat")
  return result
Ejemplo n.º 12
0
def distance(CLat, CLon, data, col_name):
    return data.withColumn('CLon', f.lit(CLon)).withColumn('CLat',f.lit(CLat)).withColumn("dlon", f.radians(f.col("CLon")) - f.radians(f.col("longitude"))).withColumn("dlat", f.radians(f.col("CLat")) - f.radians(f.col("latitude"))).withColumn(col_name, f.asin(f.sqrt(
                                         f.sin(f.col("dlat") / 2) ** 2 + f.cos(f.radians(f.col("latitude")))
                                         * f.cos(f.radians(f.col("CLat"))) * f.sin(f.col("dlon") / 2) ** 2
                                         )
                                    ) * 2 * 6371 * 1000) \
              .drop("dlon", "dlat",'CLon', 'CLat')
Ejemplo n.º 13
0
lat1 = 0.9345569159727344
lon1 = -1.9806997123424743
lat2 = 0.7945023069213337
lon2 = -1.2839693364011688
lat3 = 0.7893221871547071
lon3 = -1.1036193160713015
dlat1 = lat1 - lat0
dlon1 = lon1 - lon0
dlat2 = lat2 - lat0
dlon2 = lon2 - lon0
dlat3 = lat3 - lat0
dlon3 = lon3 - lon0
a1 = F.sin(dlat1 / 2)**2 + F.cos(lat0) * F.cos(lat0) * F.sin(dlon1 / 2)**2
a2 = F.sin(dlat2 / 2)**2 + F.cos(lat0) * F.cos(lat0) * F.sin(dlon2 / 2)**2
a3 = F.sin(dlat3 / 2)**2 + F.cos(lat0) * F.cos(lat0) * F.sin(dlon3 / 2)**2
c1 = F.lit(2) * F.asin(F.sqrt(a1))
c2 = F.lit(2) * F.asin(F.sqrt(a2))
c3 = F.lit(2) * F.asin(F.sqrt(a3))
r = F.lit(6371)
dist1 = (c1 * r).alias('dist1')
dist2 = (c2 * r).alias('dist2')
dist3 = (c3 * r).alias('dist3')

distances = clean2.select("_ID", "TimeSt", "City", "Province", "Latitude",
                          "Longitude", dist1, dist2, dist3)
distances.registerTempTable("dist0")

# POI assignation and minimal distance to poi

query = """SELECT _ID,  TimeSt, City, Province, dist1, dist2, dist3,
    CASE WHEN (dist1 < dist2) AND (dist1 < dist3) THEN "POI1 - EDMONTON" 
Ejemplo n.º 14
0
def main():
    """Main function"""

    # Get args
    args = get_args()

    # Azure credentials
    sas_token = args.sas
    storage_account_name = args.storage
    container_in = args.container_in
    container_out = args.container_out

    azure_accounts = list()
    azure_accounts.append({
        "storage": storage_account_name,
        "sas": sas_token,
        "container": container_in
    })
    azure_accounts.append({
        "storage": storage_account_name,
        "sas": sas_token,
        "container": container_out
    })

    # VM
    cores = args.vm_cores
    ram = args.vm_ram
    shuffle_partitions = args.shuffle_partitions

    # Geohash file path
    geohash_path = args.geohashpath

    # Date, country, prefix
    country = args.country
    date_string = args.date
    prefix = args.prefix

    # Set date variables
    day_time = datetime.strptime(date_string, "%Y-%m-%d")
    year = day_time.year
    month = day_time.month
    day = day_time.day

    # stop config
    seconds = 60
    accuracy = args.accuracy
    roam_dist = args.roam_dist
    min_stay = args.min_stay
    overlap_hours = args.overlap_hours

    # Path in - path out
    blob_in = f"wasbs://{container_in}@{storage_account_name}.blob.core.windows.net/preprocessed/{country}/"
    path_out = f"stoplocation-v{VERSION}_r{roam_dist}-s{min_stay}-a{accuracy}-h{overlap_hours}/{country}"

    if prefix:
        path_out = f"stoplocation-v{VERSION}_prefix_r{roam_dist}-s{min_stay}-a{accuracy}-h{overlap_hours}/{country}"

    # config spark
    conf = getSparkConfig(cores, ram, shuffle_partitions, azure_accounts)

    # Create spark session
    sc = SparkContext(conf=conf).getOrCreate()
    sqlContext = SQLContext(sc)
    spark = sqlContext.sparkSession

    # Init azure client
    blob_service_client = BlobServiceClient.from_connection_string(
        CONN_STRING.format(storage_account_name, sas_token))

    #  build keys, date is mandatory, prefix opt
    partition_key = "year={}/month={}/day={}".format(year, month, day)
    if prefix:
        partition_key = "year={}/month={}/day={}/prefix={}".format(
            year, month, day, prefix)

    blob_base = "{}/{}".format(path_out, partition_key)

    #
    # check for skip
    # TODO
    #
    skip = False

    print("process " + partition_key + " to " + blob_base)
    start_time = time.time()
    local_dir = LOCAL_PATH + partition_key
    print("write temp to " + local_dir)

    # cleanup local if exists
    if (os.path.isdir(local_dir)):
        map(os.unlink,
            (os.path.join(local_dir, f) for f in os.listdir(local_dir)))

    # TODO cleanup remote if exists

    # Output schema
    schema = ArrayType(
        StructType([
            #StructField('device_type', IntegerType(), False),
            StructField('serial', IntegerType(), False),
            StructField('latitude', DoubleType(), False),
            StructField('longitude', DoubleType(), False),
            StructField('begin', TimestampType(), False),
            StructField('end', TimestampType(), False),
            StructField('personal_area', BooleanType(), False),
            StructField('distance', DoubleType(), False),
            StructField('geohash6', StringType(), False),
            StructField('after_stop_distance', DoubleType(), False)
        ]))

    spark_get_stop_location = udf(
        lambda z: get_stop_location(z, roam_dist, min_stay), schema)

    # Geohash file
    print("read geohash parquet")
    csv_time = time.time()
    dfs_us_states = spark.read.format("parquet").load(geohash_path)
    # states = [s.STUSPS for s in dfs_us_states.select(
    #     'STUSPS').distinct().collect()]

    dfs_us_states = dfs_us_states.select(
        col('STUSPS').alias('state'),
        col('geohash').alias('geohash5'))
    dfs_us_states = dfs_us_states.drop_duplicates(subset=['geohash5'])

    # Input dataset
    print("read dataset table")
    read_time = time.time()

    # dfs = spark.read.format("parquet").load(blob_in)

    # # apply partition filter
    # dfs_partition = dfs.where(
    #     f"(year = {year} AND month = {month} AND day = {day}  AND prefix = '{prefix}')")

    # read only partition to reduce browse time
    dfs_cur_partition = spark.read.format("parquet").load(
        f"{blob_in}/{partition_key}")

    # lit partition filters as data
    dfs_cur_partition = dfs_cur_partition.withColumn('year', F.lit(year))
    dfs_cur_partition = dfs_cur_partition.withColumn('month', F.lit(month))
    dfs_cur_partition = dfs_cur_partition.withColumn('day', F.lit(day))
    if prefix:
        dfs_cur_partition = dfs_cur_partition.withColumn(
            'prefix', F.lit(prefix))

    # read next day for overlap
    next_day = day_time + timedelta(days=1)
    next_partition_key = "year={}/month={}/day={}".format(
        next_day.year, next_day.month, next_day.day)
    if prefix:
        next_partition_key = "year={}/month={}/day={}/prefix={}".format(
            next_day.year, next_day.month, next_day.day, prefix)

    dfs_next_partition = spark.read.format("parquet").load(
        f"{blob_in}/{next_partition_key}")
    dfs_next_partition = dfs_next_partition.where(
        F.hour("timestamp") <= (overlap_hours - 1))

    # lit partition filters as data
    dfs_next_partition = dfs_next_partition.withColumn('year',
                                                       F.lit(next_day.year))
    dfs_next_partition = dfs_next_partition.withColumn('month',
                                                       F.lit(next_day.month))
    dfs_next_partition = dfs_next_partition.withColumn('day',
                                                       F.lit(next_day.day))
    if prefix:
        dfs_next_partition = dfs_next_partition.withColumn(
            'prefix', F.lit(prefix))

    # union with overlap
    dfs_partition = dfs_cur_partition.unionAll(dfs_next_partition)

    print("process with spark")
    spark_time = time.time()

    # select columns
    dfs_partition = dfs_partition.select(
        'prefix', 'userID', 'timestamp', 'latitude', 'longitude',
        (F.when(col('opt1') == 'PERSONAL_AREA',
                True).otherwise(False)).alias('personal_area'), 'accuracy')

    # keep only data with required accuracy
    dfs_partition = dfs_partition.where((col('accuracy') <= accuracy)
                                        & (col('accuracy') >= 0))

    # stats - enable only for debug!
    # num_inputs = dfs_partition.count()
    # print(f"read {num_inputs} rows from "+partition_key)

    # Lowering the granularity to 1 minutes

    # explicitely convert to timestamp
    #dfs_partition = dfs_partition.withColumn('timestamp', col('timestamp').cast('timestamp'))
    seconds_window = F.unix_timestamp(
        'timestamp') - F.unix_timestamp('timestamp') % seconds
    w = Window().partitionBy('userID', seconds_window).orderBy('accuracy')
    dfs_partition = dfs_partition.withColumn(
        'rn',
        F.row_number().over(w).cast('int')).where(col('rn') == 1).drop('rn')

    # Radians lat/lon
    dfs_partition = dfs_partition.withColumn('latitude',
                                             F.radians('latitude')).withColumn(
                                                 'longitude',
                                                 F.radians('longitude'))

    # Groups GPS locations into chucks. A chunk is formed by groups of points that are distant no more than roam_dist
    w = Window.partitionBy(['prefix', 'userID']).orderBy('timestamp')
    dfs_partition = dfs_partition.withColumn('next_lat',
                                             F.lead('latitude', 1).over(w))
    dfs_partition = dfs_partition.withColumn('next_lon',
                                             F.lead('longitude', 1).over(w))

    # Haversine distance
    dfs_partition = dfs_partition.withColumn(
        'distance_next', EARTH_RADIUS * 2 * F.asin(
            F.sqrt(
                F.pow(F.sin((col('next_lat') - col('latitude')) / 2.0), 2) +
                F.cos('latitude') * F.cos('next_lat') *
                F.pow(F.sin((col('next_lon') - col('longitude')) / 2.0), 2))))
    dfs_partition = dfs_partition.withColumn(
        'distance_prev',
        F.lag('distance_next', default=0).over(w))

    # Chunks
    dfs_partition = dfs_partition.withColumn(
        'chunk',
        F.when(col('distance_prev') > roam_dist, 1).otherwise(0))

    windowval = (Window.partitionBy(
        'prefix',
        'userID').orderBy('timestamp').rangeBetween(Window.unboundedPreceding,
                                                    0))
    dfs_partition = dfs_partition.withColumn(
        'chunk',
        F.sum('chunk').over(windowval).cast('int'))

    # Remove chunks of the next day
    w = Window.partitionBy(['prefix', 'userID', 'chunk'])
    dfs_partition = dfs_partition.withColumn(
        'min_timestamp', F.dayofmonth(F.min('timestamp').over(w)))
    dfs_partition = dfs_partition.where(
        col('min_timestamp') == day).drop('min_timestamp')

    # Get the stops
    result_df = dfs_partition.groupBy('prefix', 'userID', 'chunk').agg(
        F.array_sort(
            F.collect_list(
                F.struct('timestamp', 'latitude', 'longitude', 'distance_prev',
                         'personal_area'))).alias('gpsdata'),
        F.sum('distance_prev').alias('dist_sum'))
    result_df = result_df.withColumn('gpsdata',
                                     spark_get_stop_location('gpsdata'))

    result_df = result_df.select('userID', 'chunk',
                                 F.explode_outer('gpsdata').alias('e'),
                                 'dist_sum')
    result_df = result_df.select(
        'userID', 'chunk',
        col('e.latitude').alias('latitude'),
        col('e.longitude').alias('longitude'),
        col('e.begin').alias('begin'),
        col('e.end').alias('end'),
        col('e.personal_area').alias('personal_area'),
        col('e.geohash6').alias('geohash6'),
        col('e.serial').alias('serial'),
        col('e.distance').alias('stop_distance'),
        col('e.after_stop_distance').alias('after_stop_distance'), 'dist_sum')
    result_df = result_df.fillna(0, subset=['after_stop_distance'])

    # Remove all those stop that start the next day
    result_df = result_df.where((col('begin').isNull())
                                | (F.dayofmonth('begin') != next_day.day))

    result_df = result_df.withColumn(
        'isStop',
        F.when(col('serial').isNotNull(), 1).otherwise(0))

    result_df = result_df.withColumn(
        'dist_sum',
        F.when(col('isStop') == 1,
               col('stop_distance')).otherwise(col('dist_sum')))

    windowval = (Window.partitionBy('userId').orderBy(
        'chunk', 'serial').rowsBetween(Window.currentRow,
                                       Window.unboundedFollowing))
    result_df = result_df.withColumn('isStop_cum',
                                     F.sum('isStop').over(windowval))

    result_df = result_df.groupBy('userId', 'isStop_cum').agg(
        F.first('latitude', ignorenulls=True).alias('latitude'),
        F.first('longitude', ignorenulls=True).alias('longitude'),
        F.first('begin', ignorenulls=True).alias('begin'),
        F.first('end', ignorenulls=True).alias('end'),
        F.first('personal_area', ignorenulls=True).alias('personal_area'),
        F.first('geohash6', ignorenulls=True).alias('geohash6'),
        F.sum('dist_sum').alias('prev_travelled_distance'),
        F.sum('after_stop_distance').alias('after_stop_distance'))

    # compute next distance, which is null if it's the last
    windowval = Window.partitionBy('userId').orderBy(F.desc('isStop_cum'))
    result_df = result_df.withColumn(
        'next_travelled_distance',
        F.lead('prev_travelled_distance').over(windowval))
    result_df = result_df.withColumn(
        'next_travelled_distance',
        F.when((col('next_travelled_distance').isNull()) &
               (col('after_stop_distance') > 0),
               col('after_stop_distance')).otherwise(
                   col('next_travelled_distance')))

    # Drop nulls
    result_df = result_df.dropna(subset=['latitude']).drop('isStop_cum')

    # Transform latitude and longitude back to degrees
    result_df = result_df.withColumn('latitude', F.degrees('latitude'))
    result_df = result_df.withColumn('longitude', F.degrees('longitude'))

    # US states
    result_df = result_df.withColumn(
        "geohash5", F.expr("substring(geohash6, 1, length(geohash6)-1)"))
    result_df = result_df.join(F.broadcast(dfs_us_states),
                               on="geohash5",
                               how="inner").drop('geohash5')

    # lit partition data - enable only if added to partitionBy
    # result_df = result_df.withColumn('year', F.lit(year))
    # result_df = result_df.withColumn('month', F.lit(month))
    # result_df = result_df.withColumn('day', F.lit(day))

    # write
    out_partitions = len(US_STATES)
    result_df.repartition(out_partitions, "state").write.partitionBy(
        "state").format('parquet').mode("overwrite").save(local_dir + "/")

    # stats - enable only for debug!
    # num_records = result_df.count()
    # print(f"written {num_records} rows to "+local_dir)

    # if num_records == 0:
    #     raise Exception("Zero rows output")

    print("upload local data to azure")
    upload_time = time.time()

    # upload parts over states
    for state in US_STATES:
        print(f"upload files for {state}")
        state_dir = local_dir + "/state=" + state
        state_key = f"{partition_key}/state={state}/"

        if (os.path.isdir(state_dir)):
            files = [
                filename for filename in os.listdir(state_dir)
                if filename.startswith("part-")
            ]

            if len(files) > 0:

                for file_local in files:
                    file_path = state_dir + "/" + file_local
                    part_num = int(file_local.split('-')[1])
                    part_key = '{:05d}'.format(part_num)
                    # fix name as static hash to be reproducible
                    filename_hash = hashlib.sha1(
                        str.encode(state_key + part_key)).hexdigest()

                    blob_key = "{}/state={}/part-{}-{}.snappy.parquet".format(
                        blob_base, state, part_key, filename_hash)

                    print("upload " + file_path + " to " + container_out +
                          ":" + blob_key)

                    blob_client = blob_service_client.get_blob_client(
                        container_out, blob_key)

                    with open(file_path, "rb") as data:
                        blob_client.upload_blob(data, overwrite=True)

                    # cleanup
                    os.remove(file_path)
            else:
                print(f"no files to upload for {state}")

        else:
            print(f"missing partition for {state}")

    print("--- {} seconds elapsed ---".format(int(time.time() - start_time)))
    print()
    stop_time = time.time()
    spark.stop()

    end_time = time.time()
    print("Done in {} seconds (csv:{} read:{} spark:{} upload:{} stop:{})".
          format(int(end_time - start_time), int(read_time - csv_time),
                 int(spark_time - read_time), int(upload_time - spark_time),
                 int(stop_time - upload_time), int(end_time - stop_time)))
    print('Done.')
    # explodes all array columns
    d1 = d.withColumn("new", F.arrays_zip("heart_rate","timestamp","latitude","longitude","lat2","long2","time2"))\
            .withColumn("new", F.explode("new"))\
            .select("userId","id",
                    F.col("new.heart_rate").alias("heart_rate"),
                    F.col("new.timestamp").alias("timestamp"),
                    F.col("new.latitude").alias("lat"),
                    F.col("new.longitude").alias("long"),
                    F.col("new.lat2").alias("lat2"),
                    F.col("new.long2").alias("long2"),
                    F.col("new.time2").alias("time2"))

    # haversine formula, calculates distance and speed between two points
    d2 = d1.withColumn("distance", 3956 *(2 * F.asin(F.sqrt(F.sin((F.radians("lat") - F.radians("lat2"))/2)**2
                                    + F.cos(F.radians("lat")) * F.cos(F.radians("lat2")) * F.sin((F.radians("long")
                                    - F.radians("long2"))/2)**2))))\
           .withColumn("speed", F.col("distance")/((F.col("timestamp") - F.col("time2"))/3600))

    d2 = d2.fillna({"speed": "0"})

    # aggregations that compute metrics related to an individual bike trip
    query = d2.groupBy("id", "userid").agg(
        F.round(F.mean("speed"), 2).alias("avgspeed"),
        F.round(F.max("speed"), 2).alias("max_speed"),
        F.round(F.mean("heart_rate")).cast("integer").alias("avg_heart_rate"),
        F.max("heart_rate").alias("max_heart_rate"),
        F.round(F.sum("distance"), 2).alias("distance"),
        conv_sec_udf(F.last("timestamp") -
                     F.first("timestamp")).alias("duration"),
        conv_sec_udf((F.last("timestamp") - F.first("timestamp")) /
Ejemplo n.º 16
0
def tocolumns(df, expr):
    import pyspark.sql.functions as fcns

    if isinstance(expr, histbook.expr.Const):
        return fcns.lit(expr.value)

    elif isinstance(expr, (histbook.expr.Name, histbook.expr.Predicate)):
        return df[expr.value]

    elif isinstance(expr, histbook.expr.Call):
        if expr.fcn == "abs" or expr.fcn == "fabs":
            return fcns.abs(tocolumns(df, expr.args[0]))
        elif expr.fcn == "max" or expr.fcn == "fmax":
            return fcns.greatest(*[tocolumns(df, x) for x in expr.args])
        elif expr.fcn == "min" or expr.fcn == "fmin":
            return fcns.least(*[tocolumns(df, x) for x in expr.args])
        elif expr.fcn == "arccos":
            return fcns.acos(tocolumns(df, expr.args[0]))
        elif expr.fcn == "arccosh":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "arcsin":
            return fcns.asin(tocolumns(df, expr.args[0]))
        elif expr.fcn == "arcsinh":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "arctan2":
            return fcns.atan2(tocolumns(df, expr.args[0]),
                              tocolumns(df, expr.args[1]))
        elif expr.fcn == "arctan":
            return fcns.atan(tocolumns(df, expr.args[0]))
        elif expr.fcn == "arctanh":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "ceil":
            return fcns.ceil(tocolumns(df, expr.args[0]))
        elif expr.fcn == "copysign":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "cos":
            return fcns.cos(tocolumns(df, expr.args[0]))
        elif expr.fcn == "cosh":
            return fcns.cosh(tocolumns(df, expr.args[0]))
        elif expr.fcn == "rad2deg":
            return tocolumns(df, expr.args[0]) * (180.0 / math.pi)
        elif expr.fcn == "erfc":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "erf":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "exp":
            return fcns.exp(tocolumns(df, expr.args[0]))
        elif expr.fcn == "expm1":
            return fcns.expm1(tocolumns(df, expr.args[0]))
        elif expr.fcn == "factorial":
            return fcns.factorial(tocolumns(df, expr.args[0]))
        elif expr.fcn == "floor":
            return fcns.floor(tocolumns(df, expr.args[0]))
        elif expr.fcn == "fmod":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "gamma":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "hypot":
            return fcns.hypot(tocolumns(df, expr.args[0]),
                              tocolumns(df, expr.args[1]))
        elif expr.fcn == "isinf":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "isnan":
            return fcns.isnan(tocolumns(df, expr.args[0]))
        elif expr.fcn == "lgamma":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "log10":
            return fcns.log10(tocolumns(df, expr.args[0]))
        elif expr.fcn == "log1p":
            return fcns.log1p(tocolumns(df, expr.args[0]))
        elif expr.fcn == "log":
            return fcns.log(tocolumns(df, expr.args[0]))
        elif expr.fcn == "pow":
            return fcns.pow(tocolumns(df, expr.args[0]),
                            tocolumns(df, expr.args[1]))
        elif expr.fcn == "deg2rad":
            return tocolumns(df, expr.args[0]) * (math.pi / 180.0)
        elif expr.fcn == "sinh":
            return fcns.sinh(tocolumns(df, expr.args[0]))
        elif expr.fcn == "sin":
            return fcns.sin(tocolumns(df, expr.args[0]))
        elif expr.fcn == "sqrt":
            return fcns.sqrt(tocolumns(df, expr.args[0]))
        elif expr.fcn == "tanh":
            return fcns.tanh(tocolumns(df, expr.args[0]))
        elif expr.fcn == "tan":
            return fcns.tan(tocolumns(df, expr.args[0]))
        elif expr.fcn == "trunc":
            raise NotImplementedError(
                expr.fcn)  # FIXME (fcns.trunc is for dates)
        elif expr.fcn == "xor":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "conjugate":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "exp2":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "heaviside":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "isfinite":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "left_shift" and isinstance(expr.args[1],
                                                     histbook.expr.Const):
            return fcns.shiftLeft(tocolumns(df, expr.args[0]),
                                  expr.args[1].value)
        elif expr.fcn == "log2":
            return fcns.log2(tocolumns(df, expr.args[0]))
        elif expr.fcn == "logaddexp2":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "logaddexp":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "mod" or expr.fcn == "fmod":
            return tocolumns(df, expr.args[0]) % tocolumns(df, expr.args[1])
        elif expr.fcn == "right_shift" and isinstance(expr.args[1],
                                                      histbook.expr.Const):
            return fcns.shiftRight(tocolumns(df, expr.args[0]),
                                   expr.args[1].value)
        elif expr.fcn == "rint":
            return fcns.rint(tocolumns(df, expr.args[0]))
        elif expr.fcn == "sign":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "where":
            return fcns.when(tocolumns(df, expr.args[0]),
                             tocolumns(df, expr.args[1])).otherwise(
                                 tocolumns(df, expr.args[2]))
        elif expr.fcn == "numpy.equal":
            return tocolumns(df, expr.args[0]) == tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.not_equal":
            return tocolumns(df, expr.args[0]) != tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.less":
            return tocolumns(df, expr.args[0]) < tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.less_equal":
            return tocolumns(df, expr.args[0]) <= tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.isin":
            return tocolumns(df, expr.args[0]) in tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.logical_not":
            return ~tocolumns(df, expr.args[0])
        elif expr.fcn == "numpy.add":
            return tocolumns(df, expr.args[0]) + tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.subtract":
            return tocolumns(df, expr.args[0]) - tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.multiply":
            return tocolumns(df, expr.args[0]) * tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.true_divide":
            return tocolumns(df, expr.args[0]) / tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.logical_or":
            return tocolumns(df, expr.args[0]) | tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.logical_and":
            return tocolumns(df, expr.args[0]) & tocolumns(df, expr.args[1])
        else:
            raise NotImplementedError(expr.fcn)

    else:
        raise AssertionError(expr)
Ejemplo n.º 17
0
                           "z", F.cos(df["theta"])).drop("theta", "phi")

df = df.withColumn("xc",
                   F.sin(df["theta_c"]) * F.cos(df["phi_c"])).withColumn(
                       "yc",
                       F.sin(df["theta_c"]) * F.sin(df["phi_c"])).withColumn(
                           "zc",
                           F.cos(df["theta_c"])).drop("theta_c", "phi_c")

df = df.withColumn("rr",
                   F.hypot(df.x - df.xc,
                           F.hypot(df.y - df.yc, df.z - df.zc))).drop(
                               "x", "y", "z", "xc", "yc", "zc")

df = df.withColumn("rx", F.degrees(df.rr) * 60)
df = df.withColumn("angdist", F.degrees(2 * F.asin(df.rr / 2)) * 60)

df.cache().count()

maxr = df.select(F.max(df.angdist)).take(1)[0][0]

p = df_histplot(df, "angdist")
xlabel(r"radius [arcmin]")
text(0.8,
     0.8,
     r"$\theta_u={:.2f}^\prime$".format(maxr),
     transform=gca().transAxes)
title("nside={}".format(nside))
savefig("nside{}_1d.png".format(nside))

x, y, m = df_histplot2(df,
Ejemplo n.º 18
0
    for poi, (lat, lon) in poi_map.items():
        print(poi, lat, lon)
        df = df.withColumn(
            "dist_to_{0:s}".format(poi),
            F.array([
                F.sqrt((F.col("Longitude") - F.lit(lat))**2 +
                       (F.col("Latitude") - F.lit(lon))**2),
                F.lit(poi)
            ]))
        df = df.withColumn(
            "h_dist_to_{0:s}".format(poi),
            F.array([
                2.0 * r * F.asin(
                    F.sqrt(
                        F.sin(0.5 * (F.radians(F.col("Latitude")) -
                                     F.radians(F.lit(lat))))**2 +
                        F.cos(F.radians(F.col("Latitude"))) *
                        F.cos(F.radians(F.lit(lat))) *
                        F.sin(0.5 * (F.radians(F.col("Longitude")) -
                                     F.radians(F.lit(lon))))**2)),
                F.lit(poi)
            ]))

    # Find the nearest POI
    df = (df.withColumn(
        "label",
        F.least(*[F.col("dist_to_{0:s}".format(poi))
                  for poi in poi_map])).drop(
                      *["dist_to_{0:s}".format(poi) for poi in poi_map]))

    df = (df.withColumn(
        "h_label",