f = np.linspace(0, Fs, Ns) k1 = 2 k2 = 4 k3 = 6 k4 = 100 R = 4 alpha = 1e-6 M = np.size(y) N = int(M * R) ff = np.linspace(0, Fs, int(Ns * R)) A = pys.gaussian((M, N)) A = pys.odctdict((M, N), isnorm=True) # A = pys.dctdict(N) # A = pys.odctndict((M, N)) print(A.shape) x1 = pys.romp(y, A, k=k1, alpha=alpha, verbose=False) y1 = np.matmul(A, x1) x2 = pys.romp(y, A, k=k2, alpha=alpha, verbose=False) y2 = np.matmul(A, x2) x3 = pys.romp(y, A, k=k3, alpha=alpha, verbose=False) y3 = np.matmul(A, x3) x4 = pys.romp(y, A, k=k4, alpha=alpha, verbose=False)
sfrom = [0, 255] # sfrom = None sto = [0, 255] alpha = 0.000001 CR = 4 N = H M = int(N / CR) k1 = int(N / 8) dictype = 'DCT' mestype = 'Gaussian' seed = 2019 if mestype is 'Gaussian': Phi = pys.gaussian((M, N), seed=seed, verbose=True) print("===observation...") if dictype is 'DCT': D = pys.dctdict(N) A = np.matmul(Phi, D) plt.figure() plt.subplot(221) plt.imshow(X) plt.title('Orignal image signal') plt.subplot(222) plt.imshow(D) plt.title('Dictionary matrix (' + dictype + ')')
alpha = 0.000001 CR = 16 N = H M = int(N / CR) k1 = int(N / 32) k2 = int(N / 16) k3 = int(N / 8) k4 = int(N / 4) k5 = int(N / 2) k6 = int(N / 1) dictype = 'DCT' mestype = 'Gaussian' if mestype is 'Gaussian': Phi = pys.gaussian((M, N), verbose=True) print("===observation...") if dictype is 'DCT': D = pys.dctdict(N) A = np.matmul(Phi, D) plt.figure() plt.subplot(221) plt.imshow(X) plt.title('Orignal image signal') plt.subplot(222) plt.imshow(D) plt.title('Dictionary matrix (' + dictype + ')')