Ejemplo n.º 1
0
def ex_analysis():
    # Print the installed version of pyspedas
    pyspedas.version()
    # Delete any existing pytplot variables
    pytplot.del_data()
    # Download THEMIS state data for 2015-12-31
    pyspedas.load_data('themis', '2015-12-31', ['tha'], 'state', 'l1')
    # Use some analysis functions on tplot variables
    pyspedas.subtract_average('tha_pos')
    pyspedas.subtract_median('tha_pos')
    # Plot
    pytplot.tplot(["tha_pos", "tha_pos-d", "tha_pos-m"])
Ejemplo n.º 2
0
def ex_analysis():

    # Delete any existing pytplot variables
    pytplot.del_data()

    # Download THEMIS state data for 2015-12-31
    time_range = ['2015-12-31 00:00:00', '2015-12-31 23:59:59']
    pyspedas.themis.state(probe='a', trange=time_range)

    # Use some analysis functions on tplot variables
    pyspedas.subtract_average('tha_pos')
    pyspedas.subtract_median('tha_pos')

    # Plot
    pytplot.tplot(["tha_pos", "tha_pos-d", "tha_pos-m"])

    # Return 1 as indication that the example finished without problems.
    return 1
Ejemplo n.º 3
0
Analysis Tools

========================================================================== '''

# subtract_average
from pyspedas import subtract_average

subtract_average('mms4_fgm_b_gsm_brst_l2')

tplot(['mms4_fgm_b_gsm_brst_l2', 'mms4_fgm_b_gsm_brst_l2-d'])

# subtract_median
from pyspedas import subtract_median

subtract_median('mms4_fgm_b_gsm_brst_l2')

tplot([
    'mms4_fgm_b_gsm_brst_l2', 'mms4_fgm_b_gsm_brst_l2-d',
    'mms4_fgm_b_gsm_brst_l2-m'
])

# time clip
from pyspedas import time_clip

time_clip([
    'mms4_fgm_b_gsm_brst_l2', 'mms4_fgm_b_gsm_brst_l2-d',
    'mms4_fgm_b_gsm_brst_l2-m'
],
          '2015-10-16/13:06:45',
          '2015-10-16/13:07',
Ejemplo n.º 4
0
 def test_subtract_median(self):
     subtract_median('test')
     d = get_data('test-m')
     self.assertTrue(d[1].tolist() == [-3.5, -1.5, 1.5, 8.5, 13.5, -5.5])
Ejemplo n.º 5
0
 def test_subtract_median(self):
     """Test subtract_median."""
     subtract_median('aaabbbccc')  # Test non-existent name
     subtract_median('test')
     d = get_data('test-m')
     self.assertTrue(d[1].tolist() == [-3.5, -1.5, 1.5, 8.5, 13.5, -5.5])
     dn = [[3., 5., 8.], [15., 20., 1.], [3., 5., 8.], [15., 20., 1.],
           [23., 15., 28.], [15., 20., float('nan')]]
     store_data('test1', data={'x': [1., 2., 3., 4., 5., 6.], 'y': dn})
     subtract_median('aaabbbcc')
     subtract_median('test1', new_names='aabb')
     d = get_data('aabb')
     subtract_median(['test', 'aabb'], new_names='aaabbb')
     subtract_median('test1', overwrite=1)
     subtract_average('test', new_names="testtest")
     subtract_average(['test-m', 'test'], new_names="testtest2")
     self.assertTrue(len(d[1]) == 6)