Ejemplo n.º 1
0
    def loop(self, d_idx, d_m_mat, DWIJ, HIJ):
        i, j, n, nt = declare('int', 4)
        n = self.dim
        nt = n + 1
        # Note that we allocate enough for a 3D case but may only use a
        # part of the matrix.
        temp = declare('matrix(12)')
        res = declare('matrix(3)')
        eps = 1.0e-04 * HIJ
        for i in range(n):
            for j in range(n):
                temp[nt * i + j] = d_m_mat[9 * d_idx + 3 * i + j]
            # Augmented part of matrix
            temp[nt * i + n] = DWIJ[i]

        gj_solve(temp, n, 1, res)

        res_mag = 0.0
        dwij_mag = 0.0
        for i in range(n):
            res_mag += abs(res[i])
            dwij_mag += abs(DWIJ[i])
        change = abs(res_mag - dwij_mag) / (dwij_mag + eps)
        if change < self.tol:
            for i in range(n):
                DWIJ[i] = res[i]
Ejemplo n.º 2
0
 def test_symmetric_matrix(self):
     n = 3
     mat = [[0.96, 4.6, -3.7], [4.6, 4.3, -0.67], [-3.7, -0.67, -5.]]
     b = [2.4, 3.6, -5.8]
     result = [0.0] * n
     gj_solve(np.ravel(mat), b, n, result)
     mat = np.matrix(mat)
     new_b = mat * np.transpose(np.matrix(result))
     new_b = np.ravel(np.array(new_b))
     assert np.allclose(new_b, np.array(b))
Ejemplo n.º 3
0
 def test_band_matrix(self):
     n = 3
     mat = [[1., -2., 0.], [1., -1., 3.], [2., 5., 0.]]
     b = [-3., 1., 0.5]
     result = [0.0] * n
     gj_solve(np.ravel(mat), b, n, result)
     mat = np.matrix(mat)
     new_b = mat * np.transpose(np.matrix(result))
     new_b = np.ravel(np.array(new_b))
     assert np.allclose(new_b, np.array(b))
Ejemplo n.º 4
0
 def test_symmetric_positivedefinite_Matrix(self):
     n = 4
     mat = [[1., 1., 4., -1.], [1., 5., 0., -1.], [4., 0., 21., -4.],
            [-1., -1., -4., 10.]]
     b = [2.4, 3.6, -5.8, 0.5]
     result = [0.0] * n
     gj_solve(np.ravel(mat), b, n, result)
     mat = np.matrix(mat)
     new_b = mat * np.transpose(np.matrix(result))
     new_b = np.ravel(np.array(new_b))
     assert np.allclose(new_b, np.array(b))
Ejemplo n.º 5
0
 def test_tridiagonal_matrix(self):
     n = 4
     mat = [[-2., 1., 0., 0.], [1., -2., 1., 0.], [0., 1., -2., 0.],
            [0., 0., 1., -2.]]
     b = [-1., 0., 0., -5.]
     result = [0.0] * n
     gj_solve(np.ravel(mat), b, n, result)
     mat = np.matrix(mat)
     new_b = mat * np.transpose(np.matrix(result))
     new_b = np.ravel(np.array(new_b))
     assert np.allclose(new_b, np.array(b))
Ejemplo n.º 6
0
 def loop(self, d_idx, d_m_mat, DWIJ, HIJ):
     i, j, n = declare('int', 3)
     n = self.dim
     temp = declare('matrix(9)')
     res = declare('matrix(3)')
     eps = 1.0e-04 * HIJ
     for i in range(n):
         for j in range(n):
             temp[n * i + j] = d_m_mat[9 * d_idx + 3 * i + j]
     gj_solve(temp, DWIJ, n, res)
     change = 0.0
     for i in range(n):
         change += abs(DWIJ[i] - res[i]) / (abs(DWIJ[i]) + eps)
     if change <= self.tol:
         for i in range(n):
             DWIJ[i] = res[i]
Ejemplo n.º 7
0
 def test_general_matrix(self):
     """
     This is a general matrix which needs partial pivoting to be
     solved.
     References
     ----------
     http://web.mit.edu/10.001/Web/Course_Notes/GaussElimPivoting.html
     """
     n = 4
     mat = [[0.02, 0.01, 0., 0.], [1., 2., 1., 0.], [0., 1., 2., 1.],
            [0., 0., 100., 200.]]
     b = [0.02, 1., 4., 800.]
     result = [0.0] * n
     gj_solve(np.ravel(mat), b, n, result)
     mat = np.matrix(mat)
     new_b = mat * np.transpose(np.matrix(result))
     new_b = np.ravel(np.array(new_b))
     assert np.allclose(new_b, np.array(b))
Ejemplo n.º 8
0
    def loop(self, d_idx, d_m_mat, d_dw_gamma, d_cwij, DWIJ, HIJ):
        i, j, n, nt = declare('int', 4)
        n = self.dim
        nt = n + 1
        temp = declare('matrix(12)')  # The augmented matrix
        res = declare('matrix(3)')
        dwij = declare('matrix(3)')
        eps = 1.0e-04 * HIJ
        for i in range(n):
            dwij[i] = (DWIJ[i] - d_dw_gamma[3 * d_idx + i]) / d_cwij[d_idx]
            for j in range(n):
                temp[nt * i + j] = d_m_mat[9 * d_idx + 3 * i + j]
            temp[nt * i + n] = dwij[i]
        gj_solve(temp, n, 1, res)

        res_mag = 0.0
        dwij_mag = 0.0
        for i in range(n):
            res_mag += abs(res[i])
            dwij_mag += abs(dwij[i])
        change = abs(res_mag - dwij_mag) / (dwij_mag + eps)
        if change < self.tol:
            for i in range(n):
                DWIJ[i] = res[i]