Ejemplo n.º 1
0
 def drawSpline(self, xCursor, yCursor):
     # Track cursor location
     self.drawCursor(xCursor, yCursor)
     # Check if number of points is sufficient
     if len(self.interpolationPoints[0]) + len(xCursor) < self.p + 1:
         return
     # Get spline
     controlPoints, knotVector = pysplinekernel.interpolateWithBSplineCurve(
         [
             self.interpolationPoints[0] + xCursor,
             self.interpolationPoints[1] + yCursor
         ], self.p)
     # Get parameters (10 per segments)
     t = np.linspace(0.0, 1.0, (len(self.interpolationPoints[0]) - 1) * 10)
     # Remove previous spline and draw new one
     xc, yc = pysplinekernel.evaluate2DCurve(t, controlPoints[0],
                                             controlPoints[1], knotVector)
     self.spline.remove()
     self.spline, = self.ax.plot(xc, yc, 'b')
     # Draw control polygon
     self.drawControlPolygon(controlPoints)
     #Update figure
     self.fig.canvas.draw()
Ejemplo n.º 2
0
import numpy
import matplotlib.pyplot as plt

# -----------------------------------------------------
n = 101

U1 = [0.0, 0.0, 0.25, 0.5, 0.75, 1.0, 1.0]
U2 = [0.0, 0.0, 0.0, 0.33, 0.66, 1.0, 1.0, 1.0]
U3 = [0.0, 0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0, 1.0]
U4 = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0]

t = numpy.linspace(0.0, 1.0, n)

P = [[1.5, 2.0, 2.5, 1.0, 1.0], [1.0, 0.5, 2.0, 2.5, 0.5]]

xc1, yc1 = evaluate2DCurve(t, P[0], P[1], U1)
xc2, yc2 = evaluate2DCurve(t, P[0], P[1], U2)
xc3, yc3 = evaluate2DCurve(t, P[0], P[1], U3)
xc4, yc4 = evaluate2DCurve(t, P[0], P[1], U4)

plt.plot(xc1, yc1, label='p = 1')
plt.plot(xc2, yc2, label='p = 2')
plt.plot(xc3, yc3, label='p = 3')
plt.plot(xc4, yc4, label='p = 4')

plt.plot(P[0], P[1], 'rx')

plt.legend()

plt.show()
Ejemplo n.º 3
0
import pysplinekernel
import numpy
import matplotlib.pyplot as plt

n = 101

U1 = [0.0, 0.0, 0.25, 0.5, 0.75, 1.0, 1.0]
U2 = [0.0, 0.0, 0.0, 0.33, 0.66, 1.0, 1.0, 1.0]
U3 = [0.0, 0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0, 1.0]
U4 = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0]

t = numpy.linspace(0.0, 1.0, n)

P = [[1.5, 2.0, 2.5, 1.0, 1.0], [1.0, 0.5, 2.0, 2.5, 0.5]]

xc1, yc1 = pysplinekernel.evaluate2DCurve(t, P[0], P[1], U1)
xc2, yc2 = pysplinekernel.evaluate2DCurve(t, P[0], P[1], U2)
xc3, yc3 = pysplinekernel.evaluate2DCurve(t, P[0], P[1], U3)
xc4, yc4 = pysplinekernel.evaluate2DCurve(t, P[0], P[1], U4)

plt.plot(xc1, yc1, label='p = 1')
plt.plot(xc2, yc2, label='p = 2')
plt.plot(xc3, yc3, label='p = 3')
plt.plot(xc4, yc4, label='p = 4')

plt.plot(P[0], P[1], 'rx')

plt.legend()

plt.show()
Ejemplo n.º 4
0
# --- Python imports ---
import numpy as np
import matplotlib.pyplot as plt

# --- Splinekernel imports ---
from pysplinekernel import interpolateWithBSplineCurve, evaluate2DCurve

# -----------------------------------------------------
interpolationPoints = [[0.0, 3.0, -1.0, -4.0, -4.0, -3.0],
                       [0.0, 4.0, 4.0, 0.0, -3.0, -3.0]]

polynomialDegree = 3

controlPoints, knotVector = interpolateWithBSplineCurve(
    interpolationPoints, polynomialDegree)
t = np.linspace(0.0, 1.0, 100)
xc, yc = evaluate2DCurve(t, controlPoints[0], controlPoints[1], knotVector)

plt.plot(controlPoints[0], controlPoints[1], 'r-x')
plt.plot(xc, yc, 'b')
plt.plot(interpolationPoints[0], interpolationPoints[1], 'o')

plt.show()
import pysplinekernel
import numpy
import matplotlib.pyplot as plt

interpolationPoints = [[0.0, 3.0, -1.0, -4.0, -4.0, -3.0],
                       [0.0, 4.0, 4.0, 0.0, -3.0, -3.0]]

polynomialDegree = 3

controlPoints, knotVector = pysplinekernel.interpolateWithBSplineCurve(
    interpolationPoints, polynomialDegree)

t = numpy.linspace(0.0, 1.0, 100)

xc, yc = pysplinekernel.evaluate2DCurve(t, controlPoints[0], controlPoints[1],
                                        knotVector)

plt.plot(controlPoints[0], controlPoints[1], 'r-x')
plt.plot(xc, yc, 'b')
plt.plot(interpolationPoints[0], interpolationPoints[1], 'o')

plt.show()