Ejemplo n.º 1
0
def test_imfuse():
    """Test function for imfuse()
    """

    # path and name of test files
    im1_name = os.path.join(data_path, "left.png")
    im2_name = os.path.join(data_path, "right.png")
    
    # read test images and their masks
    im1 = cv2.imread(im1_name)
    im2 = cv2.imread(im2_name)
    
    # fuse images
    imf = pymg.imfuse(im1, im2)
    
    # plot images
    plt.close('all')
    plt.subplot(221)
    plt.imshow(im1)
    plt.title("Left image")
    plt.subplot(222)
    plt.imshow(im2)
    plt.title("Right image")
    plt.subplot(212)
    plt.imshow(imf)
    plt.title("imfuse")
    plt.show(block=False)
Ejemplo n.º 2
0
preddice_test_pred = dice_model.predict(
    im_test[i, :, :, :].reshape((1, ) + im_test.shape[1:]))

# plot results
plt.clf()
plt.subplot(321)
plt.imshow(im_test[i, :, :, :])
plt.title('histology, i = ' + str(i))
plt.subplot(323)
plt.imshow(seg_test[i, :, :, 0])
plt.title('ground truth contours')
plt.subplot(324)
aux = cv2.dilate(predseg_test[i, :, :, 0],
                 kernel=np.ones(shape=(3,
                                       3)))  # dilate for better visualisation
plt.imshow(pystoim.imfuse(seg_test[i, :, :, 0], aux).astype(np.float32))
plt.title('ground truth (gree) vs. \npredicted (purple) contours')
plt.subplot(325)
plt.imshow(preddice_test[i, :, :, 0], cmap='Greys_r')
plt.title('ground truth Dice coeff')
plt.subplot(326)
plt.imshow(preddice_test_pred[0, :, :, 0])
plt.title('estimated Dice coeff')

# visualise results
i = 18

# run image through network
preddice_test_pred = dice_model.predict(
    im_test[i, :, :, :].reshape((1, ) + im_test.shape[1:]))
                qual = cytometer.utils.match_overlapping_labels(
                    labels_test=labels[i, :, :, 0],
                    labels_ref=reflab[i, :, :, 0])
                labels_qual_augmented = cytometer.utils.paint_labels(
                    labels=labels_augmented,
                    paint_labs=qual['lab_test'],
                    paint_values=qual['dice'])

                # compare randomly transformed histology to corresponding Dice coefficient
                plt.clf()
                plt.subplot(321)
                plt.imshow(aux_dataset['im'][0, :, :, :])
                plt.subplot(322)
                plt.imshow(labels_qual_augmented, cmap='Greys_r')
                plt.subplot(323)
                aux = pystoim.imfuse(aux_dataset['im'][0, :, :, :],
                                     labels_qual_augmented)
                plt.imshow(aux, cmap='Greys_r')
                plt.subplot(324)
                plt.imshow(labels_augmented)
                plt.subplot(325)
                plt.imshow(labels_borders_augmented)

            # filenames for the Dice coefficient augmented files
            predlab_file = os.path.join(
                training_augmented_dir,
                base_name.replace(
                    'im_seed_nan_', 'predlab_kfold_' + str(fold_i).zfill(2) +
                    '_seed_' + str(seed).zfill(3) + '_'))
            predseg_file = os.path.join(
                training_augmented_dir,
                base_name.replace(
mask = mask.astype(np.float32)

if DEBUG:
    for i in range(n_im):
        print('  ** Image: ' + str(i) + '/' + str(n_im - 1))
        plt.clf()
        plt.subplot(221)
        plt.imshow(im[i, :, :, :])
        plt.subplot(222)
        plt.imshow(dmap[i, :, :, 0])
        plt.subplot(223)
        plt.imshow(mask[i, :, :, 0])
        plt.subplot(224)
        a = im[i, :, :, :]
        b = mask[i, :, :, 0]
        plt.imshow(pystoim.imfuse(a, b))
        plt.show()
'''Receptive field

'''

# list of model files to inspect
model_files = glob.glob(os.path.join(saved_models_dir, model_name))

receptive_field_size = []
for model_file in model_files:

    print(model_file)

    # estimate receptive field of the model
    def model_build_func(input_shape):