Ejemplo n.º 1
0
def main(input, output, datatype):
    """
    通达信数据文件读取
    """

    if datatype == 'daily':
        reader = TdxDailyBarReader()
    elif datatype == 'ex_daily':
        reader = TdxExHqDailyBarReader()
    elif datatype == 'lc':
        reader = TdxLCMinBarReader()
    elif datatype == 'gbbq':
        reader = GbbqReader()
    elif datatype == 'block':
        reader = BlockReader()
    else:
        reader = TdxMinBarReader()

    try:
        df = reader.get_df(input)
        if (output):
            click.echo("写入到文件 : " + output)
            df.to_csv(output)
        else:
            print(df)
    except Exception as e:
        print(str(e))
Ejemplo n.º 2
0
def main(input, output, datatype):
    """
    通达信数据文件读取
    """

    if datatype == 'daily':
        reader = TdxDailyBarReader()
    elif datatype == 'ex_daily':
        reader = TdxExHqDailyBarReader()
    elif datatype == 'lc':
        reader = TdxLCMinBarReader()
    elif datatype == 'gbbq':
        reader = GbbqReader()
    elif datatype == 'block':
        reader = BlockReader()
    elif datatype == 'customblock':
        reader = CustomerBlockReader()
    elif datatype == 'history_financial' or datatype == 'hf':
        reader = HistoryFinancialReader()
    else:
        reader = TdxMinBarReader()

    try:
        df = reader.get_df(input)
        if output:
            click.echo("写入到文件 : " + output)
            df.to_csv(output)
        else:
            print(df)
    except Exception as e:
        print(str(e))
Ejemplo n.º 3
0
    def daily(self, symbol=None):
        '''
        获取日线数据

        :param symbol:
        :return: pd.dataFrame or None
        '''
        reader = TdxDailyBarReader()
        vipdoc = self.find_path(symbol=symbol, subdir='lday', ext='day')

        if vipdoc is not None:
            return reader.get_df(vipdoc)

        return None
Ejemplo n.º 4
0
def main(input, output, datatype):
    """
    通达信数据文件读取
    """
    reader = TdxDailyBarReader()

    try:
        df = reader.get_df(input)
        if (output):
            click.echo("写入到文件 : " + output)
            df.to_csv(output)
        else:
            print(df)
    except Exception as e:
        print(str(e))
Ejemplo n.º 5
0
    def read_file(self):
        # 读取数据
        # print ("read_file, {}".format(self.file))
        reader = TdxDailyBarReader()
        self.df = reader.get_df(self.file)
        # print (self.df.index)

        # 更新UI
        self.lineEdit.setText(os.path.splitext(os.path.basename(self.file))[0])
        # 初始化日期
        start = self.df.index[0]
        end = self.df.index[-1]
        self.dateEdit_start.setDate(start)
        self.dateEdit_start.setMinimumDate(start)
        self.dateEdit_start.setMaximumDate(end)
        self.dateEdit_end.setDate(end)
        self.dateEdit_end.setMinimumDate(start)
        self.dateEdit_end.setMaximumDate(end)
        # print ("read_file end, {}, {}".format(start, end))
        self.read_ticker(start, end)
Ejemplo n.º 6
0
class TdxLocalHelper:
    BlockReader_TYPE_FLAT = 0
    BlockReader_TYPE_GROUP = 1

    def __init__(self):
        self.day_reader = TdxDailyBarReader()
        self.minline_reader = TdxLCMinBarReader()
        self.block_reader = BlockReader()

        # pandas数据显示设置
        pd.set_option('display.max_columns', None)  # 显示所有列
        #pd.set_option('display.max_rows', None)  # 显示所有行

    # 解析日线文件数据
    #返回值:date:open,high,low,close,amount,volume
    def read_tdx_local_day(self):
        #df = reader.get_df(config.tdx_local_sz_day + "sz000001.day")   sh000001.day
        df = self.day_reader.get_df(config.tdx_local_sh_day + "sh000001.day")
        print(df)

    # 批量格式化日期字段,去掉分隔符
    def format_date(self, date):
        return ((str(date))[0:10]).replace('-', '')

    # 解析1分钟和5分钟数据
    #返回值:date: open,high,low,close,amount,volume
    #csv格式:code,ts_code,trade_date(缩写),trade_time,time_index,open,high,low,close,amount,volume
    def read_tdx_local_minline_all(self, full_path,filename=""):
        #df = reader.get_df(config.tdx_local_sz_minline1 + "sz399001.lc1")
        #df = reader.get_df(config.tdx_local_sz_minline5 + "sz399001.lc5")
        #df = self.minline_reader.get_df(config.tdx_local_sh_minline1 + "sh600300.lc1")
        code = filename[2:8]
        ts_code = code + "." + filename[0:2].upper()

        df = self.minline_reader.get_df(full_path)

        df.insert(0, 'trade_time', df.index)
        df.insert(0, 'trade_date', df.index.floor('D'))
        df.insert(0, 'ts_code', ts_code)
        df.insert(0, 'code', code)
        df.reset_index(drop=True,inplace=True)  #参考:https://zhuanlan.zhihu.com/p/110819220?from_voters_page=true
        df.insert(4, 'time_index', df.index)
        #df['trade_time'] = pd.to_datetime(df['trade_time'], infer_datetime_format=True).dt.normalize()  # strftime('%m/%d/%Y') # format='%m/%d/%Y').dt.date
        #df['trade_time'] = df['trade_time'].apply(lambda x: x.strftime('%H:%M:%S'))
        df['trade_time'] = pd.to_datetime(df['trade_time'], format='%H:%M:%S').dt.strftime('%H:%M:%S')
        df['time_index'] = df['trade_time'].apply(lambda x: datatime_util.stockTradeTime2Index(x))
        df['trade_date'] = df['trade_date'].apply(lambda x: self.format_date(x))
        df['open'] = df['open'].apply(lambda x: round(x,2))
        df['high'] = df['high'].apply(lambda x: round(x, 2))
        df['low'] = df['low'].apply(lambda x: round(x, 2))
        df['close'] = df['close'].apply(lambda x: round(x, 2))

        csv_filename = config.tdx_csv_minline1_all + ts_code + ".csv"
        if os.path.isfile(csv_filename):
            os.remove(csv_filename)
            df.to_csv(csv_filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig")
        else:
            df.to_csv(csv_filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig")

    # 解析1分钟和5分钟数据,输出简单形式,只返回price和vol
    # 返回值:date: open,high,low,close,amount,volume
    # csv格式:code,ts_code,trade_date(缩写),trade_time,time_index,price,volume
    def read_tdx_local_minline_simple(self, full_path, filename=""):
        # df = reader.get_df(config.tdx_local_sz_minline1 + "sz399001.lc1")
        # df = reader.get_df(config.tdx_local_sz_minline5 + "sz399001.lc5")
        # df = self.minline_reader.get_df(config.tdx_local_sh_minline1 + "sh600300.lc1")
        code = filename[2:8]
        ts_code = code + "." + filename[0:2].upper()

        df = self.minline_reader.get_df(full_path)

        df.insert(0, 'trade_time', df.index)
        df.insert(0, 'trade_date', df.index.floor('D'))
        df.insert(0, 'ts_code', ts_code)
        df.insert(0, 'code', code)
        df.reset_index(drop=True, inplace=True)  # 参考:https://zhuanlan.zhihu.com/p/110819220?from_voters_page=true
        df.insert(4, 'time_index', df.index)
        # df['trade_time'] = pd.to_datetime(df['trade_time'], infer_datetime_format=True).dt.normalize()  # strftime('%m/%d/%Y') # format='%m/%d/%Y').dt.date
        # df['trade_time'] = df['trade_time'].apply(lambda x: x.strftime('%H:%M:%S'))
        df['trade_time'] = pd.to_datetime(df['trade_time'], format='%H:%M:%S').dt.strftime('%H:%M:%S')
        df['time_index'] = df['trade_time'].apply(lambda x: datatime_util.stockTradeTime2Index(x))
        df['trade_date'] = df['trade_date'].apply(lambda x: self.format_date(x))
        #df['open'] = df['open'].apply(lambda x: round(x, 2))
        #df['high'] = df['high'].apply(lambda x: round(x, 2))
        #df['low'] = df['low'].apply(lambda x: round(x, 2))
        df['close'] = df['close'].apply(lambda x: round(x, 2))
        df.rename(columns={'close': 'price'}, inplace=True)
        df.drop(['open', 'high', 'low', 'amount'], axis=1, inplace=True)

        csv_filename = config.tdx_csv_minline1_simple + ts_code + ".csv"
        if os.path.isfile(csv_filename):
            os.remove(csv_filename)
            df.to_csv(csv_filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig")
        else:
            df.to_csv(csv_filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig")

    # 解析板块数据
    #扁平格式返回值:blockname,block_type,code_index,code
    def read_tdx_local_block(self):
        ##指数板块 风格板块  概念板块  一般板块
        block_filename = ["block_zs.dat", "block_fg.dat", "block_gn.dat", "block.dat"]
        for block in block_filename:
            df = self.block_reader.get_df(config.tdx_local_block + block)   # 默认扁平格式
            df_group = self.block_reader.get_df(config.tdx_local_block + block, self.BlockReader_TYPE_GROUP)   #分组格式
            filename = config.tdx_csv_block + block[0:-4] + ".csv"
            filename_group = config.tdx_csv_block + block[0:-4] + "_group" + ".csv"
            if os.path.isfile(filename):
                df.to_csv(filename, index=False, mode='a', header=False, sep=',', encoding="utf_8_sig")
                df_group.to_csv(filename_group, index=False, mode='a', header=False, sep=',', encoding="utf_8_sig")
            else:
                df.to_csv(filename, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig")
                df_group.to_csv(filename_group, index=False, mode='w', header=True, sep=',', encoding="utf_8_sig")

    # 解析分时图数据
    def read_tdx_local_fst(self):
        reader = TdxMinBarReader()  #这个reader不能解析分时图文件
        # df = reader.get_df(config.tdx_local_sz_minline + "sz399001.lc1")
        df = reader.get_df(config.tdx_local_fst + "sh20200417.tfz")
        print(df)

    # 解析分时图文件,没有解析出来
    """
    通达信的zst的数据记录是每6508个字节为一天的数据,
    每26个字节为一个分钟的记录,这26个字节是这样分配的,
    时间占两个字节化为十进制为570的话表示9:30分(570/60=9.5) 
    下一个是占四个字节的叫现价,
    再下四个字节叫均价,
    另外还有两个字节为该分钟成交量(现在有可能已经改为四个字节),
    剩下的14个字节是预留的,
    """
    def parse_fst_file(self):
        full_path = config.tdx_local_fst + "sh20200417.tfz"
        filesize = os.path.getsize(full_path)  # 文件字节数
        print("filesize为: %s" % (filesize))
        if filesize == 0: return

        #print(chardet.detect(open(full_path, mode='rb').read()))   #查看文件编码格式

        file = open(full_path, "rb")
        try:
            i = 0
            while True:
                print("游标位置:", file.tell())
                stock_date = file.read(2)
                cur_price = file.read(4)
                arr_price = file.read(4)
                vol = file.read(4)
                stock_reservation = file.read(12)
                stock_date = unpack("h", stock_date)
                cur_price = unpack("l", cur_price)
                arr_price = unpack("l", arr_price)
                vol = unpack("l", vol)
                #stock_reservation = unpack("s", stock_reservation)
                print(stock_date)
                print(cur_price)
                print(arr_price)
                print(vol)
                print(stock_reservation)
                i = i + 1
                if i == 2:break

            for line in file:
                result = chardet.detect(line)
                print("code: ", result)

                buf_size = len(line)
                rec_count = buf_size // 32
                begin = 0
                end = 32
                print("行内容:", line)
                print("buf_size:", buf_size)
                print("rec_count:", rec_count)
                a = unpack('IIIIIfII', line[begin:end])
                print("解码后的数据0: %s" % (str(a[0])))
                print("解码后的数据1: %s" % (str(a[1])))
                print("解码后的数据2: %s" % (str(a[2])))
                break
        finally:
            file.close()
Ejemplo n.º 7
0
def tdxread(code):  #day data
    market = marketcode(code)
    #market = str(market)
    reader = TdxDailyBarReader()
    data = reader.get_df(panfu + market + '\\lday\\' + market + code + '.day')
    return data
Ejemplo n.º 8
0
class TDX_GW(object):

    __lc_min_bar_reader = None
    __daily_bar_reader = None
    __tdx_api = None
    __connected_ip = '119.147.212.81'
    __connected_port = 7709

    def __init__(self):
        self.__lc_min_bar_reader = lc_min_bar_reader.TdxLCMinBarReader()
        self.__daily_bar_reader = TdxDailyBarReader()
        self.__block_reader = block_reader.BlockReader()
        self.__tdx_api = TdxHq_API()
        self.__cfg_provider = ConfigProvider.ConfigProvider()


    def get_local_stock_bars(self, file_path: str, stock_date_type: StockDataType):
        if stock_date_type == StockDataType.ONE_MIN or \
            stock_date_type == StockDataType.FIVE_MINS:
            # start = time.time()
            # df = self.__lc_min_bar_reader.get_df(file_path)
            data = self.__lc_min_bar_reader.parse_data_by_file(file_path)
            df = pd.DataFrame(data=data)
            # df = df['date', 'open', 'high', 'low', 'close', 'amount', 'volume']
            # print(f"TDX get 1min bar time spent: {(time.time() - start) * 1000} ms")

            return df[['date', 'open', 'high', 'low', 'close', 'amount', 'volume']]
        elif stock_date_type == StockDataType.DAILY:
            data = self.__daily_bar_reader.get_df(file_path).reset_index()
            data['date'] = data['date'].dt.strftime('%Y-%m-%d')
            return data[['date', 'open', 'high', 'low', 'close', 'amount', 'volume']]
        else:
            raise UnimplementedException

    def get_local_stock_bars_raw_data(self, file_path: str, stock_date_type: StockDataType):
        if stock_date_type == StockDataType.ONE_MIN or \
            stock_date_type == StockDataType.FIVE_MINS:
            return self.__lc_min_bar_reader.parse_data_by_file(file_path)
        elif stock_date_type == StockDataType.DAILY:
            return self.__daily_bar_reader.parse_data_by_file(file_path)
        else:
            raise UnimplementedException

    def get_local_block(self):
        file_path = self.__cfg_provider.get_tdx_block_directory_path()
        return self.__block_reader.get_df(file_path, BlockReader_TYPE_GROUP)

    def get_realtime_stock_1min_bars(self, market: str, stock_id: str):
        with self.__tdx_api.connect(self.__connected_ip, self.__connected_port):
            market_code = self.__get_market_code(market)
            df = self.__tdx_api.to_df(
                self.__tdx_api.get_security_bars(8, market_code, stock_id, 0, 10))  # 返回DataFrame
            return df

    def get_realtime_stocks_quotes(self, stock_ids: []):
        stock_list = []
        for id in stock_ids:
            stock_list.append((com_utils.get_stock_market(id), id))
        with self.__tdx_api.connect(self.__connected_ip, self.__connected_port):
            return self.__tdx_api.get_security_quotes(stock_list)

    def get_history_minute_time_data(self, market: str, stock_id: str, date: int):
        with self.__tdx_api.connect(self.__connected_ip, self.__connected_port):
            market_code = self.__get_market_code(market)
            df = self.__tdx_api.to_df(
                self.__tdx_api.get_history_minute_time_data(market_code, stock_id, date))
            return df

    def get_xdxr_info(self, market: str, stock_id: str):
        with self.__tdx_api.connect(self.__connected_ip, self.__connected_port):
            market_code = self.__get_market_code(market)
            df = self.__tdx_api.to_df(
                self.__tdx_api.get_xdxr_info(market_code, stock_id))
            return df

    def test(self):
        with self.__tdx_api.connect(self.__connected_ip, self.__connected_port):
            return self.__tdx_api.get_history_minute_time_data(0, '000001', '2019-05-05')

    def __get_market_code(self, market: str):
        if market == cfg.MARKET.SHANGHAI:
            return 1
        elif market == cfg.MARKET.SHENZHEN:
            return 0
        else:
            raise UnimplementedException
Ejemplo n.º 9
0
    def is_tdx_local_data_ready_for(self, dt):
        file = os.path.join(self.root, 'vipdoc', 'sz', 'lday', 'sz399001.day')
        reader = TdxDailyBarReader()
        df = reader.get_df(file)

        return dt.strftime('%Y-%m-%d') in df.index
Ejemplo n.º 10
0
def read_tdx_file():
    source = os.getcwd() + "/tdx_file/"
    reader = TdxDailyBarReader()
    df = reader.get_df(source + "sz000001.day")
    print(df)
    df.to_csv(source + "/sz000001.csv")
Ejemplo n.º 11
0
def get_bar(code, start=None, end=None, freq='day', exchange=None):
    """
    股票成交量 volume 单位是100股
    """
    code = code.upper()
    standard_freq = parse_frequency_str(freq)

    try:
        tdx_code = _get_tdx_code_from_security_dataframe(code, exchange)
    except:
        util_log_info("Can't get tdx_code from {}".format(code))
        return

    if standard_freq in ['D', 'w', 'M', 'Q', 'Y']:
        file_path = _generate_path(code, 'D', tdx_code)
    elif standard_freq in ['1min', '5min', '30min', '60min']:
        file_path = _generate_path(code, '5min', tdx_code)
    elif standard_freq in ['1min']:
        file_path = _generate_path(code, '1min', tdx_code)
    else:
        util_log_info('Not supported frequency {}'.format(freq))
        return

    if not os.path.exists(file_path):
        util_log_info('=={}== {} file is not exists!'.format(code, file_path))
        return

    # 统一freq的数据结构
    if tdx_code in ['sh', 'sz']:
        if standard_freq in ['D', 'w', 'M', 'Q', 'Y']:
            reader = TdxDailyBarReader()
            df = reader.get_df(file_path)
        elif standard_freq in ['1min', '5min', '30min', '60min']:
            reader = TdxLCMinBarReader()
            df = reader.get_df(file_path)
        else:
            util_log_info('Not supported frequency {}'.format(freq))
            return
    else:
        if standard_freq in ['D', 'w', 'M', 'Q', 'Y']:
            reader = TdxExHqDailyBarReader()
            df = reader.get_df(file_path)
        elif standard_freq in ['1min', '5min', '30min', '60min']:
            reader = TdxLCMinBarReader()
            df = reader.get_df(file_path)
        else:
            util_log_info('Not supported frequency {}'.format(freq))
            return

    if len(df) < 1:
        return

    recorder = SECURITY_DATAFRAME.loc[code]

    if isinstance(recorder, pd.DataFrame):
        instrument = recorder.loc[recorder['tdx_code'] == tdx_code].loc[
            code, 'instrument']
        exchange = recorder.loc[recorder['tdx_code'] == tdx_code].loc[
            code, 'exchange']
    else:
        instrument = recorder['instrument']
        exchange = recorder['exchange']

    if instrument in ['future', 'option']:
        df.rename(columns={
            'amount': "position",
            "jiesuan": "settle"
        },
                  inplace=True)

    if start:
        start = pd.to_datetime(start)
        df = df[df.index >= start]

    if end:
        end = pd.to_datetime(end)
        df = df[df.index <= end]

    df['date'] = df.index
    df = df.assign(code=code, exchange=exchange)

    if standard_freq in ['w', 'M', 'Q', 'Y']:
        df = resample_from_daily_data(df, standard_freq)
    return df