Ejemplo n.º 1
0
def get_extension_bie_symbolic_operator(loc_sign=1):
    """
    loc_sign:
      -1 for interior Dirichlet
      +1 for exterior Dirichlet
    """
    logger = logging.getLogger("SETUP")
    logger.info(locals())

    dim = 2
    cse = sym.cse

    sigma_sym = sym.make_sym_vector("sigma", dim)
    int_sigma = sym.Ones() * sym.integral(2, 1, sigma_sym)

    nvec_sym = sym.make_sym_vector("normal", dim)
    mu_sym = sym.var("mu")

    stresslet_obj = StressletWrapper(dim=dim)
    stokeslet_obj = StokesletWrapper(dim=dim)
    bdry_op_sym = (
        loc_sign * 0.5 * sigma_sym - stresslet_obj.apply(
            sigma_sym, nvec_sym, mu_sym, qbx_forced_limit='avg') -
        stokeslet_obj.apply(sigma_sym, mu_sym, qbx_forced_limit='avg') +
        int_sigma)

    return bdry_op_sym
Ejemplo n.º 2
0
    def make_unknown(self, name):
        num_densities = (2 * (int(self.ez_enabled) + int(self.hz_enabled)) *
                         len(self.interfaces))

        assert num_densities == len(self.bcs)

        return sym.make_sym_vector(name, num_densities)
Ejemplo n.º 3
0
    def get_operator(self, ambient_dim, qbx_forced_limit="avg"):
        knl = self.knl_class(ambient_dim)
        kwargs = self.knl_sym_kwargs.copy()
        kwargs["qbx_forced_limit"] = qbx_forced_limit

        if self.op_type == "scalar":
            sym_u = sym.var("u")
            sym_op = sym.S(knl, sym_u, **kwargs)
        elif self.op_type == "scalar_mixed":
            sym_u = sym.var("u")
            sym_op = sym.S(knl, 0.3 * sym_u, **kwargs) \
                    + sym.D(knl, 0.5 * sym_u, **kwargs)
        elif self.op_type == "vector":
            sym_u = sym.make_sym_vector("u", ambient_dim)

            sym_op = make_obj_array([
                sym.Sp(knl, sym_u[0], **kwargs) +
                sym.D(knl, sym_u[1], **kwargs),
                sym.S(knl, 0.4 * sym_u[0], **kwargs) +
                0.3 * sym.D(knl, sym_u[0], **kwargs)
            ])
        else:
            raise ValueError(f"unknown operator type: '{self.op_type}'")

        sym_op = 0.5 * sym_u + sym_op
        return sym_u, sym_op
Ejemplo n.º 4
0
    def make_unknown(self, name):
        num_densities = (
                2
                * (int(self.ez_enabled) + int(self.hz_enabled))
                * len(self.interfaces))

        assert num_densities == len(self.bcs)

        return sym.make_sym_vector(name, num_densities)
Ejemplo n.º 5
0
    def __init__(self, dim=None):
        if dim == 2:
            d = sym.make_sym_vector("d", dim)
            z = d[0] + var("I") * d[1]
            expr = z
            scaling = -1 / (8 * var("pi"))
        else:
            raise NotImplementedError("unsupported dimensionality")

        super(ComplexLinearKernel, self).__init__(dim,
                                                  expression=expr,
                                                  global_scaling_const=scaling,
                                                  is_complex_valued=True)
Ejemplo n.º 6
0
    def __init__(self, dim=None):
        if dim == 2:
            d = sym.make_sym_vector("d", dim)
            z = d[0] + var("I") * d[1]
            conj_z = d[0] - var("I") * d[1]
            r = var("sqrt")(np.dot(conj_z, z))
            expr = var("log")(r)
            scaling = 1 / (4 * var("pi"))
        else:
            raise NotImplementedError("unsupported dimensionality")

        super(ComplexLogKernel, self).__init__(dim,
                                               expression=expr,
                                               global_scaling_const=scaling,
                                               is_complex_valued=True)
Ejemplo n.º 7
0
def _build_op(lpot_id,
              k=0,
              ndim=2,
              source=sym.DEFAULT_SOURCE,
              target=sym.DEFAULT_TARGET,
              qbx_forced_limit="avg"):

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    if k:
        knl = HelmholtzKernel(ndim)
        knl_kwargs = {"k": k}
    else:
        knl = LaplaceKernel(ndim)
        knl_kwargs = {}

    lpot_kwargs = {
            "qbx_forced_limit": qbx_forced_limit,
            "source": source,
            "target": target}
    lpot_kwargs.update(knl_kwargs)
    if lpot_id == 1:
        # scalar single-layer potential
        u_sym = sym.var("u")
        op = sym.S(knl, u_sym, **lpot_kwargs)
    elif lpot_id == 2:
        # scalar combination of layer potentials
        u_sym = sym.var("u")
        op = sym.S(knl, 0.3 * u_sym, **lpot_kwargs) \
             + sym.D(knl, 0.5 * u_sym, **lpot_kwargs)
    elif lpot_id == 3:
        # vector potential
        u_sym = sym.make_sym_vector("u", 2)
        u0_sym, u1_sym = u_sym

        op = make_obj_array([
            sym.Sp(knl, u0_sym, **lpot_kwargs)
            + sym.D(knl, u1_sym, **lpot_kwargs),
            sym.S(knl, 0.4 * u0_sym, **lpot_kwargs)
            + 0.3 * sym.D(knl, u0_sym, **lpot_kwargs)
            ])
    else:
        raise ValueError("Unknown lpot_id: {}".format(lpot_id))

    op = 0.5 * u_sym + op

    return op, u_sym, knl_kwargs
Ejemplo n.º 8
0
 def get_density_var(self, name: str):
     """
     :returns: a symbolic array corresponding to the density
         with the given *name*.
     """
     return sym.make_sym_vector(name, 2)
Ejemplo n.º 9
0
 def make_unknown(self, name):
     return sym.make_sym_vector(name, 6)
Ejemplo n.º 10
0
def run_exterior_stokes_2d(ctx_factory,
                           nelements,
                           mesh_order=4,
                           target_order=4,
                           qbx_order=4,
                           fmm_order=10,
                           mu=1,
                           circle_rad=1.5,
                           do_plot=False):

    # This program tests an exterior Stokes flow in 2D using the
    # compound representation given in Hsiao & Kress,
    # ``On an integral equation for the two-dimensional exterior Stokes problem,''
    # Applied Numerical Mathematics 1 (1985).

    logging.basicConfig(level=logging.INFO)

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    ovsmp_target_order = 4 * target_order

    from meshmode.mesh.generation import (  # noqa
        make_curve_mesh, starfish, ellipse, drop)
    mesh = make_curve_mesh(lambda t: circle_rad * ellipse(1, t),
                           np.linspace(0, 1, nelements + 1), target_order)
    coarse_density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    from pytential.qbx import QBXLayerPotentialSource
    target_association_tolerance = 0.05
    qbx, _ = QBXLayerPotentialSource(
        coarse_density_discr,
        fine_order=ovsmp_target_order,
        qbx_order=qbx_order,
        fmm_order=fmm_order,
        target_association_tolerance=target_association_tolerance,
        _expansions_in_tree_have_extent=True,
    ).with_refinement()

    density_discr = qbx.density_discr
    normal = bind(density_discr, sym.normal(2).as_vector())(queue)
    path_length = bind(density_discr, sym.integral(2, 1, 1))(queue)

    # {{{ describe bvp

    from pytential.symbolic.stokes import StressletWrapper, StokesletWrapper
    dim = 2
    cse = sym.cse

    sigma_sym = sym.make_sym_vector("sigma", dim)
    meanless_sigma_sym = cse(sigma_sym - sym.mean(2, 1, sigma_sym))
    int_sigma = sym.Ones() * sym.integral(2, 1, sigma_sym)

    nvec_sym = sym.make_sym_vector("normal", dim)
    mu_sym = sym.var("mu")

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = 1

    stresslet_obj = StressletWrapper(dim=2)
    stokeslet_obj = StokesletWrapper(dim=2)
    bdry_op_sym = (-loc_sign * 0.5 * sigma_sym - stresslet_obj.apply(
        sigma_sym, nvec_sym, mu_sym, qbx_forced_limit='avg') +
                   stokeslet_obj.apply(
                       meanless_sigma_sym, mu_sym, qbx_forced_limit='avg') -
                   (0.5 / np.pi) * int_sigma)

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    def fund_soln(x, y, loc, strength):
        #with direction (1,0) for point source
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = strength / (4 * np.pi * mu)
        xcomp = (-cl.clmath.log(r) + (x - loc[0])**2 / r**2) * scaling
        ycomp = ((x - loc[0]) * (y - loc[1]) / r**2) * scaling
        return [xcomp, ycomp]

    def rotlet_soln(x, y, loc):
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        xcomp = -(y - loc[1]) / r**2
        ycomp = (x - loc[0]) / r**2
        return [xcomp, ycomp]

    def fund_and_rot_soln(x, y, loc, strength):
        #with direction (1,0) for point source
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = strength / (4 * np.pi * mu)
        xcomp = ((-cl.clmath.log(r) + (x - loc[0])**2 / r**2) * scaling -
                 (y - loc[1]) * strength * 0.125 / r**2 + 3.3)
        ycomp = (((x - loc[0]) * (y - loc[1]) / r**2) * scaling +
                 (x - loc[0]) * strength * 0.125 / r**2 + 1.5)
        return [xcomp, ycomp]

    nodes = density_discr.nodes().with_queue(queue)
    fund_soln_loc = np.array([0.5, -0.2])
    strength = 100.
    bc = fund_and_rot_soln(nodes[0], nodes[1], fund_soln_loc, strength)

    omega_sym = sym.make_sym_vector("omega", dim)
    u_A_sym_bdry = stokeslet_obj.apply(  # noqa: N806
        omega_sym, mu_sym, qbx_forced_limit=1)

    omega = [
        cl.array.to_device(queue,
                           (strength / path_length) * np.ones(len(nodes[0]))),
        cl.array.to_device(queue, np.zeros(len(nodes[0])))
    ]
    bvp_rhs = bind(qbx,
                   sym.make_sym_vector("bc", dim) + u_A_sym_bdry)(queue,
                                                                  bc=bc,
                                                                  mu=mu,
                                                                  omega=omega)
    gmres_result = gmres(bound_op.scipy_op(queue,
                                           "sigma",
                                           np.float64,
                                           mu=mu,
                                           normal=normal),
                         bvp_rhs,
                         x0=bvp_rhs,
                         tol=1e-9,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    sigma = gmres_result.solution
    sigma_int_val_sym = sym.make_sym_vector("sigma_int_val", 2)
    int_val = bind(qbx, sym.integral(2, 1, sigma_sym))(queue, sigma=sigma)
    int_val = -int_val / (2 * np.pi)
    print("int_val = ", int_val)

    u_A_sym_vol = stokeslet_obj.apply(  # noqa: N806
        omega_sym, mu_sym, qbx_forced_limit=2)
    representation_sym = (
        -stresslet_obj.apply(sigma_sym, nvec_sym, mu_sym, qbx_forced_limit=2) +
        stokeslet_obj.apply(meanless_sigma_sym, mu_sym, qbx_forced_limit=2) -
        u_A_sym_vol + sigma_int_val_sym)

    nsamp = 30
    eval_points_1d = np.linspace(-3., 3., nsamp)
    eval_points = np.zeros((2, len(eval_points_1d)**2))
    eval_points[0, :] = np.tile(eval_points_1d, len(eval_points_1d))
    eval_points[1, :] = np.repeat(eval_points_1d, len(eval_points_1d))

    def circle_mask(test_points, radius):
        return (test_points[0, :]**2 + test_points[1, :]**2 > radius**2)

    def outside_circle(test_points, radius):
        mask = circle_mask(test_points, radius)
        return np.array([row[mask] for row in test_points])

    eval_points = outside_circle(eval_points, radius=circle_rad)
    from pytential.target import PointsTarget
    vel = bind((qbx, PointsTarget(eval_points)),
               representation_sym)(queue,
                                   sigma=sigma,
                                   mu=mu,
                                   normal=normal,
                                   sigma_int_val=int_val,
                                   omega=omega)
    print("@@@@@@@@")

    fplot = FieldPlotter(np.zeros(2), extent=6, npoints=100)
    plot_pts = outside_circle(fplot.points, radius=circle_rad)
    plot_vel = bind((qbx, PointsTarget(plot_pts)),
                    representation_sym)(queue,
                                        sigma=sigma,
                                        mu=mu,
                                        normal=normal,
                                        sigma_int_val=int_val,
                                        omega=omega)

    def get_obj_array(obj_array):
        return make_obj_array([ary.get() for ary in obj_array])

    exact_soln = fund_and_rot_soln(cl.array.to_device(queue, eval_points[0]),
                                   cl.array.to_device(queue, eval_points[1]),
                                   fund_soln_loc, strength)

    vel = get_obj_array(vel)
    err = vel - get_obj_array(exact_soln)

    # FIXME: Pointwise relative errors don't make sense!
    rel_err = err / (get_obj_array(exact_soln))

    if 0:
        print("@@@@@@@@")
        print("vel[0], err[0], rel_err[0] ***** vel[1], err[1], rel_err[1]: ")
        for i in range(len(vel[0])):
            print("%15.8e, %15.8e, %15.8e ***** %15.8e, %15.8e, %15.8e\n" %
                  (vel[0][i], err[0][i], rel_err[0][i], vel[1][i], err[1][i],
                   rel_err[1][i]))

        print("@@@@@@@@")

    l2_err = np.sqrt((6. / (nsamp - 1))**2 * np.sum(err[0] * err[0]) +
                     (6. / (nsamp - 1))**2 * np.sum(err[1] * err[1]))
    l2_rel_err = np.sqrt((6. /
                          (nsamp - 1))**2 * np.sum(rel_err[0] * rel_err[0]) +
                         (6. /
                          (nsamp - 1))**2 * np.sum(rel_err[1] * rel_err[1]))

    print("L2 error estimate: ", l2_err)
    print("L2 rel error estimate: ", l2_rel_err)
    print("max error at sampled points: ", max(abs(err[0])), max(abs(err[1])))
    print("max rel error at sampled points: ", max(abs(rel_err[0])),
          max(abs(rel_err[1])))

    if do_plot:
        import matplotlib
        matplotlib.use("Agg")
        import matplotlib.pyplot as plt

        full_pot = np.zeros_like(fplot.points) * float("nan")
        mask = circle_mask(fplot.points, radius=circle_rad)

        for i, vel in enumerate(plot_vel):
            full_pot[i, mask] = vel.get()

        plt.quiver(fplot.points[0],
                   fplot.points[1],
                   full_pot[0],
                   full_pot[1],
                   linewidth=0.1)
        plt.savefig("exterior-2d-field.pdf")

    # }}}

    h_max = bind(qbx, sym.h_max(qbx.ambient_dim))(queue)
    return h_max, l2_err
Ejemplo n.º 11
0
def main(nelements):
    import logging
    logging.basicConfig(level=logging.INFO)

    def get_obj_array(obj_array):
        from pytools.obj_array import make_obj_array
        return make_obj_array([
                ary.get()
                for ary in obj_array
                ])

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import (  # noqa
            make_curve_mesh, starfish, ellipse, drop)
    mesh = make_curve_mesh(
            lambda t: starfish(t),
            np.linspace(0, 1, nelements+1),
            target_order)
    coarse_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(target_order))

    from pytential.qbx import QBXLayerPotentialSource
    target_association_tolerance = 0.05
    qbx, _ = QBXLayerPotentialSource(
            coarse_density_discr, fine_order=ovsmp_target_order, qbx_order=qbx_order,
            fmm_order=fmm_order,
            target_association_tolerance=target_association_tolerance,
            ).with_refinement()

    density_discr = qbx.density_discr
    nodes = density_discr.nodes().with_queue(queue)

    # Get normal vectors for the density discretization -- used in integration with stresslet
    mv_normal = bind(density_discr, sym.normal(2))(queue)
    normal = mv_normal.as_vector(np.object)


    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel
    from pytential.symbolic.stokes import StressletWrapper
    from pytools.obj_array import make_obj_array
    dim=2
    cse = sym.cse

    nvec_sym = sym.make_sym_vector("normal", dim)
    sigma_sym = sym.make_sym_vector("sigma", dim)
    mu_sym = sym.var("mu")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w)

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = -1

    # Create stresslet object
    stresslet_obj = StressletWrapper(dim=2)

    # Describe boundary operator
    bdry_op_sym = loc_sign * 0.5 * sigma_sym + sqrt_w * stresslet_obj.apply(inv_sqrt_w_sigma, nvec_sym, mu_sym, qbx_forced_limit='avg')

    # Bind to the qbx discretization
    bound_op = bind(qbx, bdry_op_sym)

    # }}}


    # {{{ fix rhs and solve

    def fund_soln(x, y, loc):
        #with direction (1,0) for point source
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = 1./(4*np.pi*mu)
        xcomp = (-cl.clmath.log(r) + (x - loc[0])**2/r**2) * scaling
        ycomp = ((x - loc[0])*(y - loc[1])/r**2) * scaling
        return [ xcomp, ycomp ]

    def couette_soln(x, y, dp, h):
        scaling = 1./(2*mu)
        xcomp = scaling * dp * ((y+(h/2.))**2 - h * (y+(h/2.)))
        ycomp = scaling * 0*y
        return [xcomp, ycomp]



    if soln_type == 'fundamental':
        pt_loc = np.array([2.0, 0.0])
        bc = fund_soln(nodes[0], nodes[1], pt_loc)
    else:
        dp = -10.
        h = 2.5
        bc = couette_soln(nodes[0], nodes[1], dp, h)

    # Get rhs vector
    bvp_rhs = bind(qbx, sqrt_w*sym.make_sym_vector("bc",dim))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(
             bound_op.scipy_op(queue, "sigma", np.float64, mu=mu, normal=normal),
             bvp_rhs, tol=1e-9, progress=True,
             stall_iterations=0,
             hard_failure=True)

    # }}}

    # {{{ postprocess/visualize
    sigma = gmres_result.solution

    # Describe representation of solution for evaluation in domain
    representation_sym = stresslet_obj.apply(inv_sqrt_w_sigma, nvec_sym, mu_sym, qbx_forced_limit=-2)

    from sumpy.visualization import FieldPlotter
    nsamp = 10
    eval_points_1d = np.linspace(-1., 1., nsamp)
    eval_points = np.zeros((2, len(eval_points_1d)**2))
    eval_points[0,:] = np.tile(eval_points_1d, len(eval_points_1d))
    eval_points[1,:] = np.repeat(eval_points_1d, len(eval_points_1d))


    gamma_sym = sym.var("gamma")
    inv_sqrt_w_gamma = cse(gamma_sym/sqrt_w)
    constant_laplace_rep = sym.D(LaplaceKernel(dim=2), inv_sqrt_w_gamma, qbx_forced_limit=None)
    sqrt_w_vec = bind(qbx, sqrt_w)(queue)

    def general_mask(test_points):
        const_density = bind((qbx, PointsTarget(test_points)), constant_laplace_rep)(queue, gamma=sqrt_w_vec).get()
        return (abs(const_density) > 0.1)

    def inside_domain(test_points):
        mask = general_mask(test_points)
        return np.array([
            row[mask]
            for row in test_points])

    def stride_hack(arr):
        from numpy.lib.stride_tricks import as_strided
        return np.array(as_strided(arr, strides=(8 * len(arr[0]), 8)))

    eval_points = inside_domain(eval_points)
    eval_points_dev = cl.array.to_device(queue, eval_points)

    # Evaluate the solution at the evaluation points
    vel = bind(
            (qbx, PointsTarget(eval_points_dev)),
            representation_sym)(queue, sigma=sigma, mu=mu, normal=normal)
    print("@@@@@@@@")
    vel = get_obj_array(vel)


    if soln_type == 'fundamental':
        exact_soln = fund_soln(eval_points_dev[0], eval_points_dev[1], pt_loc)
    else:
        exact_soln = couette_soln(eval_points_dev[0], eval_points_dev[1], dp, h)
    err = vel - get_obj_array(exact_soln)

    print("@@@@@@@@")

    print("L2 error estimate: ", np.sqrt((2./(nsamp-1))**2*np.sum(err[0]*err[0]) + (2./(nsamp-1))**2*np.sum(err[1]*err[1])))
    max_error_loc = [abs(err[0]).argmax(), abs(err[1]).argmax()]
    print("max error at sampled points: ", max(abs(err[0])), max(abs(err[1])))
    print("exact velocity at max error points: x -> ", err[0][max_error_loc[0]], ", y -> ", err[1][max_error_loc[1]])

    from pytential.symbolic.mappers import DerivativeTaker
    rep_pressure = stresslet_obj.apply_pressure(inv_sqrt_w_sigma, nvec_sym, mu_sym, qbx_forced_limit=-2)
    pressure = bind((qbx, PointsTarget(eval_points_dev)),
                     rep_pressure)(queue, sigma=sigma, mu=mu, normal=normal)
    pressure = pressure.get()
    print "pressure = ", pressure

    x_dir_vecs = np.zeros((2,len(eval_points[0])))
    x_dir_vecs[0,:] = 1.0
    y_dir_vecs = np.zeros((2, len(eval_points[0])))
    y_dir_vecs[1,:] = 1.0
    x_dir_vecs = cl.array.to_device(queue, x_dir_vecs)
    y_dir_vecs = cl.array.to_device(queue, y_dir_vecs)
    dir_vec_sym = sym.make_sym_vector("force_direction", dim)
    rep_stress = stresslet_obj.apply_stress(inv_sqrt_w_sigma, nvec_sym, dir_vec_sym, mu_sym, qbx_forced_limit=-2)

    applied_stress_x = bind((qbx, PointsTarget(eval_points_dev)),
                             rep_stress)(queue, sigma=sigma, normal=normal, force_direction=x_dir_vecs, mu=mu)
    applied_stress_x = get_obj_array(applied_stress_x)
    applied_stress_y = bind((qbx, PointsTarget(eval_points_dev)),
                             rep_stress)(queue, sigma=sigma, normal=normal, force_direction=y_dir_vecs, mu=mu)
    applied_stress_y = get_obj_array(applied_stress_y)

    print "stress applied to x direction: ", applied_stress_x
    print "stress applied to y direction: ", applied_stress_y


    import matplotlib.pyplot as plt
    plt.quiver(eval_points[0], eval_points[1], vel[0], vel[1], linewidth=0.1)
    file_name = "field-n%s.pdf"%(nelements)
    plt.savefig(file_name)

    return (max(abs(err[0])), max(abs(err[1])))
Ejemplo n.º 12
0
def test_3d_jump_relations(ctx_factory, relation, visualize=False):
    # logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)

    if relation == "div_s":
        target_order = 3
    else:
        target_order = 4

    qbx_order = target_order

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for nel_factor in [6, 10, 14]:
        from meshmode.mesh.generation import generate_torus
        mesh = generate_torus(
                5, 2, order=target_order,
                n_outer=2*nel_factor, n_inner=nel_factor)

        from meshmode.discretization import Discretization
        from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
        pre_discr = Discretization(
                cl_ctx, mesh,
                InterpolatoryQuadratureSimplexGroupFactory(3))

        from pytential.qbx import QBXLayerPotentialSource
        qbx, _ = QBXLayerPotentialSource(
                pre_discr, fine_order=4*target_order,
                qbx_order=qbx_order,
                fmm_order=qbx_order + 5,
                fmm_backend="fmmlib"
                ).with_refinement()

        from sumpy.kernel import LaplaceKernel
        knl = LaplaceKernel(3)

        def nxcurlS(qbx_forced_limit):

            return sym.n_cross(sym.curl(sym.S(
                knl,
                sym.cse(sym.tangential_to_xyz(density_sym), "jxyz"),
                qbx_forced_limit=qbx_forced_limit)))

        x, y, z = qbx.density_discr.nodes().with_queue(queue)
        m = cl.clmath

        if relation == "nxcurls":
            density_sym = sym.make_sym_vector("density", 2)

            jump_identity_sym = (
                    nxcurlS(+1)
                    - (nxcurlS("avg") + 0.5*sym.tangential_to_xyz(density_sym)))

            # The tangential coordinate system is element-local, so we can't just
            # conjure up some globally smooth functions, interpret their values
            # in the tangential coordinate system, and be done. Instead, generate
            # an XYZ function and project it.
            density = bind(
                    qbx,
                    sym.xyz_to_tangential(sym.make_sym_vector("jxyz", 3)))(
                            queue,
                            jxyz=sym.make_obj_array([
                                m.cos(0.5*x) * m.cos(0.5*y) * m.cos(0.5*z),
                                m.sin(0.5*x) * m.cos(0.5*y) * m.sin(0.5*z),
                                m.sin(0.5*x) * m.cos(0.5*y) * m.cos(0.5*z),
                                ]))

        elif relation == "sp":

            density = m.cos(2*x) * m.cos(2*y) * m.cos(z)
            density_sym = sym.var("density")

            jump_identity_sym = (
                    sym.Sp(knl, density_sym, qbx_forced_limit=+1)
                    - (sym.Sp(knl, density_sym, qbx_forced_limit="avg")
                        - 0.5*density_sym))

        elif relation == "div_s":

            density = m.cos(2*x) * m.cos(2*y) * m.cos(z)
            density_sym = sym.var("density")

            jump_identity_sym = (
                    sym.div(sym.S(knl, sym.normal(3).as_vector()*density_sym,
                        qbx_forced_limit="avg"))
                    + sym.D(knl, density_sym, qbx_forced_limit="avg"))

        else:
            raise ValueError("unexpected value of 'relation': %s" % relation)

        bound_jump_identity = bind(qbx, jump_identity_sym)
        jump_identity = bound_jump_identity(queue, density=density)

        err = (
                norm(qbx, queue, jump_identity, np.inf)
                / norm(qbx, queue, density, np.inf))
        print("ERROR", qbx.h_max, err)

        eoc_rec.add_data_point(qbx.h_max, err)

        # {{{ visualization

        if visualize and relation == "nxcurls":
            nxcurlS_ext = bind(qbx, nxcurlS(+1))(queue, density=density)
            nxcurlS_avg = bind(qbx, nxcurlS("avg"))(queue, density=density)
            jtxyz = bind(qbx, sym.tangential_to_xyz(density_sym))(
                    queue, density=density)

            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(queue, qbx.density_discr, target_order+3)

            bdry_normals = bind(qbx, sym.normal(3))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % nel_factor, [
                ("jt", jtxyz),
                ("nxcurlS_ext", nxcurlS_ext),
                ("nxcurlS_avg", nxcurlS_avg),
                ("bdry_normals", bdry_normals),
                ])

        if visualize and relation == "sp":
            sp_ext = bind(qbx, sym.Sp(knl, density_sym, qbx_forced_limit=+1))(
                    queue, density=density)
            sp_avg = bind(qbx, sym.Sp(knl, density_sym, qbx_forced_limit="avg"))(
                    queue, density=density)

            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(queue, qbx.density_discr, target_order+3)

            bdry_normals = bind(qbx, sym.normal(3))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % nel_factor, [
                ("density", density),
                ("sp_ext", sp_ext),
                ("sp_avg", sp_avg),
                ("bdry_normals", bdry_normals),
                ])

        # }}}

    print(eoc_rec)

    assert eoc_rec.order_estimate() >= qbx_order - 1.5
Ejemplo n.º 13
0
xx = fd.SpatialCoordinate(m)
r"""
..math:

    \ln(\sqrt{(x+1)^2 + (y+1)^2})

i.e. a shift of the fundamental solution
"""
expr = fd.ln(fd.sqrt((xx[0] + 2)**2 + (xx[1] + 2)**2))
f = fd.Function(V).interpolate(expr)
gradf = fd.Function(Vdim).interpolate(fd.grad(expr))

# Let's create an operator which plugs in f, \partial_n f
# to Green's formula

sigma = sym.make_sym_vector("sigma", 2)
op = -(sym.D(LaplaceKernel(2),
          sym.var("u"),
          qbx_forced_limit=None)
    - sym.S(LaplaceKernel(2),
            sym.n_dot(sigma),
            qbx_forced_limit=None))

from meshmode.mesh import BTAG_ALL
outer_bdy_id = BTAG_ALL

# Think of this like :mod:`pytential`'s :function:`bind`
pyt_op = fd2mm.fd_bind(cl_ctx,
                       fspace_analog, op, source=(V, outer_bdy_id),
                       target=V, with_refinement=with_refinement,
                       qbx_kwargs=qbx_kwargs
Ejemplo n.º 14
0
def run_exterior_stokes(
        ctx_factory,
        *,
        ambient_dim,
        target_order,
        qbx_order,
        resolution,
        fmm_order=False,  # FIXME: FMM is slower than direct evaluation
        source_ovsmp=None,
        radius=1.5,
        mu=1.0,
        visualize=False,
        _target_association_tolerance=0.05,
        _expansions_in_tree_have_extent=True):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    # {{{ geometry

    if source_ovsmp is None:
        source_ovsmp = 4 if ambient_dim == 2 else 8

    places = {}

    if ambient_dim == 2:
        from meshmode.mesh.generation import make_curve_mesh, ellipse
        mesh = make_curve_mesh(lambda t: radius * ellipse(1.0, t),
                               np.linspace(0.0, 1.0, resolution + 1),
                               target_order)
    elif ambient_dim == 3:
        from meshmode.mesh.generation import generate_icosphere
        mesh = generate_icosphere(radius,
                                  target_order + 1,
                                  uniform_refinement_rounds=resolution)
    else:
        raise ValueError(f"unsupported dimension: {ambient_dim}")

    pre_density_discr = Discretization(
        actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
        pre_density_discr,
        fine_order=source_ovsmp * target_order,
        qbx_order=qbx_order,
        fmm_order=fmm_order,
        target_association_tolerance=_target_association_tolerance,
        _expansions_in_tree_have_extent=_expansions_in_tree_have_extent)
    places["source"] = qbx

    from extra_int_eq_data import make_source_and_target_points
    point_source, point_target = make_source_and_target_points(
        side=+1,
        inner_radius=0.5 * radius,
        outer_radius=2.0 * radius,
        ambient_dim=ambient_dim,
    )
    places["point_source"] = point_source
    places["point_target"] = point_target

    if visualize:
        from sumpy.visualization import make_field_plotter_from_bbox
        from meshmode.mesh.processing import find_bounding_box
        fplot = make_field_plotter_from_bbox(find_bounding_box(mesh),
                                             h=0.1,
                                             extend_factor=1.0)
        mask = np.linalg.norm(fplot.points, ord=2, axis=0) > (radius + 0.25)

        from pytential.target import PointsTarget
        plot_target = PointsTarget(fplot.points[:, mask].copy())
        places["plot_target"] = plot_target

        del mask

    places = GeometryCollection(places, auto_where="source")

    density_discr = places.get_discretization("source")
    logger.info("ndofs:     %d", density_discr.ndofs)
    logger.info("nelements: %d", density_discr.mesh.nelements)

    # }}}

    # {{{ symbolic

    sym_normal = sym.make_sym_vector("normal", ambient_dim)
    sym_mu = sym.var("mu")

    if ambient_dim == 2:
        from pytential.symbolic.stokes import HsiaoKressExteriorStokesOperator
        sym_omega = sym.make_sym_vector("omega", ambient_dim)
        op = HsiaoKressExteriorStokesOperator(omega=sym_omega)
    elif ambient_dim == 3:
        from pytential.symbolic.stokes import HebekerExteriorStokesOperator
        op = HebekerExteriorStokesOperator()
    else:
        assert False

    sym_sigma = op.get_density_var("sigma")
    sym_bc = op.get_density_var("bc")

    sym_op = op.operator(sym_sigma, normal=sym_normal, mu=sym_mu)
    sym_rhs = op.prepare_rhs(sym_bc, mu=mu)

    sym_velocity = op.velocity(sym_sigma, normal=sym_normal, mu=sym_mu)

    sym_source_pot = op.stokeslet.apply(sym_sigma,
                                        sym_mu,
                                        qbx_forced_limit=None)

    # }}}

    # {{{ boundary conditions

    normal = bind(places, sym.normal(ambient_dim).as_vector())(actx)

    np.random.seed(42)
    charges = make_obj_array([
        actx.from_numpy(np.random.randn(point_source.ndofs))
        for _ in range(ambient_dim)
    ])

    if ambient_dim == 2:
        total_charge = make_obj_array([actx.np.sum(c) for c in charges])
        omega = bind(places, total_charge * sym.Ones())(actx)

    if ambient_dim == 2:
        bc_context = {"mu": mu, "omega": omega}
        op_context = {"mu": mu, "omega": omega, "normal": normal}
    else:
        bc_context = {}
        op_context = {"mu": mu, "normal": normal}

    bc = bind(places, sym_source_pot,
              auto_where=("point_source", "source"))(actx,
                                                     sigma=charges,
                                                     mu=mu)

    rhs = bind(places, sym_rhs)(actx, bc=bc, **bc_context)
    bound_op = bind(places, sym_op)

    # }}}

    # {{{ solve

    from pytential.solve import gmres
    gmres_tol = 1.0e-9
    result = gmres(bound_op.scipy_op(actx, "sigma", np.float64, **op_context),
                   rhs,
                   x0=rhs,
                   tol=gmres_tol,
                   progress=visualize,
                   stall_iterations=0,
                   hard_failure=True)

    sigma = result.solution

    # }}}

    # {{{ check velocity at "point_target"

    def rnorm2(x, y):
        y_norm = actx.np.linalg.norm(y.dot(y), ord=2)
        if y_norm < 1.0e-14:
            y_norm = 1.0

        d = x - y
        return actx.np.linalg.norm(d.dot(d), ord=2) / y_norm

    ps_velocity = bind(places,
                       sym_velocity,
                       auto_where=("source", "point_target"))(actx,
                                                              sigma=sigma,
                                                              **op_context)
    ex_velocity = bind(places,
                       sym_source_pot,
                       auto_where=("point_source",
                                   "point_target"))(actx, sigma=charges, mu=mu)

    v_error = rnorm2(ps_velocity, ex_velocity)
    h_max = bind(places, sym.h_max(ambient_dim))(actx)

    logger.info("resolution %4d h_max %.5e error %.5e", resolution, h_max,
                v_error)

    # }}}}

    # {{{ visualize

    if not visualize:
        return h_max, v_error

    from meshmode.discretization.visualization import make_visualizer
    vis = make_visualizer(actx, density_discr, target_order)

    filename = "stokes_solution_{}d_{}_ovsmp_{}.vtu".format(
        ambient_dim, resolution, source_ovsmp)

    vis.write_vtk_file(filename, [
        ("density", sigma),
        ("bc", bc),
        ("rhs", rhs),
    ],
                       overwrite=True)

    # }}}

    return h_max, v_error
Ejemplo n.º 15
0
 def make_unknown(self, name):
     return sym.make_sym_vector(name, len(self.unknown_index))
Ejemplo n.º 16
0
def compute_biharmonic_extension(queue,
                                 target_discr,
                                 qbx,
                                 density_discr,
                                 f,
                                 fx,
                                 fy,
                                 target_association_tolerance=0.05):
    """Biharmoc extension. Currently only support
    interior domains in 2D (i.e., extension is on the exterior).
    """
    # pylint: disable=invalid-unary-operand-type
    dim = 2
    queue = setup_command_queue(queue=queue)
    qbx_forced_limit = 1

    normal = get_normal_vectors(queue, density_discr, loc_sign=1)

    bdry_op_sym = get_extension_bie_symbolic_operator(loc_sign=1)
    bound_op = bind(qbx, bdry_op_sym)

    bc = [fy, -fx]
    bvp_rhs = bind(qbx, sym.make_sym_vector("bc", dim))(queue, bc=bc)
    gmres_result = gmres(bound_op.scipy_op(queue,
                                           "sigma",
                                           np.float64,
                                           mu=1.,
                                           normal=normal),
                         bvp_rhs,
                         tol=1e-9,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)
    mu = gmres_result.solution

    arclength_parametrization_derivatives_sym = sym.make_sym_vector(
        "arclength_parametrization_derivatives", dim)
    density_mu_sym = sym.make_sym_vector("mu", dim)
    dxids_sym = arclength_parametrization_derivatives_sym[0] + \
            1j * arclength_parametrization_derivatives_sym[1]
    dxids_conj_sym = arclength_parametrization_derivatives_sym[0] - \
            1j * arclength_parametrization_derivatives_sym[1]
    density_rho_sym = density_mu_sym[1] - 1j * density_mu_sym[0]
    density_conj_rho_sym = density_mu_sym[1] + 1j * density_mu_sym[0]

    # convolutions
    GS1 = sym.IntG(  # noqa: N806
        ComplexLinearLogKernel(dim),
        density_rho_sym,
        qbx_forced_limit=None)
    GS2 = sym.IntG(  # noqa: N806
        ComplexLinearKernel(dim),
        density_conj_rho_sym,
        qbx_forced_limit=None)
    GD1 = sym.IntG(  # noqa: N806
        ComplexFractionalKernel(dim),
        density_rho_sym * dxids_sym,
        qbx_forced_limit=None)
    GD2 = [
        sym.IntG(  # noqa: N806
            AxisTargetDerivative(iaxis, ComplexLogKernel(dim)),
            density_conj_rho_sym * dxids_sym +
            density_rho_sym * dxids_conj_sym,
            qbx_forced_limit=qbx_forced_limit) for iaxis in range(dim)
    ]

    GS1_bdry = sym.IntG(  # noqa: N806
        ComplexLinearLogKernel(dim),
        density_rho_sym,
        qbx_forced_limit=qbx_forced_limit)
    GS2_bdry = sym.IntG(  # noqa: N806
        ComplexLinearKernel(dim),
        density_conj_rho_sym,
        qbx_forced_limit=qbx_forced_limit)
    GD1_bdry = sym.IntG(  # noqa: N806
        ComplexFractionalKernel(dim),
        density_rho_sym * dxids_sym,
        qbx_forced_limit=qbx_forced_limit)

    xp, yp = get_arclength_parametrization_derivative(queue, density_discr)
    xp = -xp
    yp = -yp
    tangent = get_tangent_vectors(queue,
                                  density_discr,
                                  loc_sign=qbx_forced_limit)

    # check and fix the direction of parametrization
    # logger.info("Fix all negative signs in:" +
    #        str(xp * tangent[0] + yp * tangent[1]))

    grad_v2 = [
        bind(qbx,
             GD2[iaxis])(queue,
                         mu=mu,
                         arclength_parametrization_derivatives=make_obj_array(
                             [xp, yp])).real for iaxis in range(dim)
    ]
    v2_tangent_der = sum(tangent[iaxis] * grad_v2[iaxis]
                         for iaxis in range(dim))

    from pytential.symbolic.pde.scalar import NeumannOperator
    from sumpy.kernel import LaplaceKernel
    operator_v1 = NeumannOperator(LaplaceKernel(dim),
                                  loc_sign=qbx_forced_limit)
    bound_op_v1 = bind(qbx, operator_v1.operator(var("sigma")))
    # FIXME: the positive sign works here
    rhs_v1 = operator_v1.prepare_rhs(1 * v2_tangent_der)
    gmres_result = gmres(bound_op_v1.scipy_op(queue, "sigma",
                                              dtype=np.float64),
                         rhs_v1,
                         tol=1e-9,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)
    sigma = gmres_result.solution
    qbx_stick_out = qbx.copy(
        target_association_tolerance=target_association_tolerance)
    v1 = bind((qbx_stick_out, target_discr),
              operator_v1.representation(var("sigma"),
                                         qbx_forced_limit=None))(queue,
                                                                 sigma=sigma)
    grad_v1 = bind(
        (qbx_stick_out, target_discr),
        operator_v1.representation(
            var("sigma"),
            qbx_forced_limit=None,
            map_potentials=lambda pot: sym.grad(dim, pot)))(queue, sigma=sigma)
    v1_bdry = bind(
        qbx,
        operator_v1.representation(var("sigma"),
                                   qbx_forced_limit=qbx_forced_limit))(
                                       queue, sigma=sigma)

    z_conj = target_discr.nodes()[0] - 1j * target_discr.nodes()[1]
    z_conj_bdry = density_discr.nodes().with_queue(queue)[0] \
            - 1j * density_discr.nodes().with_queue(queue)[1]
    int_rho = 1 / (8 * np.pi) * bind(
        qbx, sym.integral(dim, dim - 1, density_rho_sym))(queue, mu=mu)

    omega_S1 = bind(  # noqa: N806
        (qbx_stick_out, target_discr), GS1)(queue, mu=mu).real
    omega_S2 = -1 * bind(  # noqa: N806
        (qbx_stick_out, target_discr), GS2)(queue, mu=mu).real
    omega_S3 = (z_conj * int_rho).real  # noqa: N806
    omega_S = -(omega_S1 + omega_S2 + omega_S3)  # noqa: N806

    grad_omega_S1 = bind(  # noqa: N806
        (qbx_stick_out, target_discr), sym.grad(dim, GS1))(queue, mu=mu).real
    grad_omega_S2 = -1 * bind(  # noqa: N806
        (qbx_stick_out, target_discr), sym.grad(dim, GS2))(queue, mu=mu).real
    grad_omega_S3 = (int_rho * make_obj_array([1., -1.])).real  # noqa: N806
    grad_omega_S = -(grad_omega_S1 + grad_omega_S2 + grad_omega_S3
                     )  # noqa: N806

    omega_S1_bdry = bind(qbx, GS1_bdry)(queue, mu=mu).real  # noqa: N806
    omega_S2_bdry = -1 * bind(qbx, GS2_bdry)(queue, mu=mu).real  # noqa: N806
    omega_S3_bdry = (z_conj_bdry * int_rho).real  # noqa: N806
    omega_S_bdry = -(omega_S1_bdry + omega_S2_bdry + omega_S3_bdry
                     )  # noqa: N806

    omega_D1 = bind(  # noqa: N806
        (qbx_stick_out, target_discr),
        GD1)(queue,
             mu=mu,
             arclength_parametrization_derivatives=make_obj_array([xp,
                                                                   yp])).real
    omega_D = (omega_D1 + v1)  # noqa: N806

    grad_omega_D1 = bind(  # noqa: N806
        (qbx_stick_out, target_discr), sym.grad(dim, GD1))(
            queue,
            mu=mu,
            arclength_parametrization_derivatives=make_obj_array([xp,
                                                                  yp])).real
    grad_omega_D = grad_omega_D1 + grad_v1  # noqa: N806

    omega_D1_bdry = bind(  # noqa: N806
        qbx, GD1_bdry)(queue,
                       mu=mu,
                       arclength_parametrization_derivatives=make_obj_array(
                           [xp, yp])).real
    omega_D_bdry = (omega_D1_bdry + v1_bdry)  # noqa: N806

    int_bdry_mu = bind(
        qbx, sym.integral(dim, dim - 1, sym.make_sym_vector("mu", dim)))(queue,
                                                                         mu=mu)
    omega_W = (  # noqa: N806
        int_bdry_mu[0] * target_discr.nodes()[1] -
        int_bdry_mu[1] * target_discr.nodes()[0])
    grad_omega_W = make_obj_array(  # noqa: N806
        [-int_bdry_mu[1], int_bdry_mu[0]])
    omega_W_bdry = (  # noqa: N806
        int_bdry_mu[0] * density_discr.nodes().with_queue(queue)[1] -
        int_bdry_mu[1] * density_discr.nodes().with_queue(queue)[0])

    int_bdry = bind(qbx, sym.integral(dim, dim - 1, var("integrand")))(
        queue, integrand=omega_S_bdry + omega_D_bdry + omega_W_bdry)

    debugging_info = {}
    debugging_info['omega_S'] = omega_S
    debugging_info['omega_D'] = omega_D
    debugging_info['omega_W'] = omega_W
    debugging_info['omega_v1'] = v1
    debugging_info['omega_D1'] = omega_D1

    int_interior_func_bdry = bind(qbx,
                                  sym.integral(2, 1,
                                               var("integrand")))(queue,
                                                                  integrand=f)

    path_length = get_path_length(queue, density_discr)
    ext_f = omega_S + omega_D + omega_W + (int_interior_func_bdry -
                                           int_bdry) / path_length
    grad_f = grad_omega_S + grad_omega_D + grad_omega_W

    return ext_f, grad_f[0], grad_f[1], debugging_info
Ejemplo n.º 17
0
 def make_unknown(self, name):
     return sym.make_sym_vector(name, 2)
Ejemplo n.º 18
0
 def get_density_var(self, name="sigma"):
     """
     :returns: a symbolic vector corresponding to the density.
     """
     return sym.make_sym_vector(name, self.ambient_dim)
Ejemplo n.º 19
0
 def make_unknown(self, name):
     return sym.make_sym_vector(name, len(self.unknown_index))
Ejemplo n.º 20
0
    \f{1}{4\pi \sqrt{(x-2)^2 + (y-2)^2 + (z-2)^2)}}

i.e. a shift of the fundamental solution
"""
expr = fd.Constant(1 / 4 / fd.pi) * 1 / fd.sqrt(
    (x - 2)**2 + (y - 2)**2 + (z-2)**2)
f = fd.Function(V).interpolate(expr)
gradf = fd.Function(Vdim).interpolate(fd.grad(expr))

# Let's create an operator which plugs in f, \partial_n f
# to Green's formula

qbx_forced_limit = None

sigma = sym.make_sym_vector("sigma", ambient_dim)
op = -(sym.D(LaplaceKernel(ambient_dim),
          sym.var("u"),
          qbx_forced_limit=qbx_forced_limit)
    - sym.S(LaplaceKernel(ambient_dim),
            sym.n_dot(sigma),
            qbx_forced_limit=qbx_forced_limit))

from meshmode.mesh import BTAG_ALL
outer_bdy_id = BTAG_ALL

# Think of this like :mod:`pytential`'s :function:`bind`
pyt_op = fd2mm.fd_bind(cl_ctx, fspace_analog, op, source=(V, outer_bdy_id),
                       target=V, with_refinement=with_refinement,
                       qbx_kwargs=qbx_kwargs)
Ejemplo n.º 21
0
def main(nelements):
    import logging
    logging.basicConfig(level=logging.INFO)

    def get_obj_array(obj_array):
        from pytools.obj_array import make_obj_array
        return make_obj_array([ary.get() for ary in obj_array])

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import (  # noqa
        make_curve_mesh, starfish, ellipse, drop)
    mesh = make_curve_mesh(lambda t: starfish(t),
                           np.linspace(0, 1, nelements + 1), target_order)
    coarse_density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    from pytential.qbx import QBXLayerPotentialSource
    target_association_tolerance = 0.05
    qbx, _ = QBXLayerPotentialSource(
        coarse_density_discr,
        fine_order=ovsmp_target_order,
        qbx_order=qbx_order,
        fmm_order=fmm_order,
        target_association_tolerance=target_association_tolerance,
    ).with_refinement()

    density_discr = qbx.density_discr
    nodes = density_discr.nodes().with_queue(queue)

    # Get normal vectors for the density discretization -- used in integration with stresslet
    mv_normal = bind(density_discr, sym.normal(2))(queue)
    normal = mv_normal.as_vector(np.object)

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel
    from pytential.symbolic.stokes import StressletWrapper
    from pytools.obj_array import make_obj_array
    dim = 2
    cse = sym.cse

    nvec_sym = sym.make_sym_vector("normal", dim)
    sigma_sym = sym.make_sym_vector("sigma", dim)
    mu_sym = sym.var("mu")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym / sqrt_w)

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = -1

    # Create stresslet object
    stresslet_obj = StressletWrapper(dim=2)

    # Describe boundary operator
    bdry_op_sym = loc_sign * 0.5 * sigma_sym + sqrt_w * stresslet_obj.apply(
        inv_sqrt_w_sigma, nvec_sym, mu_sym, qbx_forced_limit='avg')

    # Bind to the qbx discretization
    bound_op = bind(qbx, bdry_op_sym)

    # }}}

    # {{{ fix rhs and solve

    def fund_soln(x, y, loc):
        #with direction (1,0) for point source
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = 1. / (4 * np.pi * mu)
        xcomp = (-cl.clmath.log(r) + (x - loc[0])**2 / r**2) * scaling
        ycomp = ((x - loc[0]) * (y - loc[1]) / r**2) * scaling
        return [xcomp, ycomp]

    def couette_soln(x, y, dp, h):
        scaling = 1. / (2 * mu)
        xcomp = scaling * dp * ((y + (h / 2.))**2 - h * (y + (h / 2.)))
        ycomp = scaling * 0 * y
        return [xcomp, ycomp]

    if soln_type == 'fundamental':
        pt_loc = np.array([2.0, 0.0])
        bc = fund_soln(nodes[0], nodes[1], pt_loc)
    else:
        dp = -10.
        h = 2.5
        bc = couette_soln(nodes[0], nodes[1], dp, h)

    # Get rhs vector
    bvp_rhs = bind(qbx, sqrt_w * sym.make_sym_vector("bc", dim))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(bound_op.scipy_op(queue,
                                           "sigma",
                                           np.float64,
                                           mu=mu,
                                           normal=normal),
                         bvp_rhs,
                         tol=1e-9,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)

    # }}}

    # {{{ postprocess/visualize
    sigma = gmres_result.solution

    # Describe representation of solution for evaluation in domain
    representation_sym = stresslet_obj.apply(inv_sqrt_w_sigma,
                                             nvec_sym,
                                             mu_sym,
                                             qbx_forced_limit=-2)

    from sumpy.visualization import FieldPlotter
    nsamp = 10
    eval_points_1d = np.linspace(-1., 1., nsamp)
    eval_points = np.zeros((2, len(eval_points_1d)**2))
    eval_points[0, :] = np.tile(eval_points_1d, len(eval_points_1d))
    eval_points[1, :] = np.repeat(eval_points_1d, len(eval_points_1d))

    gamma_sym = sym.var("gamma")
    inv_sqrt_w_gamma = cse(gamma_sym / sqrt_w)
    constant_laplace_rep = sym.D(LaplaceKernel(dim=2),
                                 inv_sqrt_w_gamma,
                                 qbx_forced_limit=None)
    sqrt_w_vec = bind(qbx, sqrt_w)(queue)

    def general_mask(test_points):
        const_density = bind((qbx, PointsTarget(test_points)),
                             constant_laplace_rep)(queue,
                                                   gamma=sqrt_w_vec).get()
        return (abs(const_density) > 0.1)

    def inside_domain(test_points):
        mask = general_mask(test_points)
        return np.array([row[mask] for row in test_points])

    def stride_hack(arr):
        from numpy.lib.stride_tricks import as_strided
        return np.array(as_strided(arr, strides=(8 * len(arr[0]), 8)))

    eval_points = inside_domain(eval_points)
    eval_points_dev = cl.array.to_device(queue, eval_points)

    # Evaluate the solution at the evaluation points
    vel = bind((qbx, PointsTarget(eval_points_dev)),
               representation_sym)(queue, sigma=sigma, mu=mu, normal=normal)
    print("@@@@@@@@")
    vel = get_obj_array(vel)

    if soln_type == 'fundamental':
        exact_soln = fund_soln(eval_points_dev[0], eval_points_dev[1], pt_loc)
    else:
        exact_soln = couette_soln(eval_points_dev[0], eval_points_dev[1], dp,
                                  h)
    err = vel - get_obj_array(exact_soln)

    print("@@@@@@@@")

    print(
        "L2 error estimate: ",
        np.sqrt((2. / (nsamp - 1))**2 * np.sum(err[0] * err[0]) +
                (2. / (nsamp - 1))**2 * np.sum(err[1] * err[1])))
    max_error_loc = [abs(err[0]).argmax(), abs(err[1]).argmax()]
    print("max error at sampled points: ", max(abs(err[0])), max(abs(err[1])))
    print("exact velocity at max error points: x -> ",
          err[0][max_error_loc[0]], ", y -> ", err[1][max_error_loc[1]])

    from pytential.symbolic.mappers import DerivativeTaker
    rep_pressure = stresslet_obj.apply_pressure(inv_sqrt_w_sigma,
                                                nvec_sym,
                                                mu_sym,
                                                qbx_forced_limit=-2)
    pressure = bind((qbx, PointsTarget(eval_points_dev)),
                    rep_pressure)(queue, sigma=sigma, mu=mu, normal=normal)
    pressure = pressure.get()
    print "pressure = ", pressure

    x_dir_vecs = np.zeros((2, len(eval_points[0])))
    x_dir_vecs[0, :] = 1.0
    y_dir_vecs = np.zeros((2, len(eval_points[0])))
    y_dir_vecs[1, :] = 1.0
    x_dir_vecs = cl.array.to_device(queue, x_dir_vecs)
    y_dir_vecs = cl.array.to_device(queue, y_dir_vecs)
    dir_vec_sym = sym.make_sym_vector("force_direction", dim)
    rep_stress = stresslet_obj.apply_stress(inv_sqrt_w_sigma,
                                            nvec_sym,
                                            dir_vec_sym,
                                            mu_sym,
                                            qbx_forced_limit=-2)

    applied_stress_x = bind((qbx, PointsTarget(eval_points_dev)),
                            rep_stress)(queue,
                                        sigma=sigma,
                                        normal=normal,
                                        force_direction=x_dir_vecs,
                                        mu=mu)
    applied_stress_x = get_obj_array(applied_stress_x)
    applied_stress_y = bind((qbx, PointsTarget(eval_points_dev)),
                            rep_stress)(queue,
                                        sigma=sigma,
                                        normal=normal,
                                        force_direction=y_dir_vecs,
                                        mu=mu)
    applied_stress_y = get_obj_array(applied_stress_y)

    print "stress applied to x direction: ", applied_stress_x
    print "stress applied to y direction: ", applied_stress_y

    import matplotlib.pyplot as plt
    plt.quiver(eval_points[0], eval_points[1], vel[0], vel[1], linewidth=0.1)
    file_name = "field-n%s.pdf" % (nelements)
    plt.savefig(file_name)

    return (max(abs(err[0])), max(abs(err[1])))
Ejemplo n.º 22
0
def test_3d_jump_relations(ctx_factory, relation, visualize=False):
    # logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    if relation == "div_s":
        target_order = 3
    else:
        target_order = 4

    qbx_order = target_order

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for nel_factor in [6, 10, 14]:
        from meshmode.mesh.generation import generate_torus
        mesh = generate_torus(
                5, 2, order=target_order,
                n_major=2*nel_factor, n_minor=nel_factor)

        from meshmode.discretization import Discretization
        from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
        pre_discr = Discretization(
                actx, mesh,
                InterpolatoryQuadratureSimplexGroupFactory(3))

        from pytential.qbx import QBXLayerPotentialSource
        qbx = QBXLayerPotentialSource(
                pre_discr, fine_order=4*target_order,
                qbx_order=qbx_order,
                fmm_order=qbx_order + 5,
                fmm_backend="fmmlib"
                )

        places = GeometryCollection(qbx)
        density_discr = places.get_discretization(places.auto_source.geometry)

        from sumpy.kernel import LaplaceKernel
        knl = LaplaceKernel(3)

        def nxcurlS(qbx_forced_limit):

            return sym.n_cross(sym.curl(sym.S(
                knl,
                sym.cse(sym.tangential_to_xyz(density_sym), "jxyz"),
                qbx_forced_limit=qbx_forced_limit)))

        from meshmode.dof_array import thaw
        x, y, z = thaw(actx, density_discr.nodes())
        m = actx.np

        if relation == "nxcurls":
            density_sym = sym.make_sym_vector("density", 2)

            jump_identity_sym = (
                    nxcurlS(+1)
                    - (nxcurlS("avg") + 0.5*sym.tangential_to_xyz(density_sym)))

            # The tangential coordinate system is element-local, so we can't just
            # conjure up some globally smooth functions, interpret their values
            # in the tangential coordinate system, and be done. Instead, generate
            # an XYZ function and project it.
            density = bind(places,
                    sym.xyz_to_tangential(sym.make_sym_vector("jxyz", 3)))(
                            actx,
                            jxyz=sym.make_obj_array([
                                m.cos(0.5*x) * m.cos(0.5*y) * m.cos(0.5*z),
                                m.sin(0.5*x) * m.cos(0.5*y) * m.sin(0.5*z),
                                m.sin(0.5*x) * m.cos(0.5*y) * m.cos(0.5*z),
                                ]))

        elif relation == "sp":

            density = m.cos(2*x) * m.cos(2*y) * m.cos(z)
            density_sym = sym.var("density")

            jump_identity_sym = (
                    sym.Sp(knl, density_sym, qbx_forced_limit=+1)
                    - (sym.Sp(knl, density_sym, qbx_forced_limit="avg")
                        - 0.5*density_sym))

        elif relation == "div_s":

            density = m.cos(2*x) * m.cos(2*y) * m.cos(z)
            density_sym = sym.var("density")

            jump_identity_sym = (
                    sym.div(sym.S(knl, sym.normal(3).as_vector()*density_sym,
                        qbx_forced_limit="avg"))
                    + sym.D(knl, density_sym, qbx_forced_limit="avg"))

        else:
            raise ValueError("unexpected value of 'relation': %s" % relation)

        bound_jump_identity = bind(places, jump_identity_sym)
        jump_identity = bound_jump_identity(actx, density=density)

        h_max = bind(places, sym.h_max(qbx.ambient_dim))(actx)
        err = (
                norm(density_discr, jump_identity, np.inf)
                / norm(density_discr, density, np.inf))
        print("ERROR", h_max, err)

        eoc_rec.add_data_point(h_max, err)

        # {{{ visualization

        if visualize and relation == "nxcurls":
            nxcurlS_ext = bind(places, nxcurlS(+1))(actx, density=density)
            nxcurlS_avg = bind(places, nxcurlS("avg"))(actx, density=density)
            jtxyz = bind(places, sym.tangential_to_xyz(density_sym))(
                    actx, density=density)

            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(actx, qbx.density_discr, target_order+3)

            bdry_normals = bind(places, sym.normal(3))(actx)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % nel_factor, [
                ("jt", jtxyz),
                ("nxcurlS_ext", nxcurlS_ext),
                ("nxcurlS_avg", nxcurlS_avg),
                ("bdry_normals", bdry_normals),
                ])

        if visualize and relation == "sp":
            op = sym.Sp(knl, density_sym, qbx_forced_limit=+1)
            sp_ext = bind(places, op)(actx, density=density)
            op = sym.Sp(knl, density_sym, qbx_forced_limit="avg")
            sp_avg = bind(places, op)(actx, density=density)

            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(actx, qbx.density_discr, target_order+3)

            bdry_normals = bind(places,
                    sym.normal(3))(actx).as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % nel_factor, [
                ("density", density),
                ("sp_ext", sp_ext),
                ("sp_avg", sp_avg),
                ("bdry_normals", bdry_normals),
                ])

        # }}}

    print(eoc_rec)

    assert eoc_rec.order_estimate() >= qbx_order - 1.5
Ejemplo n.º 23
0
    """For (say) is_interior=False (the 'exterior' MFIE), this test verifies
    extinction of the combined (incoming + scattered) field on the interior
    of the scatterer.
    """
    logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)

    np.random.seed(12)

    knl_kwargs = {"k": case.k}

    # {{{ come up with a solution to Maxwell's equations

    j_sym = sym.make_sym_vector("j", 3)
    jt_sym = sym.make_sym_vector("jt", 2)
    rho_sym = sym.var("rho")

    from pytential.symbolic.pde.maxwell import (PECChargeCurrentMFIEOperator,
                                                get_sym_maxwell_point_source,
                                                get_sym_maxwell_plane_wave)
    mfie = PECChargeCurrentMFIEOperator()

    test_source = case.get_source(queue)

    calc_patch = CalculusPatch(np.array([-3, 0, 0]), h=0.01)
    calc_patch_tgt = PointsTarget(cl.array.to_device(queue, calc_patch.points))

    rng = cl.clrandom.PhiloxGenerator(cl_ctx, seed=12)
    src_j = rng.normal(queue, (3, test_source.nnodes), dtype=np.float64)
Ejemplo n.º 24
0
def nonlocal_integral_eq(
    mesh,
    scatterer_bdy_id,
    outer_bdy_id,
    wave_number,
    options_prefix=None,
    solver_parameters=None,
    fspace=None,
    vfspace=None,
    true_sol_grad=None,
    queue=None,
    fspace_analog=None,
    qbx_kwargs=None,
):
    r"""
        see run_method for descriptions of unlisted args

        args:

        :arg queue: A command queue for the computing context

        gamma and beta are used to precondition
        with the following equation:

        \Delta u - \kappa^2 \gamma u = 0
        (\partial_n - i\kappa\beta) u |_\Sigma = 0
    """
    with_refinement = True
    # away from the excluded region, but firedrake and meshmode point
    # into
    pyt_inner_normal_sign = -1

    ambient_dim = mesh.geometric_dimension()

    # {{{ Create operator
    from pytential import sym
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * sym.grad(
        ambient_dim,
        sym.D(HelmholtzKernel(ambient_dim),
              sym.var("u"),
              k=sym.var("k"),
              qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
    """
    op = pyt_inner_normal_sign * 1j * sym.var("k") * (sym.D(
        HelmholtzKernel(ambient_dim),
        sym.var("u"),
        k=sym.var("k"),
        qbx_forced_limit=None))

    pyt_grad_op = fd2mm.fd_bind(
        queue.context,
        fspace_analog,
        grad_op,
        source=(fspace, scatterer_bdy_id),
        target=(vfspace, outer_bdy_id),
        with_refinement=with_refinement,
        qbx_kwargs=qbx_kwargs,
    )

    pyt_op = fd2mm.fd_bind(
        queue.context,
        fspace_analog,
        op,
        source=(fspace, scatterer_bdy_id),
        target=(fspace, outer_bdy_id),
        with_refinement=with_refinement,
        qbx_kwargs=qbx_kwargs,
    )

    # }}}

    class MatrixFreeB(object):
        def __init__(self, A, pyt_grad_op, pyt_op, queue, kappa):
            """
            :arg kappa: The wave number
            """

            self.queue = queue
            self.k = kappa
            self.pyt_op = pyt_op
            self.pyt_grad_op = pyt_grad_op
            self.A = A

            # {{{ Create some functions needed for multing
            self.x_fntn = Function(fspace)

            self.potential_int = Function(fspace)
            self.potential_int.dat.data[:] = 0.0
            self.grad_potential_int = Function(vfspace)
            self.grad_potential_int.dat.data[:] = 0.0
            self.pyt_result = Function(fspace)

            self.n = FacetNormal(mesh)
            self.v = TestFunction(fspace)
            # }}}

        def mult(self, mat, x, y):
            # Perform pytential operation
            self.x_fntn.dat.data[:] = x[:]

            self.pyt_op(self.queue,
                        self.potential_int,
                        u=self.x_fntn,
                        k=self.k)
            self.pyt_grad_op(self.queue,
                             self.grad_potential_int,
                             u=self.x_fntn,
                             k=self.k)

            # Integrate the potential
            r"""
            Compute the inner products using firedrake. Note this
            will be subtracted later, hence appears off by a sign.

            .. math::

                \langle
                    n(x) \cdot \nabla(
                        \int_\Gamma(
                            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                        )d\gamma(y)
                    ), v
                \rangle_\Sigma
                - \langle
                    i \kappa \cdot
                    \int_\Gamma(
                        u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                    )d\gamma(y), v
                \rangle_\Sigma
            """
            self.pyt_result = assemble(
                inner(inner(self.grad_potential_int, self.n), self.v) *
                ds(outer_bdy_id) -
                inner(self.potential_int, self.v) * ds(outer_bdy_id))

            # y <- Ax - evaluated potential
            self.A.mult(x, y)
            with self.pyt_result.dat.vec_ro as ep:
                y.axpy(-1, ep)

    # {{{ Compute normal helmholtz operator
    u = TrialFunction(fspace)
    v = TestFunction(fspace)
    r"""
    .. math::

        \langle
            \nabla u, \nabla v
        \rangle
        - \kappa^2 \cdot \langle
            u, v
        \rangle
        - i \kappa \langle
            u, v
        \rangle_\Sigma
    """
    a = inner(grad(u), grad(v)) * dx \
        - Constant(wave_number**2) * inner(u, v) * dx \
        - Constant(1j * wave_number) * inner(u, v) * ds(outer_bdy_id)

    # get the concrete matrix from a general bilinear form
    A = assemble(a).M.handle
    # }}}

    # {{{ Setup Python matrix
    B = PETSc.Mat().create()

    # build matrix context
    Bctx = MatrixFreeB(A, pyt_grad_op, pyt_op, queue, wave_number)

    # set up B as same size as A
    B.setSizes(*A.getSizes())

    B.setType(B.Type.PYTHON)
    B.setPythonContext(Bctx)
    B.setUp()
    # }}}

    # {{{ Create rhs

    # Remember f is \partial_n(true_sol)|_\Gamma
    # so we just need to compute \int_\Gamma\partial_n(true_sol) H(x-y)
    from pytential import sym

    sigma = sym.make_sym_vector("sigma", ambient_dim)
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * \
        sym.grad(ambient_dim, sym.S(HelmholtzKernel(ambient_dim),
                                    sym.n_dot(sigma),
                                    k=sym.var("k"), qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            f(y) H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
        )
    """
    op = 1j * sym.var("k") * pyt_inner_normal_sign * \
        sym.S(HelmholtzKernel(ambient_dim),
              sym.n_dot(sigma),
              k=sym.var("k"),
              qbx_forced_limit=None)

    rhs_grad_op = fd2mm.fd_bind(
        queue.context,
        fspace_analog,
        grad_op,
        source=(vfspace, scatterer_bdy_id),
        target=(vfspace, outer_bdy_id),
        with_refinement=with_refinement,
        qbx_kwargs=qbx_kwargs,
    )
    rhs_op = fd2mm.fd_bind(
        queue.context,
        fspace_analog,
        op,
        source=(vfspace, scatterer_bdy_id),
        target=(fspace, outer_bdy_id),
        with_refinement=with_refinement,
        qbx_kwargs=qbx_kwargs,
    )

    f_grad_convoluted = Function(vfspace)
    f_convoluted = Function(fspace)
    rhs_grad_op(queue, f_grad_convoluted, sigma=true_sol_grad, k=wave_number)
    rhs_op(queue, f_convoluted, sigma=true_sol_grad, k=wave_number)
    r"""
        \langle
            f, v
        \rangle_\Gamma
        + \langle
            i \kappa \cdot \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y), v
        \rangle_\Sigma
        - \langle
            n(x) \cdot \nabla(
                \int_\Gamma(
                    f(y) H_0^{(1)}(\kappa |x - y|)
                )d\gamma(y)
            ), v
        \rangle_\Sigma
    """
    rhs_form = inner(inner(true_sol_grad, FacetNormal(mesh)),
                     v) * ds(scatterer_bdy_id) \
        + inner(f_convoluted, v) * ds(outer_bdy_id) \
        - inner(inner(f_grad_convoluted, FacetNormal(mesh)),
                v) * ds(outer_bdy_id)

    rhs = assemble(rhs_form)

    # {{{ set up a solver:
    solution = Function(fspace, name="Computed Solution")

    #       {{{ Used for preconditioning
    if 'gamma' in solver_parameters or 'beta' in solver_parameters:
        gamma = complex(solver_parameters.pop('gamma', 1.0))

        import cmath
        beta = complex(solver_parameters.pop('beta', cmath.sqrt(gamma)))

        p = inner(grad(u), grad(v)) * dx \
            - Constant(wave_number**2 * gamma) * inner(u, v) * dx \
            - Constant(1j * wave_number * beta) * inner(u, v) * ds(outer_bdy_id)
        P = assemble(p).M.handle

    else:
        P = A
    #       }}}

    # Set up options to contain solver parameters:
    ksp = PETSc.KSP().create()
    if solver_parameters['pc_type'] == 'pyamg':
        del solver_parameters['pc_type']  # We are using the AMG preconditioner

        pyamg_tol = solver_parameters.get('pyamg_tol', None)
        if pyamg_tol is not None:
            pyamg_tol = float(pyamg_tol)
        pyamg_maxiter = solver_parameters.get('pyamg_maxiter', None)
        if pyamg_maxiter is not None:
            pyamg_maxiter = int(pyamg_maxiter)
        ksp.setOperators(B)
        ksp.setUp()
        pc = ksp.pc
        pc.setType(pc.Type.PYTHON)
        pc.setPythonContext(
            AMGTransmissionPreconditioner(wave_number,
                                          fspace,
                                          A,
                                          tol=pyamg_tol,
                                          maxiter=pyamg_maxiter,
                                          use_plane_waves=True))
    # Otherwise use regular preconditioner
    else:
        ksp.setOperators(B, P)

    options_manager = OptionsManager(solver_parameters, options_prefix)
    options_manager.set_from_options(ksp)

    with rhs.dat.vec_ro as b:
        with solution.dat.vec as x:
            ksp.solve(b, x)
    # }}}

    return ksp, solution
Ejemplo n.º 25
0
def test_greens_formula(degree, family, ambient_dim):

    fine_order = 4 * degree
    # Parameter to tune accuracy of pytential
    fmm_order = 5
    # This should be (order of convergence = qbx_order + 1)
    qbx_order = degree
    with_refinement = True

    qbx_kwargs = {
        'fine_order': fine_order,
        'fmm_order': fmm_order,
        'qbx_order': qbx_order
    }

    if ambient_dim == 2:
        mesh = mesh2d
        r"""
        ..math:

            \ln(\sqrt{(x+1)^2 + (y+1)^2})

        i.e. a shift of the fundamental solution
        """
        x, y = fd.SpatialCoordinate(mesh)
        expr = fd.ln(fd.sqrt((x + 2)**2 + (y + 2)**2))
    elif ambient_dim == 3:
        mesh = mesh3d
        x, y, z = fd.SpatialCoordinate(mesh)
        r"""
        ..math:

            \f{1}{4\pi \sqrt{(x-2)^2 + (y-2)^2 + (z-2)^2)}}

        i.e. a shift of the fundamental solution
        """
        expr = fd.Constant(1 / 4 / fd.pi) * 1 / fd.sqrt((x - 2)**2 +
                                                        (y - 2)**2 +
                                                        (z - 2)**2)
    else:
        raise ValueError("Ambient dimension must be 2 or 3, not %s" %
                         ambient_dim)

    # Let's compute some layer potentials!
    V = fd.FunctionSpace(mesh, family, degree)
    Vdim = fd.VectorFunctionSpace(mesh, family, degree)

    mesh_analog = fd2mm.MeshAnalog(mesh)
    fspace_analog = fd2mm.FunctionSpaceAnalog(cl_ctx, mesh_analog, V)

    true_sol = fd.Function(V).interpolate(expr)
    grad_true_sol = fd.Function(Vdim).interpolate(fd.grad(expr))

    # Let's create an operator which plugs in f, \partial_n f
    # to Green's formula

    sigma = sym.make_sym_vector("sigma", ambient_dim)
    op = -(sym.D(
        LaplaceKernel(ambient_dim), sym.var("u"), qbx_forced_limit=None) -
           sym.S(LaplaceKernel(ambient_dim),
                 sym.n_dot(sigma),
                 qbx_forced_limit=None))

    from meshmode.mesh import BTAG_ALL
    outer_bdy_id = BTAG_ALL

    # Think of this like :mod:`pytential`'s :function:`bind`
    pyt_op = fd2mm.fd_bind(cl_ctx,
                           fspace_analog,
                           op,
                           source=(V, outer_bdy_id),
                           target=V,
                           qbx_kwargs=qbx_kwargs,
                           with_refinement=with_refinement)

    # Compute the operation and store in result
    result = fd.Function(V)

    pyt_op(queue, u=true_sol, sigma=grad_true_sol, result_function=result)

    # Compare with f
    fnorm = fd.sqrt(fd.assemble(fd.inner(true_sol, true_sol) * fd.dx))
    l2_err = fd.sqrt(
        fd.assemble(fd.inner(true_sol - result, true_sol - result) * fd.dx))
    rel_l2_err = l2_err / fnorm

    # TODO: Make this more strict
    assert rel_l2_err < 0.09
Ejemplo n.º 26
0
def main():
    # cl.array.to_device(queue, numpy_array)
    from meshmode.mesh.io import generate_gmsh, FileSource
    mesh = generate_gmsh(
            FileSource("ellipsoid.step"), 2, order=2,
            other_options=["-string", "Mesh.CharacteristicLengthMax = %g;" % h])

    from meshmode.mesh.processing import perform_flips
    # Flip elements--gmsh generates inside-out geometry.
    mesh = perform_flips(mesh, np.ones(mesh.nelements))

    print("%d elements" % mesh.nelements)

    from meshmode.mesh.processing import find_bounding_box
    bbox_min, bbox_max = find_bounding_box(mesh)
    bbox_center = 0.5*(bbox_min+bbox_max)
    bbox_size = max(bbox_max-bbox_min) / 2

    logger.info("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
            cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order,
            fmm_order=qbx_order + 10, fmm_backend="fmmlib")

    from pytential.symbolic.pde.maxwell import MuellerAugmentedMFIEOperator
    pde_op = MuellerAugmentedMFIEOperator(
            omega=0.4,
            epss=[1.4, 1.0],
            mus=[1.2, 1.0],
            )
    from pytential import bind, sym

    unk = pde_op.make_unknown("sigma")
    sym_operator = pde_op.operator(unk)
    sym_rhs = pde_op.rhs(
            sym.make_sym_vector("Einc", 3),
            sym.make_sym_vector("Hinc", 3))
    sym_repr = pde_op.representation(0, unk)

    if 1:
        expr = sym_repr
        print(sym.pretty(expr))

        print("#"*80)
        from pytential.target import PointsTarget

        tgt_points=np.zeros((3,1))
        tgt_points[0,0] = 100
        tgt_points[1,0] = -200
        tgt_points[2,0] = 300

        bound_op = bind((qbx, PointsTarget(tgt_points)), expr)
        print(bound_op.code)

    if 1:

        def green3e(x,y,z,source,strength,k):
        # electric field corresponding to dyadic green's function
        # due to monochromatic electric dipole located at "source".
        # "strength" is the the intensity of the dipole.
        #  E = (I + Hess)(exp(ikr)/r) dot (strength)
        #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout = np.exp(1j*k*rr)/rr
            evec = fout*strength
            qmat = np.zeros((3,3),dtype=np.complex128)

            qmat[0,0]=(2*dx**2-dy**2-dz**2)*(1-1j*k*rr)
            qmat[1,1]=(2*dy**2-dz**2-dx**2)*(1-1j*k*rr)
            qmat[2,2]=(2*dz**2-dx**2-dy**2)*(1-1j*k*rr)

            qmat[0,0]=qmat[0,0]+(-k**2*dx**2*rr**2)
            qmat[1,1]=qmat[1,1]+(-k**2*dy**2*rr**2)
            qmat[2,2]=qmat[2,2]+(-k**2*dz**2*rr**2)

            qmat[0,1]=(3-k**2*rr**2-3*1j*k*rr)*(dx*dy)
            qmat[1,2]=(3-k**2*rr**2-3*1j*k*rr)*(dy*dz)
            qmat[2,0]=(3-k**2*rr**2-3*1j*k*rr)*(dz*dx)

            qmat[1,0]=qmat[0,1]
            qmat[2,1]=qmat[1,2]
            qmat[0,2]=qmat[2,0]

            fout=np.exp(1j*k*rr)/rr**5/k**2

            fvec = fout*np.dot(qmat,strength)
            evec = evec + fvec
            return evec

        def green3m(x,y,z,source,strength,k):
        # magnetic field corresponding to dyadic green's function
        # due to monochromatic electric dipole located at "source".
        # "strength" is the the intensity of the dipole.
        #  H = curl((I + Hess)(exp(ikr)/r) dot (strength)) = 
        #  strength \cross \grad (exp(ikr)/r)
        #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout=(1-1j*k*rr)*np.exp(1j*k*rr)/rr**3
            fvec = np.zeros(3,dtype=np.complex128)
            fvec[0] = fout*dx
            fvec[1] = fout*dy
            fvec[2] = fout*dz

            hvec = np.cross(strength,fvec)

            return hvec

        def dipole3e(x,y,z,source,strength,k):
        #
        #  evalaute electric and magnetic field due
        #  to monochromatic electric dipole located at "source"
        #  with intensity "strength"

            evec = green3e(x,y,z,source,strength,k)
            evec = evec*1j*k
            hvec = green3m(x,y,z,source,strength,k)
            return evec,hvec
            
        def dipole3m(x,y,z,source,strength,k):
        #
        #  evalaute electric and magnetic field due
        #  to monochromatic magnetic dipole located at "source"
        #  with intensity "strength"
            evec = green3m(x,y,z,source,strength,k)
            hvec = green3e(x,y,z,source,strength,k)
            hvec = -hvec*1j*k
            return evec,hvec
            

        def dipole3eall(x,y,z,sources,strengths,k):
            ns = len(strengths)
            evec = np.zeros(3,dtype=np.complex128)
            hvec = np.zeros(3,dtype=np.complex128)

            for i in range(ns):
                evect,hvect = dipole3e(x,y,z,sources[i],strengths[i],k)
                evec = evec + evect
                hvec = hvec + hvect

        nodes = density_discr.nodes().with_queue(queue).get()
        source = [0.01,-0.03,0.02]
#        source = cl.array.to_device(queue,np.zeros(3))
#        source[0] = 0.01
#        source[1] =-0.03
#        source[2] = 0.02
        strength = np.ones(3)
       
#        evec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))
#        hvec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))

        evec = np.zeros((3,len(nodes[0])),dtype=np.complex128)
        hvec = np.zeros((3,len(nodes[0])),dtype=np.complex128)
        for i in range(len(nodes[0])):
            evec[:,i],hvec[:,i] = dipole3e(nodes[0][i],nodes[1][i],nodes[2][i],source,strength,k)
        print(np.shape(hvec))
        print(type(evec))
        print(type(hvec))

        evec = cl.array.to_device(queue,evec)
        hvec = cl.array.to_device(queue,hvec)

        bvp_rhs = bind(qbx, sym_rhs)(queue,Einc=evec,Hinc=hvec)
        print(np.shape(bvp_rhs))
        print(type(bvp_rhs))
#        print(bvp_rhs)
        1/-1

        bound_op = bind(qbx, sym_operator)

        from pytential.solve import gmres
        if 0:
            gmres_result = gmres(
                bound_op.scipy_op(queue, "sigma", dtype=np.complex128, k=k),
                bvp_rhs, tol=1e-8, progress=True,
                stall_iterations=0,
                hard_failure=True)

            sigma = gmres_result.solution

        fld_at_tgt = bind((qbx, PointsTarget(tgt_points)), sym_repr)(queue,
        sigma=bvp_rhs,k=k)
        fld_at_tgt = np.array([
            fi.get() for fi in fld_at_tgt
            ])
        print(fld_at_tgt)
        1/0

    # }}}

    #mlab.figure(bgcolor=(1, 1, 1))
    if 1:
        from meshmode.discretization.visualization import make_visualizer
        bdry_vis = make_visualizer(queue, density_discr, target_order)

        bdry_normals = bind(density_discr, sym.normal(3))(queue)\
                .as_vector(dtype=object)

        bdry_vis.write_vtk_file("source.vtu", [
            ("sigma", sigma),
            ("bdry_normals", bdry_normals),
            ])

        fplot = FieldPlotter(bbox_center, extent=2*bbox_size, npoints=(150, 150, 1))

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.1)
        from pytential.target import PointsTarget
        from pytential.qbx import QBXTargetAssociationFailedException

        rho_sym = sym.var("rho")

        try:
            fld_in_vol = bind(
                    (qbx_tgt_tol, PointsTarget(fplot.points)),
                    sym.make_obj_array([
                        sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None),
                        sym.d_dx(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None)),
                        sym.d_dy(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None)),
                        sym.d_dz(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None)),
                        ])
                    )(queue, jt=jt, rho=rho, k=k)
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                    "failed-targets.vts",
                    [
                        ("failed_targets", e.failed_target_flags.get(queue))
                        ])
            raise

        fld_in_vol = sym.make_obj_array(
            [fiv.get() for fiv in fld_in_vol])

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file(
                "potential.vts",
                [
                    ("potential", fld_in_vol[0]),
                    ("grad", fld_in_vol[1:]),
                    ]
                )
Ejemplo n.º 27
0
def test_3d_jump_relations(actx_factory, relation, visualize=False):
    # logging.basicConfig(level=logging.INFO)
    actx = actx_factory()

    if relation == "div_s":
        target_order = 3
    else:
        target_order = 4

    qbx_order = target_order

    if relation == "sp":
        resolutions = [10, 14, 18]
    else:
        resolutions = [6, 10, 14]

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    for nel_factor in resolutions:
        from meshmode.mesh.generation import generate_torus
        mesh = generate_torus(
            5,
            2,
            n_major=2 * nel_factor,
            n_minor=nel_factor,
            order=target_order,
        )

        from meshmode.discretization import Discretization
        from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
        pre_density_discr = Discretization(
            actx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(target_order))

        from pytential.qbx import QBXLayerPotentialSource
        qbx = QBXLayerPotentialSource(pre_density_discr,
                                      fine_order=5 * target_order,
                                      qbx_order=qbx_order,
                                      fmm_order=qbx_order + 5,
                                      fmm_backend="fmmlib")

        places = GeometryCollection(qbx)
        density_discr = places.get_discretization(places.auto_source.geometry)

        from sumpy.kernel import LaplaceKernel
        knl = LaplaceKernel(places.ambient_dim)

        def nxcurlS(qbx_forced_limit):
            sigma_sym = sym.cse(sym.tangential_to_xyz(density_sym), "jxyz")
            return sym.n_cross(
                sym.curl(
                    sym.S(knl, sigma_sym, qbx_forced_limit=qbx_forced_limit)))

        x, y, z = thaw(density_discr.nodes(), actx)
        if relation == "nxcurls":
            density_sym = sym.make_sym_vector("density", 2)
            jump_identity_sym = (nxcurlS(+1) - nxcurlS("avg") -
                                 0.5 * sym.tangential_to_xyz(density_sym))

            # The tangential coordinate system is element-local, so we can't just
            # conjure up some globally smooth functions, interpret their values
            # in the tangential coordinate system, and be done. Instead, generate
            # an XYZ function and project it.
            jxyz = sym.make_obj_array([
                actx.np.cos(0.5 * x) * actx.np.cos(0.5 * y) *
                actx.np.cos(0.5 * z),
                actx.np.sin(0.5 * x) * actx.np.cos(0.5 * y) *
                actx.np.sin(0.5 * z),
                actx.np.sin(0.5 * x) * actx.np.cos(0.5 * y) *
                actx.np.cos(0.5 * z),
            ])
            density = bind(
                places,
                sym.xyz_to_tangential(sym.make_sym_vector("jxyz",
                                                          3)))(actx, jxyz=jxyz)

        elif relation == "sp":
            density_sym = sym.var("density")
            jump_identity_sym = (
                0.5 * density_sym +
                sym.Sp(knl, density_sym, qbx_forced_limit=+1) -
                sym.Sp(knl, density_sym, qbx_forced_limit="avg"))

            density = actx.np.cos(2 * x) * actx.np.cos(2 * y) * actx.np.cos(z)

        elif relation == "div_s":
            density_sym = sym.var("density")
            sigma_sym = sym.normal(
                places.ambient_dim).as_vector() * density_sym
            jump_identity_sym = (
                sym.div(sym.S(knl, sigma_sym, qbx_forced_limit="avg")) +
                sym.D(knl, density_sym, qbx_forced_limit="avg"))

            density = actx.np.cos(2 * x) * actx.np.cos(2 * y) * actx.np.cos(z)

        else:
            raise ValueError(f"unexpected value of 'relation': '{relation}'")

        bound_jump_identity = bind(places, jump_identity_sym)
        jump_identity = bound_jump_identity(actx, density=density)

        h_max = actx.to_numpy(
            bind(places, sym.h_max(places.ambient_dim))(actx))
        err = actx.to_numpy(
            norm(density_discr, jump_identity, np.inf) /
            norm(density_discr, density, np.inf))
        eoc_rec.add_data_point(h_max, err)

        logging.info("error: nel %d h_max %.5e %.5e", nel_factor, h_max, err)

        # {{{ visualization

        if not visualize:
            continue

        from meshmode.discretization.visualization import make_visualizer
        vis = make_visualizer(actx, density_discr, target_order)
        normals = bind(places,
                       sym.normal(places.ambient_dim).as_vector())(actx)
        error = actx.np.log10(actx.np.abs(jump_identity) + 1.0e-15)

        if relation == "nxcurls":
            nxcurlS_ext = bind(places, nxcurlS(+1))(actx, density=density)
            nxcurlS_avg = bind(places, nxcurlS("avg"))(actx, density=density)
            jtxyz = bind(places,
                         sym.tangential_to_xyz(density_sym))(actx,
                                                             density=density)

            vis.write_vtk_file(f"source-nxcurls-{nel_factor:03d}.vtu", [
                ("jt", jtxyz),
                ("nxcurlS_ext", nxcurlS_ext),
                ("nxcurlS_avg", nxcurlS_avg),
                ("bdry_normals", normals),
                ("error", error),
            ])

        elif relation == "sp":
            op = sym.Sp(knl, density_sym, qbx_forced_limit=+1)
            sp_ext = bind(places, op)(actx, density=density)
            op = sym.Sp(knl, density_sym, qbx_forced_limit="avg")
            sp_avg = bind(places, op)(actx, density=density)

            vis.write_vtk_file(f"source-sp-{nel_factor:03d}.vtu", [
                ("density", density),
                ("sp_ext", sp_ext),
                ("sp_avg", sp_avg),
                ("bdry_normals", normals),
                ("error", error),
            ])

        elif relation == "div_s":
            vis.write_vtk_file(f"source-div-{nel_factor:03d}.vtu", [
                ("density", density),
                ("bdry_normals", normals),
                ("error", error),
            ])

        # }}}

    logger.info("\n%s", str(eoc_rec))
    assert eoc_rec.order_estimate() >= qbx_order - 1.5
Ejemplo n.º 28
0
def nonlocal_integral_eq(
    mesh,
    scatterer_bdy_id,
    outer_bdy_id,
    wave_number,
    options_prefix=None,
    solver_parameters=None,
    fspace=None,
    vfspace=None,
    true_sol_grad_expr=None,
    actx=None,
    dgfspace=None,
    dgvfspace=None,
    meshmode_src_connection=None,
    qbx_kwargs=None,
):
    r"""
        see run_method for descriptions of unlisted args

        args:

        gamma and beta are used to precondition
        with the following equation:

        \Delta u - \kappa^2 \gamma u = 0
        (\partial_n - i\kappa\beta) u |_\Sigma = 0
    """
    # make sure we get outer bdy id as tuple in case it consists of multiple ids
    if isinstance(outer_bdy_id, int):
        outer_bdy_id = [outer_bdy_id]
    outer_bdy_id = tuple(outer_bdy_id)
    # away from the excluded region, but firedrake and meshmode point
    # into
    pyt_inner_normal_sign = -1

    ambient_dim = mesh.geometric_dimension()

    # {{{ Build src and tgt

    # build connection meshmode near src boundary -> src boundary inside meshmode
    from meshmode.discretization.poly_element import \
        InterpolatoryQuadratureSimplexGroupFactory
    from meshmode.discretization.connection import make_face_restriction
    factory = InterpolatoryQuadratureSimplexGroupFactory(
        dgfspace.finat_element.degree)
    src_bdy_connection = make_face_restriction(actx,
                                               meshmode_src_connection.discr,
                                               factory, scatterer_bdy_id)
    # source is a qbx layer potential
    from pytential.qbx import QBXLayerPotentialSource
    disable_refinement = (fspace.mesh().geometric_dimension() == 3)
    qbx = QBXLayerPotentialSource(src_bdy_connection.to_discr,
                                  **qbx_kwargs,
                                  _disable_refinement=disable_refinement)

    # get target indices and point-set
    target_indices, target = get_target_points_and_indices(
        fspace, outer_bdy_id)

    # }}}

    # build the operations
    from pytential import bind, sym
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * sym.grad(
        ambient_dim,
        sym.D(HelmholtzKernel(ambient_dim),
              sym.var("u"),
              k=sym.var("k"),
              qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
    """
    op = pyt_inner_normal_sign * 1j * sym.var("k") * (sym.D(
        HelmholtzKernel(ambient_dim),
        sym.var("u"),
        k=sym.var("k"),
        qbx_forced_limit=None))

    # bind the operations
    pyt_grad_op = bind((qbx, target), grad_op)
    pyt_op = bind((qbx, target), op)

    # }}}

    class MatrixFreeB(object):
        def __init__(self, A, pyt_grad_op, pyt_op, actx, kappa):
            """
            :arg kappa: The wave number
            """

            self.actx = actx
            self.k = kappa
            self.pyt_op = pyt_op
            self.pyt_grad_op = pyt_grad_op
            self.A = A
            self.meshmode_src_connection = meshmode_src_connection

            # {{{ Create some functions needed for multing
            self.x_fntn = Function(fspace)

            # CG
            self.potential_int = Function(fspace)
            self.potential_int.dat.data[:] = 0.0
            self.grad_potential_int = Function(vfspace)
            self.grad_potential_int.dat.data[:] = 0.0
            self.pyt_result = Function(fspace)

            self.n = FacetNormal(mesh)
            self.v = TestFunction(fspace)

            # some meshmode ones
            self.x_mm_fntn = self.meshmode_src_connection.discr.empty(
                self.actx, dtype='c')

            # }}}

        def mult(self, mat, x, y):
            # Copy function data into the fivredrake function
            self.x_fntn.dat.data[:] = x[:]
            # Transfer the function to meshmode
            self.meshmode_src_connection.from_firedrake(project(
                self.x_fntn, dgfspace),
                                                        out=self.x_mm_fntn)
            # Restrict to boundary
            x_mm_fntn_on_bdy = src_bdy_connection(self.x_mm_fntn)

            # Apply the operation
            potential_int_mm = self.pyt_op(self.actx,
                                           u=x_mm_fntn_on_bdy,
                                           k=self.k)
            grad_potential_int_mm = self.pyt_grad_op(self.actx,
                                                     u=x_mm_fntn_on_bdy,
                                                     k=self.k)
            # Store in firedrake
            self.potential_int.dat.data[target_indices] = potential_int_mm.get(
            )
            for dim in range(grad_potential_int_mm.shape[0]):
                self.grad_potential_int.dat.data[
                    target_indices, dim] = grad_potential_int_mm[dim].get()

            # Integrate the potential
            r"""
            Compute the inner products using firedrake. Note this
            will be subtracted later, hence appears off by a sign.

            .. math::

                \langle
                    n(x) \cdot \nabla(
                        \int_\Gamma(
                            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                        )d\gamma(y)
                    ), v
                \rangle_\Sigma
                - \langle
                    i \kappa \cdot
                    \int_\Gamma(
                        u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                    )d\gamma(y), v
                \rangle_\Sigma
            """
            self.pyt_result = assemble(
                inner(inner(self.grad_potential_int, self.n), self.v) *
                ds(outer_bdy_id) -
                inner(self.potential_int, self.v) * ds(outer_bdy_id))

            # y <- Ax - evaluated potential
            self.A.mult(x, y)
            with self.pyt_result.dat.vec_ro as ep:
                y.axpy(-1, ep)

    # {{{ Compute normal helmholtz operator
    u = TrialFunction(fspace)
    v = TestFunction(fspace)
    r"""
    .. math::

        \langle
            \nabla u, \nabla v
        \rangle
        - \kappa^2 \cdot \langle
            u, v
        \rangle
        - i \kappa \langle
            u, v
        \rangle_\Sigma
    """
    a = inner(grad(u), grad(v)) * dx \
        - Constant(wave_number**2) * inner(u, v) * dx \
        - Constant(1j * wave_number) * inner(u, v) * ds(outer_bdy_id)

    # get the concrete matrix from a general bilinear form
    A = assemble(a).M.handle
    # }}}

    # {{{ Setup Python matrix
    B = PETSc.Mat().create()

    # build matrix context
    Bctx = MatrixFreeB(A, pyt_grad_op, pyt_op, actx, wave_number)

    # set up B as same size as A
    B.setSizes(*A.getSizes())

    B.setType(B.Type.PYTHON)
    B.setPythonContext(Bctx)
    B.setUp()
    # }}}

    # {{{ Create rhs

    # Remember f is \partial_n(true_sol)|_\Gamma
    # so we just need to compute \int_\Gamma\partial_n(true_sol) H(x-y)

    sigma = sym.make_sym_vector("sigma", ambient_dim)
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * \
        sym.grad(ambient_dim, sym.S(HelmholtzKernel(ambient_dim),
                                    sym.n_dot(sigma),
                                    k=sym.var("k"), qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            f(y) H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
        )
    """
    op = 1j * sym.var("k") * pyt_inner_normal_sign * \
        sym.S(HelmholtzKernel(ambient_dim),
              sym.n_dot(sigma),
              k=sym.var("k"),
              qbx_forced_limit=None)

    rhs_grad_op = bind((qbx, target), grad_op)
    rhs_op = bind((qbx, target), op)

    # Transfer to meshmode
    metadata = {'quadrature_degree': 2 * fspace.ufl_element().degree()}
    dg_true_sol_grad = project(true_sol_grad_expr,
                               dgvfspace,
                               form_compiler_parameters=metadata)
    true_sol_grad_mm = meshmode_src_connection.from_firedrake(dg_true_sol_grad,
                                                              actx=actx)
    true_sol_grad_mm = src_bdy_connection(true_sol_grad_mm)
    # Apply the operations
    f_grad_convoluted_mm = rhs_grad_op(actx,
                                       sigma=true_sol_grad_mm,
                                       k=wave_number)
    f_convoluted_mm = rhs_op(actx, sigma=true_sol_grad_mm, k=wave_number)
    # Transfer function back to firedrake
    f_grad_convoluted = Function(vfspace)
    f_convoluted = Function(fspace)
    f_grad_convoluted.dat.data[:] = 0.0
    f_convoluted.dat.data[:] = 0.0

    for dim in range(f_grad_convoluted_mm.shape[0]):
        f_grad_convoluted.dat.data[target_indices,
                                   dim] = f_grad_convoluted_mm[dim].get()
    f_convoluted.dat.data[target_indices] = f_convoluted_mm.get()
    r"""
        \langle
            f, v
        \rangle_\Gamma
        + \langle
            i \kappa \cdot \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y), v
        \rangle_\Sigma
        - \langle
            n(x) \cdot \nabla(
                \int_\Gamma(
                    f(y) H_0^{(1)}(\kappa |x - y|)
                )d\gamma(y)
            ), v
        \rangle_\Sigma
    """
    rhs_form = inner(inner(true_sol_grad_expr, FacetNormal(mesh)),
                     v) * ds(scatterer_bdy_id, metadata=metadata) \
        + inner(f_convoluted, v) * ds(outer_bdy_id) \
        - inner(inner(f_grad_convoluted, FacetNormal(mesh)),
                v) * ds(outer_bdy_id)

    rhs = assemble(rhs_form)

    # {{{ set up a solver:
    solution = Function(fspace, name="Computed Solution")

    #       {{{ Used for preconditioning
    if 'gamma' in solver_parameters or 'beta' in solver_parameters:
        gamma = complex(solver_parameters.pop('gamma', 1.0))

        import cmath
        beta = complex(solver_parameters.pop('beta', cmath.sqrt(gamma)))

        p = inner(grad(u), grad(v)) * dx \
            - Constant(wave_number**2 * gamma) * inner(u, v) * dx \
            - Constant(1j * wave_number * beta) * inner(u, v) * ds(outer_bdy_id)
        P = assemble(p).M.handle

    else:
        P = A
    #       }}}

    # Set up options to contain solver parameters:
    ksp = PETSc.KSP().create()
    if solver_parameters['pc_type'] == 'pyamg':
        del solver_parameters['pc_type']  # We are using the AMG preconditioner

        pyamg_tol = solver_parameters.get('pyamg_tol', None)
        if pyamg_tol is not None:
            pyamg_tol = float(pyamg_tol)
        pyamg_maxiter = solver_parameters.get('pyamg_maxiter', None)
        if pyamg_maxiter is not None:
            pyamg_maxiter = int(pyamg_maxiter)
        ksp.setOperators(B)
        ksp.setUp()
        pc = ksp.pc
        pc.setType(pc.Type.PYTHON)
        pc.setPythonContext(
            AMGTransmissionPreconditioner(wave_number,
                                          fspace,
                                          A,
                                          tol=pyamg_tol,
                                          maxiter=pyamg_maxiter,
                                          use_plane_waves=True))
    # Otherwise use regular preconditioner
    else:
        ksp.setOperators(B, P)

    options_manager = OptionsManager(solver_parameters, options_prefix)
    options_manager.set_from_options(ksp)

    import petsc4py.PETSc
    petsc4py.PETSc.Sys.popErrorHandler()
    with rhs.dat.vec_ro as b:
        with solution.dat.vec as x:
            ksp.solve(b, x)
    # }}}

    return ksp, solution
Ejemplo n.º 29
0
def main():
    # cl.array.to_device(queue, numpy_array)
    from meshmode.mesh.io import generate_gmsh, FileSource
    mesh = generate_gmsh(
        FileSource("ellipsoid.step"),
        2,
        order=2,
        other_options=["-string",
                       "Mesh.CharacteristicLengthMax = %g;" % h])

    from meshmode.mesh.processing import perform_flips
    # Flip elements--gmsh generates inside-out geometry.
    mesh = perform_flips(mesh, np.ones(mesh.nelements))

    print("%d elements" % mesh.nelements)

    from meshmode.mesh.processing import find_bounding_box
    bbox_min, bbox_max = find_bounding_box(mesh)
    bbox_center = 0.5 * (bbox_min + bbox_max)
    bbox_size = max(bbox_max - bbox_min) / 2

    logger.info("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(density_discr,
                                  4 * target_order,
                                  qbx_order,
                                  fmm_order=qbx_order + 10,
                                  fmm_backend="fmmlib")

    from pytential.symbolic.pde.maxwell import MuellerAugmentedMFIEOperator
    pde_op = MuellerAugmentedMFIEOperator(
        omega=0.4,
        epss=[1.4, 1.0],
        mus=[1.2, 1.0],
    )
    from pytential import bind, sym

    unk = pde_op.make_unknown("sigma")
    sym_operator = pde_op.operator(unk)
    sym_rhs = pde_op.rhs(sym.make_sym_vector("Einc", 3),
                         sym.make_sym_vector("Hinc", 3))
    sym_repr = pde_op.representation(0, unk)

    if 1:
        expr = sym_repr
        print(sym.pretty(expr))

        print("#" * 80)
        from pytential.target import PointsTarget

        tgt_points = np.zeros((3, 1))
        tgt_points[0, 0] = 100
        tgt_points[1, 0] = -200
        tgt_points[2, 0] = 300

        bound_op = bind((qbx, PointsTarget(tgt_points)), expr)
        print(bound_op.code)

    if 1:

        def green3e(x, y, z, source, strength, k):
            # electric field corresponding to dyadic green's function
            # due to monochromatic electric dipole located at "source".
            # "strength" is the the intensity of the dipole.
            #  E = (I + Hess)(exp(ikr)/r) dot (strength)
            #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout = np.exp(1j * k * rr) / rr
            evec = fout * strength
            qmat = np.zeros((3, 3), dtype=np.complex128)

            qmat[0, 0] = (2 * dx**2 - dy**2 - dz**2) * (1 - 1j * k * rr)
            qmat[1, 1] = (2 * dy**2 - dz**2 - dx**2) * (1 - 1j * k * rr)
            qmat[2, 2] = (2 * dz**2 - dx**2 - dy**2) * (1 - 1j * k * rr)

            qmat[0, 0] = qmat[0, 0] + (-k**2 * dx**2 * rr**2)
            qmat[1, 1] = qmat[1, 1] + (-k**2 * dy**2 * rr**2)
            qmat[2, 2] = qmat[2, 2] + (-k**2 * dz**2 * rr**2)

            qmat[0, 1] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dx * dy)
            qmat[1, 2] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dy * dz)
            qmat[2, 0] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dz * dx)

            qmat[1, 0] = qmat[0, 1]
            qmat[2, 1] = qmat[1, 2]
            qmat[0, 2] = qmat[2, 0]

            fout = np.exp(1j * k * rr) / rr**5 / k**2

            fvec = fout * np.dot(qmat, strength)
            evec = evec + fvec
            return evec

        def green3m(x, y, z, source, strength, k):
            # magnetic field corresponding to dyadic green's function
            # due to monochromatic electric dipole located at "source".
            # "strength" is the the intensity of the dipole.
            #  H = curl((I + Hess)(exp(ikr)/r) dot (strength)) =
            #  strength \cross \grad (exp(ikr)/r)
            #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout = (1 - 1j * k * rr) * np.exp(1j * k * rr) / rr**3
            fvec = np.zeros(3, dtype=np.complex128)
            fvec[0] = fout * dx
            fvec[1] = fout * dy
            fvec[2] = fout * dz

            hvec = np.cross(strength, fvec)

            return hvec

        def dipole3e(x, y, z, source, strength, k):
            #
            #  evalaute electric and magnetic field due
            #  to monochromatic electric dipole located at "source"
            #  with intensity "strength"

            evec = green3e(x, y, z, source, strength, k)
            evec = evec * 1j * k
            hvec = green3m(x, y, z, source, strength, k)
            return evec, hvec

        def dipole3m(x, y, z, source, strength, k):
            #
            #  evalaute electric and magnetic field due
            #  to monochromatic magnetic dipole located at "source"
            #  with intensity "strength"
            evec = green3m(x, y, z, source, strength, k)
            hvec = green3e(x, y, z, source, strength, k)
            hvec = -hvec * 1j * k
            return evec, hvec

        def dipole3eall(x, y, z, sources, strengths, k):
            ns = len(strengths)
            evec = np.zeros(3, dtype=np.complex128)
            hvec = np.zeros(3, dtype=np.complex128)

            for i in range(ns):
                evect, hvect = dipole3e(x, y, z, sources[i], strengths[i], k)
                evec = evec + evect
                hvec = hvec + hvect

        nodes = density_discr.nodes().with_queue(queue).get()
        source = [0.01, -0.03, 0.02]
        #        source = cl.array.to_device(queue,np.zeros(3))
        #        source[0] = 0.01
        #        source[1] =-0.03
        #        source[2] = 0.02
        strength = np.ones(3)

        #        evec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))
        #        hvec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))

        evec = np.zeros((3, len(nodes[0])), dtype=np.complex128)
        hvec = np.zeros((3, len(nodes[0])), dtype=np.complex128)
        for i in range(len(nodes[0])):
            evec[:, i], hvec[:, i] = dipole3e(nodes[0][i], nodes[1][i],
                                              nodes[2][i], source, strength, k)
        print(np.shape(hvec))
        print(type(evec))
        print(type(hvec))

        evec = cl.array.to_device(queue, evec)
        hvec = cl.array.to_device(queue, hvec)

        bvp_rhs = bind(qbx, sym_rhs)(queue, Einc=evec, Hinc=hvec)
        print(np.shape(bvp_rhs))
        print(type(bvp_rhs))
        #        print(bvp_rhs)
        1 / -1

        bound_op = bind(qbx, sym_operator)

        from pytential.solve import gmres
        if 0:
            gmres_result = gmres(bound_op.scipy_op(queue,
                                                   "sigma",
                                                   dtype=np.complex128,
                                                   k=k),
                                 bvp_rhs,
                                 tol=1e-8,
                                 progress=True,
                                 stall_iterations=0,
                                 hard_failure=True)

            sigma = gmres_result.solution

        fld_at_tgt = bind((qbx, PointsTarget(tgt_points)),
                          sym_repr)(queue, sigma=bvp_rhs, k=k)
        fld_at_tgt = np.array([fi.get() for fi in fld_at_tgt])
        print(fld_at_tgt)
        1 / 0

    # }}}

    #mlab.figure(bgcolor=(1, 1, 1))
    if 1:
        from meshmode.discretization.visualization import make_visualizer
        bdry_vis = make_visualizer(queue, density_discr, target_order)

        bdry_normals = bind(density_discr, sym.normal(3))(queue)\
                .as_vector(dtype=object)

        bdry_vis.write_vtk_file("source.vtu", [
            ("sigma", sigma),
            ("bdry_normals", bdry_normals),
        ])

        fplot = FieldPlotter(bbox_center,
                             extent=2 * bbox_size,
                             npoints=(150, 150, 1))

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.1)
        from pytential.target import PointsTarget
        from pytential.qbx import QBXTargetAssociationFailedException

        rho_sym = sym.var("rho")

        try:
            fld_in_vol = bind((qbx_tgt_tol, PointsTarget(fplot.points)),
                              sym.make_obj_array([
                                  sym.S(pde_op.kernel,
                                        rho_sym,
                                        k=sym.var("k"),
                                        qbx_forced_limit=None),
                                  sym.d_dx(
                                      3,
                                      sym.S(pde_op.kernel,
                                            rho_sym,
                                            k=sym.var("k"),
                                            qbx_forced_limit=None)),
                                  sym.d_dy(
                                      3,
                                      sym.S(pde_op.kernel,
                                            rho_sym,
                                            k=sym.var("k"),
                                            qbx_forced_limit=None)),
                                  sym.d_dz(
                                      3,
                                      sym.S(pde_op.kernel,
                                            rho_sym,
                                            k=sym.var("k"),
                                            qbx_forced_limit=None)),
                              ]))(queue, jt=jt, rho=rho, k=k)
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                "failed-targets.vts",
                [("failed_targets", e.failed_target_flags.get(queue))])
            raise

        fld_in_vol = sym.make_obj_array([fiv.get() for fiv in fld_in_vol])

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file("potential.vts", [
            ("potential", fld_in_vol[0]),
            ("grad", fld_in_vol[1:]),
        ])
Ejemplo n.º 30
0
 def get_density_var(self, name):
     """
     Returns a symbolic variable of length 2 corresponding to the density with
     the given name.
     """
     return sym.make_sym_vector(name, 2)
Ejemplo n.º 31
0
def test_pec_mfie_extinction(ctx_getter, case, visualize=False):
    """For (say) is_interior=False (the 'exterior' MFIE), this test verifies
    extinction of the combined (incoming + scattered) field on the interior
    of the scatterer.
    """
    logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    np.random.seed(12)

    knl_kwargs = {"k": case.k}

    # {{{ come up with a solution to Maxwell's equations

    j_sym = sym.make_sym_vector("j", 3)
    jt_sym = sym.make_sym_vector("jt", 2)
    rho_sym = sym.var("rho")

    from pytential.symbolic.pde.maxwell import (
            PECChargeCurrentMFIEOperator,
            get_sym_maxwell_point_source,
            get_sym_maxwell_plane_wave)
    mfie = PECChargeCurrentMFIEOperator()

    test_source = case.get_source(queue)

    calc_patch = CalculusPatch(np.array([-3, 0, 0]), h=0.01)
    calc_patch_tgt = PointsTarget(cl.array.to_device(queue, calc_patch.points))

    rng = cl.clrandom.PhiloxGenerator(cl_ctx, seed=12)
    src_j = rng.normal(queue, (3, test_source.nnodes), dtype=np.float64)

    def eval_inc_field_at(tgt):
        if 0:
            # plane wave
            return bind(
                    tgt,
                    get_sym_maxwell_plane_wave(
                        amplitude_vec=np.array([1, 1, 1]),
                        v=np.array([1, 0, 0]),
                        omega=case.k)
                    )(queue)
        else:
            # point source
            return bind(
                    (test_source, tgt),
                    get_sym_maxwell_point_source(mfie.kernel, j_sym, mfie.k)
                    )(queue, j=src_j, k=case.k)

    pde_test_inc = EHField(
            vector_from_device(queue, eval_inc_field_at(calc_patch_tgt)))

    source_maxwell_resids = [
            calc_patch.norm(x, np.inf) / calc_patch.norm(pde_test_inc.e, np.inf)
            for x in frequency_domain_maxwell(
                calc_patch, pde_test_inc.e, pde_test_inc.h, case.k)]
    print("Source Maxwell residuals:", source_maxwell_resids)
    assert max(source_maxwell_resids) < 1e-6

    # }}}

    loc_sign = -1 if case.is_interior else +1

    from pytools.convergence import EOCRecorder

    eoc_rec_repr_maxwell = EOCRecorder()
    eoc_pec_bc = EOCRecorder()
    eoc_rec_e = EOCRecorder()
    eoc_rec_h = EOCRecorder()

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    from sumpy.expansion.level_to_order import SimpleExpansionOrderFinder

    for resolution in case.resolutions:
        scat_mesh = case.get_mesh(resolution, case.target_order)
        observation_mesh = case.get_observation_mesh(case.target_order)

        pre_scat_discr = Discretization(
                cl_ctx, scat_mesh,
                InterpolatoryQuadratureSimplexGroupFactory(case.target_order))
        qbx, _ = QBXLayerPotentialSource(
                pre_scat_discr, fine_order=4*case.target_order,
                qbx_order=case.qbx_order,
                fmm_level_to_order=SimpleExpansionOrderFinder(
                    case.fmm_tolerance),
                fmm_backend=case.fmm_backend
                ).with_refinement(_expansion_disturbance_tolerance=0.05)
        h_max = qbx.h_max

        scat_discr = qbx.density_discr
        obs_discr = Discretization(
                cl_ctx, observation_mesh,
                InterpolatoryQuadratureSimplexGroupFactory(case.target_order))

        inc_field_scat = EHField(eval_inc_field_at(scat_discr))
        inc_field_obs = EHField(eval_inc_field_at(obs_discr))

        # {{{ system solve

        inc_xyz_sym = EHField(sym.make_sym_vector("inc_fld", 6))

        bound_j_op = bind(qbx, mfie.j_operator(loc_sign, jt_sym))
        j_rhs = bind(qbx, mfie.j_rhs(inc_xyz_sym.h))(
                queue, inc_fld=inc_field_scat.field, **knl_kwargs)

        gmres_settings = dict(
                tol=case.gmres_tol,
                progress=True,
                hard_failure=True,
                stall_iterations=50, no_progress_factor=1.05)
        from pytential.solve import gmres
        gmres_result = gmres(
                bound_j_op.scipy_op(queue, "jt", np.complex128, **knl_kwargs),
                j_rhs, **gmres_settings)

        jt = gmres_result.solution

        bound_rho_op = bind(qbx, mfie.rho_operator(loc_sign, rho_sym))
        rho_rhs = bind(qbx, mfie.rho_rhs(jt_sym, inc_xyz_sym.e))(
                queue, jt=jt, inc_fld=inc_field_scat.field, **knl_kwargs)

        gmres_result = gmres(
                bound_rho_op.scipy_op(queue, "rho", np.complex128, **knl_kwargs),
                rho_rhs, **gmres_settings)

        rho = gmres_result.solution

        # }}}

        jxyz = bind(qbx, sym.tangential_to_xyz(jt_sym))(queue, jt=jt)

        # {{{ volume eval

        sym_repr = mfie.scattered_volume_field(jt_sym, rho_sym)

        def eval_repr_at(tgt, source=None):
            if source is None:
                source = qbx

            return bind((source, tgt), sym_repr)(queue, jt=jt, rho=rho, **knl_kwargs)

        pde_test_repr = EHField(
                vector_from_device(queue, eval_repr_at(calc_patch_tgt)))

        maxwell_residuals = [
                calc_patch.norm(x, np.inf) / calc_patch.norm(pde_test_repr.e, np.inf)
                for x in frequency_domain_maxwell(
                    calc_patch, pde_test_repr.e, pde_test_repr.h, case.k)]
        print("Maxwell residuals:", maxwell_residuals)

        eoc_rec_repr_maxwell.add_data_point(h_max, max(maxwell_residuals))

        # }}}

        # {{{ check PEC BC on total field

        bc_repr = EHField(mfie.scattered_volume_field(
            jt_sym, rho_sym, qbx_forced_limit=loc_sign))
        pec_bc_e = sym.n_cross(bc_repr.e + inc_xyz_sym.e)
        pec_bc_h = sym.normal(3).as_vector().dot(bc_repr.h + inc_xyz_sym.h)

        eh_bc_values = bind(qbx, sym.join_fields(pec_bc_e, pec_bc_h))(
                    queue, jt=jt, rho=rho, inc_fld=inc_field_scat.field,
                    **knl_kwargs)

        def scat_norm(f):
            return norm(qbx, queue, f, p=np.inf)

        e_bc_residual = scat_norm(eh_bc_values[:3]) / scat_norm(inc_field_scat.e)
        h_bc_residual = scat_norm(eh_bc_values[3]) / scat_norm(inc_field_scat.h)

        print("E/H PEC BC residuals:", h_max, e_bc_residual, h_bc_residual)

        eoc_pec_bc.add_data_point(h_max, max(e_bc_residual, h_bc_residual))

        # }}}

        # {{{ visualization

        if visualize:
            from meshmode.discretization.visualization import make_visualizer
            bdry_vis = make_visualizer(queue, scat_discr, case.target_order+3)

            bdry_normals = bind(scat_discr, sym.normal(3))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("source-%s.vtu" % resolution, [
                ("j", jxyz),
                ("rho", rho),
                ("Einc", inc_field_scat.e),
                ("Hinc", inc_field_scat.h),
                ("bdry_normals", bdry_normals),
                ("e_bc_residual", eh_bc_values[:3]),
                ("h_bc_residual", eh_bc_values[3]),
                ])

            fplot = make_field_plotter_from_bbox(
                    find_bounding_box(scat_discr.mesh), h=(0.05, 0.05, 0.3),
                    extend_factor=0.3)

            from pytential.qbx import QBXTargetAssociationFailedException

            qbx_tgt_tol = qbx.copy(target_association_tolerance=0.2)

            fplot_tgt = PointsTarget(cl.array.to_device(queue, fplot.points))
            try:
                fplot_repr = eval_repr_at(fplot_tgt, source=qbx_tgt_tol)
            except QBXTargetAssociationFailedException as e:
                fplot.write_vtk_file(
                        "failed-targets.vts",
                        [
                            ("failed_targets", e.failed_target_flags.get(queue))
                            ])
                raise

            fplot_repr = EHField(vector_from_device(queue, fplot_repr))

            fplot_inc = EHField(
                    vector_from_device(queue, eval_inc_field_at(fplot_tgt)))

            fplot.write_vtk_file(
                    "potential-%s.vts" % resolution,
                    [
                        ("E", fplot_repr.e),
                        ("H", fplot_repr.h),
                        ("Einc", fplot_inc.e),
                        ("Hinc", fplot_inc.h),
                        ]
                    )

        # }}}

        # {{{ error in E, H

        obs_repr = EHField(eval_repr_at(obs_discr))

        def obs_norm(f):
            return norm(obs_discr, queue, f, p=np.inf)

        rel_err_e = (obs_norm(inc_field_obs.e + obs_repr.e)
                / obs_norm(inc_field_obs.e))
        rel_err_h = (obs_norm(inc_field_obs.h + obs_repr.h)
                / obs_norm(inc_field_obs.h))

        # }}}

        print("ERR", h_max, rel_err_h, rel_err_e)

        eoc_rec_h.add_data_point(h_max, rel_err_h)
        eoc_rec_e.add_data_point(h_max, rel_err_e)

    print("--------------------------------------------------------")
    print("is_interior=%s" % case.is_interior)
    print("--------------------------------------------------------")

    good = True
    for which_eoc, eoc_rec, order_tol in [
            ("maxwell", eoc_rec_repr_maxwell, 1.5),
            ("PEC BC", eoc_pec_bc, 1.5),
            ("H", eoc_rec_h, 1.5),
            ("E", eoc_rec_e, 1.5)]:
        print(which_eoc)
        print(eoc_rec.pretty_print())

        if len(eoc_rec.history) > 1:
            if eoc_rec.order_estimate() < case.qbx_order - order_tol:
                good = False

    assert good