Ejemplo n.º 1
0
 def test_stream_train_component(self):
     batch_input_example_meta = af.register_example(
         name='stream_train_example',
         support_type=ExampleSupportType.EXAMPLE_BOTH)
     model_meta = af.register_model(model_name='mnist_model',
                                    model_type=ModelType.SAVED_MODEL)
     stream_input_example_meta = af.register_example(
         name='stream_train_example',
         support_type=ExampleSupportType.EXAMPLE_BOTH)
     with af.config(
             af.BaseJobConfig(platform='local',
                              engine='python',
                              job_name='stream_train')):
         batch_input_example = af.read_example(
             example_info=batch_input_example_meta,
             executor=PythonObjectExecutor(
                 python_object=ReadBatchExample()))
         batch_train = af.train(input_data_list=[batch_input_example],
                                executor=PythonObjectExecutor(
                                    python_object=TrainBatchMnistModel()),
                                model_info=model_meta)
         stream_input_example = af.read_example(
             example_info=stream_input_example_meta,
             executor=PythonObjectExecutor(
                 python_object=ReadStreamExample()))
         stream_train = af.train(input_data_list=[stream_input_example],
                                 executor=PythonObjectExecutor(
                                     python_object=TrainStreamMnistModel()),
                                 model_info=model_meta)
     af.stop_before_control_dependency(stream_train, batch_train)
     workflow_id = af.run(test_util.get_project_path())
     res = af.wait_workflow_execution_finished(workflow_id)
     self.assertEqual(0, res)
Ejemplo n.º 2
0
    def test_stream_transform_component(self):
        file = get_file_dir(__file__) + '/test1.csv'
        input_example_meta = af.register_example(
            name='test_example',
            support_type=ExampleSupportType.EXAMPLE_BOTH,
            stream_uri=file)
        output_file = get_file_dir(
            __file__) + "/output_transform_stream_test1.csv"
        output_example_meta = af.register_example(
            name='test_example_output',
            support_type=ExampleSupportType.EXAMPLE_BOTH,
            stream_uri=output_file)
        with af.config(
                af.BaseJobConfig(platform='local',
                                 engine='python',
                                 job_name='stream_transform')):
            input_example = af.read_example(
                example_info=input_example_meta,
                executor=PythonObjectExecutor(
                    python_object=ReadStreamExample()))
            transform_example = af.transform(
                input_data_list=[input_example],
                executor=PythonObjectExecutor(
                    python_object=TransformStreamData()))

            af.write_example(input_data=transform_example,
                             example_info=output_example_meta.name,
                             executor=PythonObjectExecutor(
                                 python_object=WriteStreamExample()))
        workflow_id = af.run(test_util.get_project_path())
        res = af.wait_workflow_execution_finished(workflow_id)
        self.assertEqual(0, res)
Ejemplo n.º 3
0
    def test_batch_train_component_with_an_output(self):
        input_example_meta = af.register_example(
            name='batch_train_example',
            support_type=ExampleSupportType.EXAMPLE_BATCH)
        model_meta = af.register_model(model_name='mnist_model',
                                       model_type=ModelType.SAVED_MODEL)

        example_meta = af.register_example(
            name='output_example',
            support_type=ExampleSupportType.EXAMPLE_BATCH,
            data_type='numpy',
            data_format='npz',
            batch_uri=os.path.abspath(
                os.path.dirname(__file__) + '/numpy_output.npz'))
        with af.config(
                af.BaseJobConfig(platform='local',
                                 engine='python',
                                 job_name='batch_train')):
            input_example = af.read_example(
                example_info=input_example_meta,
                executor=PythonObjectExecutor(
                    python_object=ReadBatchExample()))
            train_channel = af.train(
                input_data_list=[input_example],
                executor=PythonObjectExecutor(
                    python_object=TrainBatchMnistModelWithOutput()),
                model_info=model_meta,
                output_num=1)
            af.write_example(input_data=train_channel,
                             example_info=example_meta)
        workflow_id = af.run(test_util.get_project_path())
        res = af.wait_workflow_execution_finished(workflow_id)
        self.assertEqual(0, res)
 def test_read_example_with_numpy_npy(self):
     npy_name = 'test.npy'
     np.save(file=npy_name, arr=np.arange(10))
     input_example_meta = af.register_example(
         name='input_numpy_example',
         data_type='numpy',
         data_format='npy',
         support_type=ExampleSupportType.EXAMPLE_BATCH,
         batch_uri=os.path.abspath(
             os.path.dirname(__file__) + "/" + npy_name))
     output_example_meta = af.register_example(
         name='ouput_numpy_example',
         data_type='numpy',
         data_format='npy',
         support_type=ExampleSupportType.EXAMPLE_BATCH,
         batch_uri=os.path.abspath(
             os.path.dirname(__file__) + '/numpy_output.npy'))
     with af.config(
             af.BaseJobConfig(platform='local',
                              engine='python',
                              job_name='test_npy')):
         example_channel = af.read_example(example_info=input_example_meta)
         af.write_example(input_data=example_channel,
                          example_info=output_example_meta)
     workflow_id = af.run(test_util.get_project_path())
     res = af.wait_workflow_execution_finished(workflow_id)
     self.assertEqual(0, res)
 def test_read_example_with_pandas(self):
     input_example_meta = af.register_example(
         name='input_pandas_example',
         data_type='pandas',
         data_format='csv',
         support_type=ExampleSupportType.EXAMPLE_BATCH,
         batch_uri=os.path.abspath(
             os.path.dirname(__file__) + '/test1.csv'))
     output_example_meta = af.register_example(
         name='ouput_pandas_example',
         data_type='pandas',
         data_format='csv',
         support_type=ExampleSupportType.EXAMPLE_BATCH,
         batch_uri=os.path.abspath(
             os.path.dirname(__file__) + '/pandas_output.csv'))
     with af.config(
             af.BaseJobConfig(platform='local',
                              engine='python',
                              job_name='test_csv')):
         example_channel = af.read_example(example_info=input_example_meta)
         af.write_example(input_data=example_channel,
                          example_info=output_example_meta)
     workflow_id = af.run(test_util.get_project_path())
     res = af.wait_workflow_execution_finished(workflow_id)
     self.assertEqual(0, res)
 def test_deploy_airflow(self):
     airflow_path = af.project_config().get_airflow_deploy_path()
     if not os.path.exists(airflow_path):
         os.makedirs(airflow_path)
     with af.config(LocalPythonJobConfig(job_name="simple")):
         op = af.user_define_operation(
             af.PythonObjectExecutor(SimpleExecutor()))
     res = af.run(test_util.get_project_path())
     af.wait_workflow_execution_finished(res)
    def test_stream_evaluate_component(self):
        input_example_meta = af.register_example(
            name='batch_train_example',
            support_type=ExampleSupportType.EXAMPLE_BATCH)
        model_meta = af.register_model(model_name='mnist_model',
                                       model_type=ModelType.SAVED_MODEL)
        stream_evaluate_example_meta = af.register_example(
            name='stream_evaluate_example',
            support_type=ExampleSupportType.EXAMPLE_STREAM)
        stream_output_file = get_file_dir(__file__) + '/stream_evaluate'
        evaluate_output = af.register_artifact(name='stream_evaluate',
                                               stream_uri=stream_output_file)
        stream_evaluate_result_example_meta = af.register_example(
            name='stream_evaluate_result_example',
            support_type=ExampleSupportType.EXAMPLE_STREAM,
            stream_uri=stream_output_file)
        if os.path.exists(stream_output_file):
            os.remove(stream_output_file)
        with af.config(
                af.BaseJobConfig(platform='local',
                                 engine='python',
                                 job_name='stream_evaluate')):
            input_example = af.read_example(
                example_info=input_example_meta,
                executor=PythonObjectExecutor(
                    python_object=ReadBatchExample()))

            batch_train = af.train(input_data_list=[input_example],
                                   executor=PythonObjectExecutor(
                                       python_object=TrainBatchMnistModel()),
                                   model_info=model_meta)
            stream_evaluate_example = af.read_example(
                example_info=stream_evaluate_example_meta,
                executor=PythonObjectExecutor(
                    python_object=ReadStreamExample()))
            stream_evaluate = af.evaluate(
                input_data_list=[stream_evaluate_example],
                model_info=model_meta,
                executor=PythonObjectExecutor(
                    python_object=EvaluateStreamMnistModel()),
                output_num=1)
            af.write_example(input_data=stream_evaluate,
                             example_info=stream_evaluate_result_example_meta,
                             executor=PythonObjectExecutor(
                                 python_object=WriteStreamExample()))
        af.stop_before_control_dependency(stream_evaluate, batch_train)
        workflow_id = af.run(test_util.get_project_path())
        res = af.wait_workflow_execution_finished(workflow_id)
        self.assertEqual(0, res)
Ejemplo n.º 8
0
 def test_batch_predict_component(self):
     input_example_meta = af.register_example(
         name='input_train_example',
         support_type=ExampleSupportType.EXAMPLE_BOTH)
     model_meta = af.register_model(model_name='mnist_model',
                                    model_type=ModelType.SAVED_MODEL)
     batch_output_file = get_file_dir(__file__) + '/batch_predict'
     evaluate_output = af.register_artifact(name='batch_evaluate',
                                            batch_uri=batch_output_file)
     output_example_meta = af.register_example(
         name='output_result_example',
         support_type=ExampleSupportType.EXAMPLE_BATCH,
         data_type='numpy',
         data_format='txt',
         batch_uri=batch_output_file)
     if os.path.exists(batch_output_file):
         os.remove(batch_output_file)
     with af.config(
             af.BaseJobConfig(platform='local',
                              engine='python',
                              job_name='batch_predict')):
         batch_example = af.read_example(
             example_info=input_example_meta,
             executor=PythonObjectExecutor(
                 python_object=ReadBatchExample()))
         batch_train = af.train(input_data_list=[batch_example],
                                executor=PythonObjectExecutor(
                                    python_object=TrainBatchMnistModel()),
                                model_info=model_meta)
         batch_predict = af.predict(
             input_data_list=[batch_example],
             model_info=model_meta,
             executor=PythonObjectExecutor(
                 python_object=PredictBatchMnistModel()),
             output_num=1)
         af.write_example(input_data=batch_predict,
                          example_info=output_example_meta)
     af.stop_before_control_dependency(batch_predict, batch_train)
     workflow_id = af.run(test_util.get_project_path())
     res = af.wait_workflow_execution_finished(workflow_id)
     self.assertEqual(0, res)
 def test_read_example_with_numpy_npz(self):
     npy_name = 'test.npz'
     np.savez(npy_name, np.arange(10), np.sin(np.arange(10)))
     input_example_meta = af.register_example(
         name='input_numpy_example',
         data_type='numpy',
         data_format='npz',
         support_type=ExampleSupportType.EXAMPLE_BATCH,
         batch_uri=os.path.abspath(
             os.path.dirname(__file__) + "/" + npy_name))
     output_example_meta_first = af.register_example(
         name='ouput_numpy_example_1',
         data_type='numpy',
         data_format='npz',
         support_type=ExampleSupportType.EXAMPLE_BATCH,
         batch_uri=os.path.abspath(
             os.path.dirname(__file__) + '/numpy_output_1.npz'))
     output_example_meta_second = af.register_example(
         name='ouput_numpy_example_2',
         data_type='numpy',
         data_format='npz',
         support_type=ExampleSupportType.EXAMPLE_BATCH,
         batch_uri=os.path.abspath(
             os.path.dirname(__file__) + '/numpy_output_2.npz'))
     with af.config(
             af.BaseJobConfig(platform='local',
                              engine='python',
                              job_name='test_npz')):
         example_channel = af.read_example(example_info=input_example_meta)
         transform_channel = af.transform(
             input_data_list=[example_channel],
             executor=PythonObjectExecutor(
                 python_object=TransformTrainData()),
             output_num=2)
         af.write_example(input_data=transform_channel[0],
                          example_info=output_example_meta_first)
         af.write_example(input_data=transform_channel[1],
                          example_info=output_example_meta_second)
     workflow_id = af.run(test_util.get_project_path())
     res = af.wait_workflow_execution_finished(workflow_id)
     self.assertEqual(0, res)
Ejemplo n.º 10
0
 def test_batch_train_component(self):
     input_example_meta = af.register_example(
         name='batch_train_example',
         support_type=ExampleSupportType.EXAMPLE_BATCH)
     model_meta = af.register_model(model_name='mnist_model',
                                    model_type=ModelType.SAVED_MODEL)
     with af.config(
             af.BaseJobConfig(platform='local',
                              engine='python',
                              job_name='batch_train')):
         input_example = af.read_example(
             example_info=input_example_meta,
             executor=PythonObjectExecutor(
                 python_object=ReadBatchExample()))
         af.train(input_data_list=[input_example],
                  executor=PythonObjectExecutor(
                      python_object=TrainBatchMnistModel()),
                  model_info=model_meta)
     workflow_id = af.run(test_util.get_project_path())
     res = af.wait_workflow_execution_finished(workflow_id)
     self.assertEqual(0, res)
    def test_batch_model_validate(self):
        input_example_meta = af.register_example(name='batch_train_example',
                                                 support_type=ExampleSupportType.EXAMPLE_BOTH)
        model_meta = af.register_model(model_name='mnist_model',
                                       model_type=ModelType.SAVED_MODEL)
        with af.config(af.BaseJobConfig(platform='local', engine='python', job_name='evaluate')):
            input_example = af.read_example(example_info=input_example_meta,
                                            executor=PythonObjectExecutor(python_object=ReadBatchExample()))

            batch_train = af.train(input_data_list=[input_example],
                                   executor=PythonObjectExecutor(python_object=TrainBatchMnistModel()),
                                   model_info=model_meta)

            model_validate = af.model_validate(input_data_list=[input_example],
                                               model_info=model_meta,
                                               executor=PythonObjectExecutor(python_object=BatchModelValidate()),
                                               output_num=0)
        af.stop_before_control_dependency(model_validate, batch_train)
        workflow_id = af.run(test_util.get_project_path())
        res = af.wait_workflow_execution_finished(workflow_id)
        self.assertEqual(0, res)