Ejemplo n.º 1
0
from python_lib_util import csvtools as c
from operator import itemgetter
import collections


# STEP ONE: Read in needed data as a list of dicts
data = c.read_as_dict('raw-csvs/2015-combined.csv')

issuers_by_county = list()
for row in data:
    att = dict()
    att ['i'] = row['Issuer Name']
    att['s'] = row['State ']
    att['c'] = row['County']

    # and
    if att['c'] == 'King And Queen':
        att['c'] = 'King and Queen'
    if att['c'] == 'Lake And Peninsula':
        att['c'] = 'Lake and Peninsula'
    if att['c'] == 'Lewis And Clark':
        att['c'] = 'Lewis and Clark'

    # census areas
    if att['c'] == 'Aleutians West':
        att['c'] = 'Aleutians West Census'
    if att['c'] == 'Dillingham':
        att['c'] = 'Dillingham Census'
    if att['c'] == 'Wade Hampton':
        att['c'] = 'Wade Hampton Census'
    if att['c'] == 'Bethel':
Ejemplo n.º 2
0
from python_lib_util import csvtools as c
from operator import itemgetter
import collections

# STEP ONE: Read in needed data as a list of dicts
data = c.read_as_dict('raw-csvs/2014-combined.csv')

issuers_by_county = list()
for row in data:
    att = dict()
    att['i'] = row['Issuer Name']
    att['s'] = row['State']
    att['c'] = row['County'].title()

    # and
    if att['c'] == 'King And Queen':
        att['c'] = 'King and Queen'
    if att['c'] == 'Lake And Peninsula':
        att['c'] = 'Lake and Peninsula'
    if att['c'] == 'Lewis And Clark':
        att['c'] = 'Lewis and Clark'

    # census areas
    if att['c'] == 'Aleutians West':
        att['c'] = 'Aleutians West Census'
    if att['c'] == 'Dillingham':
        att['c'] = 'Dillingham Census'
    if att['c'] == 'Wade Hampton':
        att['c'] = 'Wade Hampton Census'
    if att['c'] == 'Bethel':
        att['c'] = 'Bethel Census'
Ejemplo n.º 3
0
from python_lib_util import csvtools as c
import collections
from itertools import izip_longest, ifilter


# STEP ONE: Read in needed data as a list of dicts
data = c.read_as_dict('fips-join/2017-joined.csv')

# list of dicts, group by fips id
data_grp = collections.defaultdict(list)

for row in data:
    data_grp[row['f']].append(row['i'])

# get count of issuers by fips code
issuers_by_county = list()
for k, v in data_grp.items():
    att = dict()
    # all issuers in a county
    att['ict'] = len(v)
    counter = collections.Counter(v)
    # convert counter object to dict
    counter_dict = dict(counter.items())
    # split dict by key into a list of dicts
    chunks = [counter_dict.iteritems()]
    split = (dict(ifilter(None, v)) for v in izip_longest(*chunks))
    split_list = list(split)
    # sort our list of dicts
    sorted_split = sorted(split_list)
    # split up our dicts into one dict per county
    for row in sorted_split:
Ejemplo n.º 4
0
from python_lib_util import csvtools as c

# STEP ONE: Generate a list of fips codes, by combining stfips and ctyfips.
# Also, include full county name + name w/o county + state in new lists
data = c.read_as_dict('fips-join/fips.csv')
aca_2014 = c.read_as_dict('filtered-csvs/2014-issuers-filtered.csv')
aca_2015 = c.read_as_dict('filtered-csvs/2015-issuers-filtered.csv')
aca_2016 = c.read_as_dict('filtered-csvs/2016-issuers-filtered.csv')
aca_2017 = c.read_as_dict('filtered-csvs/2017-issuers-filtered.csv')

fips_codes = list()
# what about OBrien
for row in data:
    att = dict()
    att['f'] = row['stfips'] + row['ctyfips']
    att['c'] = row['name']
    att['s'] = row['state']
    c0 = row['name'].split(' ')
    # range is from 2 - 5
    if 'city' == c0[1]:
        att['c0'] = " ".join(c0[:2])
    if 'city' != c0[1] and len(c0) == 2:
        att['c0'] = c0[0]
    if len(c0) == 3 and 'city' == c0[2]:
        att['c0'] = " ".join(c0)
    if len(c0) == 3 and 'city' != c0[2]:
        att['c0'] = " ".join(c0[:2])
    if len(c0) == 4:
        att['c0'] = " ".join(c0[:3])
        # print att['c0']
    if len(c0) == 5:
Ejemplo n.º 5
0
from python_lib_util import csvtools as c
from operator import itemgetter
import collections


# STEP ONE: Read in needed data as a list of dicts
data = c.read_as_dict('raw-csvs/2016.csv')

issuers_by_county = list()
for row in data:
    att = dict()
    att ['i'] = row['Issuer Name']
    att['s'] = row['State Code']
    att['c'] = row['County Name']

    # and
    if att['c'] == 'King And Queen':
        att['c'] = 'King and Queen'
    if att['c'] == 'Lake And Peninsula':
        att['c'] = 'Lake and Peninsula'
    if att['c'] == 'Lewis And Clark':
        att['c'] = 'Lewis and Clark'

    # census areas
    if att['c'] == 'Aleutians West':
        att['c'] = 'Aleutians West Census'
    if att['c'] == 'Dillingham':
        att['c'] = 'Dillingham Census'
    if att['c'] == 'Wade Hampton':
        att['c'] = 'Wade Hampton Census'
    if att['c'] == 'Bethel':
Ejemplo n.º 6
0
from python_lib_util import csvtools as c
from operator import itemgetter
import collections

# STEP ONE: Read in needed data as a list of dicts
data = c.read_as_dict('filtered-csvs/2016-issuers-filtered.csv')

issuers_2017 = list()

# STEP TWO: Remove issuers reported as leaving in 2017
for row in data:
    # AL changes
    if row['s'] == 'AL' and row['i'] == 'Humana Insurance Company':
        continue
    if row['s'] == 'AL' and row['i'] == 'UnitedHealthcare of Alabama, Inc.':
        continue
    # AK changes
    if row['s'] == 'AK' and row['i'] == 'Moda Health Plan, Inc.':
        continue
    # AZ changes
    if row['s'] == 'AZ' and row['i'] == 'All Savers Insurance Company':
        continue
    if row['s'] == 'AZ' and row['i'] == 'Health Net of Arizona, Inc.':
        continue
    if row['s'] == 'AZ' and row['c'] == 'Maricopa' and row['i'] == 'Blue Cross and Blue Shield of Arizona, Inc.':
        continue
    if row['s'] == 'AZ' and row['c'] == 'Pinal' and row['i'] == 'Blue Cross and Blue Shield of Arizona, Inc.':
        continue
    # AR changes
    if row['s'] == 'AR' and row['i'] == 'UnitedHealthcare of Arkansas, Inc.':
        continue
Ejemplo n.º 7
0
from python_lib_util import csvtools as c
from operator import itemgetter
import collections

# STEP ONE: Read in needed data as a list of dicts
data = c.read_as_dict('raw-csvs/2016.csv')

issuers_by_county = list()
for row in data:
    att = dict()
    att['i'] = row['Issuer Name']
    att['s'] = row['State Code']
    att['c'] = row['County Name']

    # and
    if att['c'] == 'King And Queen':
        att['c'] = 'King and Queen'
    if att['c'] == 'Lake And Peninsula':
        att['c'] = 'Lake and Peninsula'
    if att['c'] == 'Lewis And Clark':
        att['c'] = 'Lewis and Clark'

    # census areas
    if att['c'] == 'Aleutians West':
        att['c'] = 'Aleutians West Census'
    if att['c'] == 'Dillingham':
        att['c'] = 'Dillingham Census'
    if att['c'] == 'Wade Hampton':
        att['c'] = 'Wade Hampton Census'
    if att['c'] == 'Bethel':
        att['c'] = 'Bethel Census'