Ejemplo n.º 1
0
def setup_scatterer_grau(elev_radar):
    scatterer                  = Scatterer()
    scatterer.psd_integrator   = psd.PSDIntegrator()    
    scatterer.axis_ratio       = 1.       # 1./0.8 (original); 
    scatterer.alpha  = 0.0 
    scatterer.beta   = 0.0 
    scatterer.phi0   = 0.0 
    scatterer.thet   = 90.0 - elev_radar[0]
    scatterer.thet0  = 90.0 - elev_radar[0]
    scatterer.phi    = 0.0 
    geom_forw        = scatterer.get_geometry() 
    scatterer.phi    = 180.0 
    geom_back        = scatterer.get_geometry()    
    
    # set up orientation averaging, Gaussian PDF with mean=0 and std=7 deg
    scatterer.or_pdf = orientation.gaussian_pdf(1)      # orientation PDF according to Bringi and Chandrasekar (2001)
    scatterer.orient = orientation.orient_averaged_fixed  # averaging method

    return [scatterer, geom_forw, geom_back]   
Ejemplo n.º 2
0
def calcScatPropOneFreq(wl,
                        radii,
                        as_ratio,
                        rho,
                        elv,
                        ndgs=30,
                        canting=False,
                        cantingStd=1,
                        meanAngle=0,
                        safeTmatrix=False):
    """
    Calculates the Ze at H and V polarization, Kdp for one wavelength
    TODO: LDR???
    
    Parameters
    ----------
    wl: wavelength [mm] (single value)
    radii: radius [mm] of the particle (array[n])
    as_ratio: aspect ratio of the super particle (array[n])
    rho: density [g/mmˆ3] of the super particle (array[n])
    elv: elevation angle [°]
    ndgs: division points used to integrate over the particle surface
    canting: boolean (default = False)
    cantingStd: standard deviation of the canting angle [°] (default = 1)
    meanAngle: mean value of the canting angle [°] (default = 0)
    
    Returns
    -------
    reflect_h: super particle horizontal reflectivity[mm^6/m^3] (array[n])
    reflect_v: super particle vertical reflectivity[mm^6/m^3] (array[n])
    refIndex: refractive index from each super particle (array[n])
    kdp: calculated kdp from each particle (array[n])
    """

    #---pyTmatrix setup
    # initialize a scatterer object
    scatterer = Scatterer(wavelength=wl)
    scatterer.radius_type = Scatterer.RADIUS_MAXIMUM
    scatterer.ndgs = ndgs
    scatterer.ddelta = 1e-6

    if canting == True:
        scatterer.or_pdf = orientation.gaussian_pdf(std=cantingStd,
                                                    mean=meanAngle)
        #         scatterer.orient = orientation.orient_averaged_adaptive
        scatterer.orient = orientation.orient_averaged_fixed

    # geometric parameters - incident direction
    scatterer.thet0 = 90. - elv
    scatterer.phi0 = 0.

    # parameters for backscattering
    refIndex = np.ones_like(radii, np.complex128) * np.nan
    reflect_h = np.ones_like(radii) * np.nan
    reflect_v = np.ones_like(radii) * np.nan

    # S matrix for Kdp
    sMat = np.ones_like(radii) * np.nan

    for i, radius in enumerate(radii[::5]):  #TODO remove [::5]
        # A quick function to save the distribution of values used in the test
        #with open('/home/dori/table_McRadar.txt', 'a') as f:
        #    f.write('{0:f} {1:f} {2:f} {3:f} {4:f} {5:f} {6:f}\n'.format(wl, elv,
        #                                                                 meanAngle,
        #                                                                 cantingStd,
        #                                                                 radius,
        #                                                                 rho[i],
        #                                                                 as_ratio[i]))
        # scattering geometry backward
        # radius = 100.0 # just a test to force nans

        scatterer.thet = 180. - scatterer.thet0
        scatterer.phi = (180. + scatterer.phi0) % 360.
        scatterer.radius = radius
        scatterer.axis_ratio = 1. / as_ratio[i]
        scatterer.m = refractive.mi(wl, rho[i])
        refIndex[i] = refractive.mi(wl, rho[i])

        if safeTmatrix:
            inputs = [
                str(scatterer.radius),
                str(scatterer.wavelength),
                str(scatterer.m),
                str(scatterer.axis_ratio),
                str(int(canting)),
                str(cantingStd),
                str(meanAngle),
                str(ndgs),
                str(scatterer.thet0),
                str(scatterer.phi0)
            ]
            arguments = ' '.join(inputs)
            a = subprocess.run(
                ['spheroidMcRadar'] +
                inputs,  # this script should be installed by McRadar
                capture_output=True)
            # print(str(a))
            try:
                back_hh, back_vv, sMatrix, _ = str(
                    a.stdout).split('Results ')[-1].split()
                back_hh = float(back_hh)
                back_vv = float(back_vv)
                sMatrix = float(sMatrix)
            except:
                back_hh = np.nan
                back_vv = np.nan
                sMatrix = np.nan
            # print(back_hh, radar.radar_xsect(scatterer, True))
            # print(back_vv, radar.radar_xsect(scatterer, False))
            reflect_h[i] = scatterer.wavelength**4 / (
                np.pi**5 * scatterer.Kw_sqr
            ) * back_hh  # radar.radar_xsect(scatterer, True)  # Kwsqrt is not correct by default at every frequency
            reflect_v[i] = scatterer.wavelength**4 / (
                np.pi**5 * scatterer.Kw_sqr
            ) * back_vv  # radar.radar_xsect(scatterer, False)

            # scattering geometry forward
            # scatterer.thet = scatterer.thet0
            # scatterer.phi = (scatterer.phi0) % 360. #KDP geometry
            # S = scatterer.get_S()
            sMat[i] = sMatrix  # (S[1,1]-S[0,0]).real
            # print(sMatrix, sMat[i])
            # print(sMatrix)
        else:

            reflect_h[i] = scatterer.wavelength**4 / (
                np.pi**5 * scatterer.Kw_sqr) * radar.radar_xsect(
                    scatterer, True
                )  # Kwsqrt is not correct by default at every frequency
            reflect_v[i] = scatterer.wavelength**4 / (
                np.pi**5 * scatterer.Kw_sqr) * radar.radar_xsect(
                    scatterer, False)

            # scattering geometry forward
            scatterer.thet = scatterer.thet0
            scatterer.phi = (scatterer.phi0) % 360.  #KDP geometry
            S = scatterer.get_S()
            sMat[i] = (S[1, 1] - S[0, 0]).real

    kdp = 1e-3 * (180.0 / np.pi) * scatterer.wavelength * sMat

    del scatterer  # TODO: Evaluate the chance to have one Scatterer object already initiated instead of having it locally
    return reflect_h, reflect_v, refIndex, kdp
Ejemplo n.º 3
0
def calcScatPropOneFreq(wl, radii, as_ratio, 
                        rho, elv, ndgs=30,
                        canting=False, cantingStd=1, 
                        meanAngle=0):
    """
    Calculates the Ze of one particle
    
    Parameter
    ---------
    wl: wavelenght [mm] (single value)
    radii: radius [mm] of the particle (array[n])
    as_ratio: aspect ratio of the super particle (array[n])
    rho: density [g/mmˆ3] of the super particle (array[n])
    elv: elevation angle [°]
    ndgs: number of division points used to integrate over 
          the particle surface (default= 30 it is already high)
    canting: boolean (default = False)
    cantingStd: standard deviation of the canting angle [°] (default = 1)
    meanAngle: mean value of the canting angle [°] (default = 0)
    
    Returns
    -------
    reflect: horizontal reflectivity[mm^6/m^3] from each super particle (array[n])
    reflect_v: vertical reflectivity[mm^6/m^3] from each super particle (array[n])
    refIndex: refractive index from each super particle (array[n])
    """
    
    #---pyTmatrix setup
    # initialize a scatterer object
    scatterer = Scatterer(wavelength=wl)
    scatterer.radius_type = Scatterer.RADIUS_MAXIMUM
    scatterer.ndgs = ndgs
    scatterer.ddelta = 1e-6

    if canting==True: 
        scatterer.or_pdf = orientation.gaussian_pdf(std=cantingStd, mean=meanAngle)  
#         scatterer.orient = orientation.orient_averaged_adaptive
        scatterer.orient = orientation.orient_averaged_fixed
    
    # geometric parameters 
    scatterer.thet0 = 90. - elv
    scatterer.phi0 = 0.
    
    # geometric parameters 
    scatterer.thet = 180. - scatterer.thet0
    scatterer.phi = (180. + scatterer.phi0) % 360.

    refIndex = np.ones_like(radii, np.complex128)*np.nan
    reflect = np.ones_like(radii)*np.nan
    reflect_v = np.ones_like(radii)*np.nan
    
    for i, radius in enumerate(radii):
        
        scatterer.radius = radius
        scatterer.axis_ratio = 1./as_ratio[i]
        scatterer.m = refractive.mi(wl, rho[i])
        refIndex[i] = refractive.mi(wl, rho[i])
        reflect[i] = scatterer.wavelength**4/(np.pi**5*scatterer.Kw_sqr) * radar.radar_xsect(scatterer, True)
        reflect_v[i] = scatterer.wavelength**4/(np.pi**5*scatterer.Kw_sqr) * radar.radar_xsect(scatterer, False)
        
    del scatterer
    return reflect, reflect_v, refIndex
Ejemplo n.º 4
0
    list_SZ_2=[]
    
    elevation = 5
    m_func1= a1.get_m_func(270,f)    
    m_func2= a2.get_m_func(270,f)     
    geom_back=(90-elevation, 180-(90-elevation), 0., 180, 0.0,0.0)
    geom_forw=(90-elevation, 90-elevation, 0., 0.0, 0.0,0.0)
    

    for i,d in enumerate(D):
        
        ar = a1.get_axis_ratio(d)
        
        scatt.radius = d/2.
        scatt.m = m_func1(d)
        scatt.axis_ratio = ar

        # Backward scattering (note that we do not need amplitude matrix for backward scattering)
        scatt.set_geometry(geom_back)
        Z_back = scatt.get_Z()
        # Forward scattering (note that we do not need phase matrix for forward scattering)
        scatt.set_geometry(geom_forw)
        S_forw=scatt.get_S()

        list_SZ_1.append(Z_back[0,0])

        ar = a2.get_axis_ratio(d)
        
        scatt.radius = d/2.
        scatt.m = m_func2(d)
        scatt.axis_ratio = ar
Ejemplo n.º 5
0
def calcKdpPropOneFreq(wl,
                       radii,
                       as_ratio,
                       rho,
                       elv,
                       ndgs=2,
                       canting=False,
                       cantingStd=1,
                       meanAngle=0):
    """
    Calculation of the KDP of one particle
    
    Parameters
    ----------
    wl: wavelength [mm] (single value)
    radii: radius [mm] of the particle (array[n])
    as_ratio: aspect ratio of the super particle (array[n])
    rho: density [g/mmˆ3] of the super particle (array[n])
    elv: elevation angle [°]
    ndgs: number of division points used to integrate over 
       the particle surface (default= 30 it is already high)
    canting: boolean (default = False)
    cantingStd: standard deviation of the canting angle [°] (default = 1)
    meanAngle: mean value of the canting angle [°] (default = 0)
    
    Returns
    -------
    kdp: calculated kdp from each particle (array[n])
    """

    scatterer = Scatterer(wavelength=wl)  #, axis_ratio=1./as_ratio)
    scatterer.radius_type = Scatterer.RADIUS_MAXIMUM
    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    scatterer.ndgs = ndgs

    if canting == True:
        scatterer.or_pdf = orientation.gaussian_pdf(std=cantingStd,
                                                    mean=meanAngle)
        #scatterer.orient = orientation.orient_averaged_adaptive
        scatterer.orient = orientation.orient_averaged_fixed

    # geometric parameters
    scatterer.thet0 = 90. - elv
    scatterer.phi0 = 0.

    # geometric parameters
    scatterer.thet = scatterer.thet0
    scatterer.phi = (scatterer.phi0) % 360.  #KDP geometry

    sMat = np.ones_like(radii) * np.nan

    for i, radius in enumerate(radii):

        scatterer.axis_ratio = 1. / as_ratio[i]
        scatterer.radius = radius
        scatterer.m = refractive.mi(wl, rho[i])
        S = scatterer.get_S()
        sMat[i] = (S[1, 1] - S[0, 0]).real

    kdp = 1e-3 * (180.0 / np.pi) * scatterer.wavelength * (sMat)
    return kdp
Ejemplo n.º 6
0
def calcScatPropOneFreq(wl,
                        radii,
                        as_ratio,
                        rho,
                        elv,
                        ndgs=30,
                        canting=False,
                        cantingStd=1,
                        meanAngle=0):
    """
    Calculates the Ze at H and V polarization, Kdp for one wavelength
    TODO: LDR???
    
    Parameters
    ----------
    wl: wavelenght [mm] (single value)
    radii: radius [mm] of the particle (array[n])
    as_ratio: aspect ratio of the super particle (array[n])
    rho: density [g/mmˆ3] of the super particle (array[n])
    elv: elevation angle [°]
    ndgs: division points used to integrate over the particle surface
    canting: boolean (default = False)
    cantingStd: standard deviation of the canting angle [°] (default = 1)
    meanAngle: mean value of the canting angle [°] (default = 0)
    
    Returns
    -------
    reflect_h: super particle horizontal reflectivity[mm^6/m^3] (array[n])
    reflect_v: super particle vertical reflectivity[mm^6/m^3] (array[n])
    refIndex: refractive index from each super particle (array[n])
    kdp: calculated kdp from each particle (array[n])
    """

    #---pyTmatrix setup
    # initialize a scatterer object
    scatterer = Scatterer(wavelength=wl)
    scatterer.radius_type = Scatterer.RADIUS_MAXIMUM
    scatterer.ndgs = ndgs
    scatterer.ddelta = 1e-6

    if canting == True:
        scatterer.or_pdf = orientation.gaussian_pdf(std=cantingStd,
                                                    mean=meanAngle)
        #         scatterer.orient = orientation.orient_averaged_adaptive
        scatterer.orient = orientation.orient_averaged_fixed

    # geometric parameters - incident direction
    scatterer.thet0 = 90. - elv
    scatterer.phi0 = 0.

    # parameters for backscattering
    refIndex = np.ones_like(radii, np.complex128) * np.nan
    reflect_h = np.ones_like(radii) * np.nan
    reflect_v = np.ones_like(radii) * np.nan

    # S matrix for Kdp
    sMat = np.ones_like(radii) * np.nan

    for i, radius in enumerate(radii):
        # A quick function to save the distribution of values used in the test
        #with open('/home/dori/table_McRadar.txt', 'a') as f:
        #    f.write('{0:f} {1:f} {2:f} {3:f} {4:f} {5:f} {6:f}\n'.format(wl, elv,
        #                                                                 meanAngle,
        #                                                                 cantingStd,
        #                                                                 radius,
        #                                                                 rho[i],
        #                                                                 as_ratio[i]))
        # scattering geometry backward
        scatterer.thet = 180. - scatterer.thet0  # Is it????
        scatterer.phi = (180. + scatterer.phi0) % 360.
        scatterer.radius = radius
        scatterer.axis_ratio = 1. / as_ratio[i]
        scatterer.m = refractive.mi(wl, rho[i])
        refIndex[i] = refractive.mi(wl, rho[i])
        reflect_h[i] = scatterer.wavelength**4 / (
            np.pi**5 * scatterer.Kw_sqr) * radar.radar_xsect(
                scatterer,
                True)  # Kwsqrt is not correct by default at every frequency
        reflect_v[i] = scatterer.wavelength**4 / (
            np.pi**5 * scatterer.Kw_sqr) * radar.radar_xsect(scatterer, False)

        # scattering geometry forward
        scatterer.thet = scatterer.thet0
        scatterer.phi = (scatterer.phi0) % 360.  #KDP geometry
        S = scatterer.get_S()
        sMat[i] = (S[1, 1] - S[0, 0]).real
    kdp = 1e-3 * (180.0 / np.pi) * scatterer.wavelength * sMat

    del scatterer  # TODO: Evaluate the chance to have one Scatterer object already initiated instead of having it locally
    return reflect_h, reflect_v, refIndex, kdp