Ejemplo n.º 1
0
def test_p_convergence_verifier():
    from pytools.convergence import PConvergenceVerifier

    pconv_verifier = PConvergenceVerifier()
    for order in [2, 3, 4, 5]:
        pconv_verifier.add_data_point(order, 0.1**order)
    pconv_verifier()

    pconv_verifier = PConvergenceVerifier()
    for order in [2, 3, 4, 5]:
        pconv_verifier.add_data_point(order, 0.5**order)
    pconv_verifier()

    pconv_verifier = PConvergenceVerifier()
    for order in [2, 3, 4, 5]:
        pconv_verifier.add_data_point(order, 2)
    with pytest.raises(AssertionError):
        pconv_verifier()
Ejemplo n.º 2
0
def test_p_convergence_verifier():
    pytest.importorskip("numpy")

    from pytools.convergence import PConvergenceVerifier

    pconv_verifier = PConvergenceVerifier()
    for order in [2, 3, 4, 5]:
        pconv_verifier.add_data_point(order, 0.1**order)
    pconv_verifier()

    pconv_verifier = PConvergenceVerifier()
    for order in [2, 3, 4, 5]:
        pconv_verifier.add_data_point(order, 0.5**order)
    pconv_verifier()

    pconv_verifier = PConvergenceVerifier()
    for order in [2, 3, 4, 5]:
        pconv_verifier.add_data_point(order, 2)
    with pytest.raises(AssertionError):
        pconv_verifier()
Ejemplo n.º 3
0
def test_translations(ctx_factory, knl, local_expn_class, mpole_expn_class):
    logging.basicConfig(level=logging.INFO)

    from sympy.core.cache import clear_cache
    clear_cache()

    ctx = ctx_factory()
    queue = cl.CommandQueue(ctx)

    np.random.seed(17)

    res = 20
    nsources = 15

    out_kernels = [knl]

    extra_kwargs = {}
    if isinstance(knl, HelmholtzKernel):
        extra_kwargs["k"] = 0.05
    if isinstance(knl, StokesletKernel):
        extra_kwargs["mu"] = 0.05

    # Just to make sure things also work away from the origin
    origin = np.array([2, 1, 0][:knl.dim], np.float64)
    sources = (0.7 *
               (-0.5 + np.random.rand(knl.dim, nsources).astype(np.float64)) +
               origin[:, np.newaxis])
    strengths = np.ones(nsources, dtype=np.float64) * (1 / nsources)

    pconv_verifier_p2m2p = PConvergenceVerifier()
    pconv_verifier_p2m2m2p = PConvergenceVerifier()
    pconv_verifier_p2m2m2l2p = PConvergenceVerifier()
    pconv_verifier_full = PConvergenceVerifier()

    from sumpy.visualization import FieldPlotter

    eval_offset = np.array([5.5, 0.0, 0][:knl.dim])

    centers = (
        np.array(
            [
                # box 0: particles, first mpole here
                [0, 0, 0][:knl.dim],

                # box 1: second mpole here
                np.array([-0.2, 0.1, 0][:knl.dim], np.float64),

                # box 2: first local here
                eval_offset + np.array([0.3, -0.2, 0][:knl.dim], np.float64),

                # box 3: second local and eval here
                eval_offset
            ],
            dtype=np.float64) + origin).T.copy()

    del eval_offset

    from sumpy.expansion import VolumeTaylorExpansionBase

    if isinstance(knl, HelmholtzKernel) and \
           issubclass(local_expn_class, VolumeTaylorExpansionBase):
        # FIXME: Embarrassing--but we run out of memory for higher orders.
        orders = [2, 3]
    else:
        orders = [2, 3, 4]
    nboxes = centers.shape[-1]

    def eval_at(e2p, source_box_nr, rscale):
        e2p_target_boxes = np.array([source_box_nr], dtype=np.int32)

        # These are indexed by global box numbers.
        e2p_box_target_starts = np.array([0, 0, 0, 0], dtype=np.int32)
        e2p_box_target_counts_nonchild = np.array([0, 0, 0, 0], dtype=np.int32)
        e2p_box_target_counts_nonchild[source_box_nr] = ntargets

        evt, (pot, ) = e2p(
            queue,
            src_expansions=mpoles,
            src_base_ibox=0,
            target_boxes=e2p_target_boxes,
            box_target_starts=e2p_box_target_starts,
            box_target_counts_nonchild=e2p_box_target_counts_nonchild,
            centers=centers,
            targets=targets,
            rscale=rscale,
            out_host=True,
            **extra_kwargs)

        return pot

    for order in orders:
        m_expn = mpole_expn_class(knl, order=order)
        l_expn = local_expn_class(knl, order=order)

        from sumpy import P2EFromSingleBox, E2PFromSingleBox, P2P, E2EFromCSR
        p2m = P2EFromSingleBox(ctx, m_expn)
        m2m = E2EFromCSR(ctx, m_expn, m_expn)
        m2p = E2PFromSingleBox(ctx, m_expn, out_kernels)
        m2l = E2EFromCSR(ctx, m_expn, l_expn)
        l2l = E2EFromCSR(ctx, l_expn, l_expn)
        l2p = E2PFromSingleBox(ctx, l_expn, out_kernels)
        p2p = P2P(ctx, out_kernels, exclude_self=False)

        fp = FieldPlotter(centers[:, -1], extent=0.3, npoints=res)
        targets = fp.points

        # {{{ compute (direct) reference solution

        evt, (pot_direct, ) = p2p(queue,
                                  targets,
                                  sources, (strengths, ),
                                  out_host=True,
                                  **extra_kwargs)

        # }}}

        m1_rscale = 0.5
        m2_rscale = 0.25
        l1_rscale = 0.5
        l2_rscale = 0.25

        # {{{ apply P2M

        p2m_source_boxes = np.array([0], dtype=np.int32)

        # These are indexed by global box numbers.
        p2m_box_source_starts = np.array([0, 0, 0, 0], dtype=np.int32)
        p2m_box_source_counts_nonchild = np.array([nsources, 0, 0, 0],
                                                  dtype=np.int32)

        evt, (mpoles, ) = p2m(
            queue,
            source_boxes=p2m_source_boxes,
            box_source_starts=p2m_box_source_starts,
            box_source_counts_nonchild=p2m_box_source_counts_nonchild,
            centers=centers,
            sources=sources,
            strengths=(strengths, ),
            nboxes=nboxes,
            rscale=m1_rscale,
            tgt_base_ibox=0,

            #flags="print_hl_wrapper",
            out_host=True,
            **extra_kwargs)

        # }}}

        ntargets = targets.shape[-1]

        pot = eval_at(m2p, 0, m1_rscale)

        err = la.norm((pot - pot_direct) / res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_p2m2p.add_data_point(order, err)

        # {{{ apply M2M

        m2m_target_boxes = np.array([1], dtype=np.int32)
        m2m_src_box_starts = np.array([0, 1], dtype=np.int32)
        m2m_src_box_lists = np.array([0], dtype=np.int32)

        evt, (mpoles, ) = m2m(
            queue,
            src_expansions=mpoles,
            src_base_ibox=0,
            tgt_base_ibox=0,
            ntgt_level_boxes=mpoles.shape[0],
            target_boxes=m2m_target_boxes,
            src_box_starts=m2m_src_box_starts,
            src_box_lists=m2m_src_box_lists,
            centers=centers,
            src_rscale=m1_rscale,
            tgt_rscale=m2_rscale,

            #flags="print_hl_cl",
            out_host=True,
            **extra_kwargs)

        # }}}

        pot = eval_at(m2p, 1, m2_rscale)

        err = la.norm((pot - pot_direct) / res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_p2m2m2p.add_data_point(order, err)

        # {{{ apply M2L

        m2l_target_boxes = np.array([2], dtype=np.int32)
        m2l_src_box_starts = np.array([0, 1], dtype=np.int32)
        m2l_src_box_lists = np.array([1], dtype=np.int32)

        evt, (mpoles, ) = m2l(
            queue,
            src_expansions=mpoles,
            src_base_ibox=0,
            tgt_base_ibox=0,
            ntgt_level_boxes=mpoles.shape[0],
            target_boxes=m2l_target_boxes,
            src_box_starts=m2l_src_box_starts,
            src_box_lists=m2l_src_box_lists,
            centers=centers,
            src_rscale=m2_rscale,
            tgt_rscale=l1_rscale,

            #flags="print_hl_cl",
            out_host=True,
            **extra_kwargs)

        # }}}

        pot = eval_at(l2p, 2, l1_rscale)

        err = la.norm((pot - pot_direct) / res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_p2m2m2l2p.add_data_point(order, err)

        # {{{ apply L2L

        l2l_target_boxes = np.array([3], dtype=np.int32)
        l2l_src_box_starts = np.array([0, 1], dtype=np.int32)
        l2l_src_box_lists = np.array([2], dtype=np.int32)

        evt, (mpoles, ) = l2l(
            queue,
            src_expansions=mpoles,
            src_base_ibox=0,
            tgt_base_ibox=0,
            ntgt_level_boxes=mpoles.shape[0],
            target_boxes=l2l_target_boxes,
            src_box_starts=l2l_src_box_starts,
            src_box_lists=l2l_src_box_lists,
            centers=centers,
            src_rscale=l1_rscale,
            tgt_rscale=l2_rscale,

            #flags="print_hl_wrapper",
            out_host=True,
            **extra_kwargs)

        # }}}

        pot = eval_at(l2p, 3, l2_rscale)

        err = la.norm((pot - pot_direct) / res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_full.add_data_point(order, err)

    for name, verifier in [
        ("p2m2p", pconv_verifier_p2m2p),
        ("p2m2m2p", pconv_verifier_p2m2m2p),
        ("p2m2m2l2p", pconv_verifier_p2m2m2l2p),
        ("full", pconv_verifier_full),
    ]:
        print(30 * "-")
        print(name)
        print(30 * "-")
        print(verifier)
        print(30 * "-")
        verifier()
Ejemplo n.º 4
0
def test_sumpy_fmm(ctx_getter, knl, local_expn_class, mpole_expn_class):
    logging.basicConfig(level=logging.INFO)

    ctx = ctx_getter()
    queue = cl.CommandQueue(ctx)

    nsources = 1000
    ntargets = 300
    dtype = np.float64

    from boxtree.tools import (
            make_normal_particle_array as p_normal)

    sources = p_normal(queue, nsources, knl.dim, dtype, seed=15)
    if 1:
        offset = np.zeros(knl.dim)
        offset[0] = 0.1

        targets = (
                p_normal(queue, ntargets, knl.dim, dtype, seed=18)
                + offset)

        del offset
    else:
        from sumpy.visualization import FieldPlotter
        fp = FieldPlotter(np.array([0.5, 0]), extent=3, npoints=200)
        from pytools.obj_array import make_obj_array
        targets = make_obj_array(
                [fp.points[i] for i in range(knl.dim)])

    from boxtree import TreeBuilder
    tb = TreeBuilder(ctx)

    tree, _ = tb(queue, sources, targets=targets,
            max_particles_in_box=30, debug=True)

    from boxtree.traversal import FMMTraversalBuilder
    tbuild = FMMTraversalBuilder(ctx)
    trav, _ = tbuild(queue, tree, debug=True)

    # {{{ plot tree

    if 0:
        host_tree = tree.get()
        host_trav = trav.get()

        if 1:
            print("src_box", host_tree.find_box_nr_for_source(403))
            print("tgt_box", host_tree.find_box_nr_for_target(28))
            print(list(host_trav.target_or_target_parent_boxes).index(37))
            print(host_trav.get_box_list("sep_bigger", 22))

        from boxtree.visualization import TreePlotter
        plotter = TreePlotter(host_tree)
        plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
        plotter.set_bounding_box()
        plotter.draw_box_numbers()

        import matplotlib.pyplot as pt
        pt.show()

    # }}}

    from pyopencl.clrandom import PhiloxGenerator
    rng = PhiloxGenerator(ctx, seed=44)
    weights = rng.uniform(queue, nsources, dtype=np.float64)

    logger.info("computing direct (reference) result")

    from pytools.convergence import PConvergenceVerifier

    pconv_verifier = PConvergenceVerifier()

    extra_kwargs = {}
    dtype = np.float64
    order_values = [1, 2, 3]
    if isinstance(knl, HelmholtzKernel):
        extra_kwargs["k"] = 0.05
        dtype = np.complex128

        if knl.dim == 3:
            order_values = [1, 2]
        elif knl.dim == 2 and issubclass(local_expn_class, H2DLocalExpansion):
            order_values = [10, 12]

    elif isinstance(knl, YukawaKernel):
        extra_kwargs["lam"] = 2
        dtype = np.complex128

        if knl.dim == 3:
            order_values = [1, 2]
        elif knl.dim == 2 and issubclass(local_expn_class, Y2DLocalExpansion):
            order_values = [10, 12]

    from functools import partial
    for order in order_values:
        out_kernels = [knl]

        from sumpy.fmm import SumpyExpansionWranglerCodeContainer
        wcc = SumpyExpansionWranglerCodeContainer(
                ctx,
                partial(mpole_expn_class, knl),
                partial(local_expn_class, knl),
                out_kernels)
        wrangler = wcc.get_wrangler(queue, tree, dtype,
                fmm_level_to_order=lambda kernel, kernel_args, tree, lev: order,
                kernel_extra_kwargs=extra_kwargs)

        from boxtree.fmm import drive_fmm

        pot, = drive_fmm(trav, wrangler, weights)

        from sumpy import P2P
        p2p = P2P(ctx, out_kernels, exclude_self=False)
        evt, (ref_pot,) = p2p(queue, targets, sources, (weights,),
                **extra_kwargs)

        pot = pot.get()
        ref_pot = ref_pot.get()

        rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf)
        logger.info("order %d -> relative l2 error: %g" % (order, rel_err))

        pconv_verifier.add_data_point(order, rel_err)

    print(pconv_verifier)
    pconv_verifier()
Ejemplo n.º 5
0
def test_sumpy_fmm(ctx_getter, knl, local_expn_class, mpole_expn_class):
    logging.basicConfig(level=logging.INFO)

    ctx = ctx_getter()
    queue = cl.CommandQueue(ctx)

    nsources = 1000
    ntargets = 300
    dtype = np.float64

    from boxtree.tools import (make_normal_particle_array as p_normal)

    sources = p_normal(queue, nsources, knl.dim, dtype, seed=15)
    if 1:
        offset = np.zeros(knl.dim)
        offset[0] = 0.1

        targets = (p_normal(queue, ntargets, knl.dim, dtype, seed=18) + offset)

        del offset
    else:
        from sumpy.visualization import FieldPlotter
        fp = FieldPlotter(np.array([0.5, 0]), extent=3, npoints=200)
        from pytools.obj_array import make_obj_array
        targets = make_obj_array([fp.points[i] for i in range(knl.dim)])

    from boxtree import TreeBuilder
    tb = TreeBuilder(ctx)

    tree, _ = tb(queue,
                 sources,
                 targets=targets,
                 max_particles_in_box=30,
                 debug=True)

    from boxtree.traversal import FMMTraversalBuilder
    tbuild = FMMTraversalBuilder(ctx)
    trav, _ = tbuild(queue, tree, debug=True)

    # {{{ plot tree

    if 0:
        host_tree = tree.get()
        host_trav = trav.get()

        if 1:
            print("src_box", host_tree.find_box_nr_for_source(403))
            print("tgt_box", host_tree.find_box_nr_for_target(28))
            print(list(host_trav.target_or_target_parent_boxes).index(37))
            print(host_trav.get_box_list("sep_bigger", 22))

        from boxtree.visualization import TreePlotter
        plotter = TreePlotter(host_tree)
        plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
        plotter.set_bounding_box()
        plotter.draw_box_numbers()

        import matplotlib.pyplot as pt
        pt.show()

    # }}}

    from pyopencl.clrandom import PhiloxGenerator
    rng = PhiloxGenerator(ctx, seed=44)
    weights = rng.uniform(queue, nsources, dtype=np.float64)

    logger.info("computing direct (reference) result")

    from pytools.convergence import PConvergenceVerifier

    pconv_verifier = PConvergenceVerifier()

    extra_kwargs = {}
    dtype = np.float64
    order_values = [1, 2, 3]
    if isinstance(knl, HelmholtzKernel):
        extra_kwargs["k"] = 0.05
        dtype = np.complex128

        if knl.dim == 3:
            order_values = [1, 2]
        elif knl.dim == 2 and issubclass(local_expn_class, H2DLocalExpansion):
            order_values = [10, 12]

    elif isinstance(knl, YukawaKernel):
        extra_kwargs["lam"] = 2
        dtype = np.complex128

        if knl.dim == 3:
            order_values = [1, 2]
        elif knl.dim == 2 and issubclass(local_expn_class, Y2DLocalExpansion):
            order_values = [10, 12]

    from functools import partial
    for order in order_values:
        out_kernels = [knl]

        from sumpy.fmm import SumpyExpansionWranglerCodeContainer
        wcc = SumpyExpansionWranglerCodeContainer(
            ctx, partial(mpole_expn_class, knl),
            partial(local_expn_class, knl), out_kernels)
        wrangler = wcc.get_wrangler(
            queue,
            tree,
            dtype,
            fmm_level_to_order=lambda kernel, kernel_args, tree, lev: order,
            kernel_extra_kwargs=extra_kwargs)

        from boxtree.fmm import drive_fmm

        pot, = drive_fmm(trav, wrangler, weights)

        from sumpy import P2P
        p2p = P2P(ctx, out_kernels, exclude_self=False)
        evt, (ref_pot, ) = p2p(queue, targets, sources, (weights, ),
                               **extra_kwargs)

        pot = pot.get()
        ref_pot = ref_pot.get()

        rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf)
        logger.info("order %d -> relative l2 error: %g" % (order, rel_err))

        pconv_verifier.add_data_point(order, rel_err)

    print(pconv_verifier)
    pconv_verifier()
Ejemplo n.º 6
0
def test_translations(ctx_getter, knl, local_expn_class, mpole_expn_class):
    logging.basicConfig(level=logging.INFO)

    from sympy.core.cache import clear_cache
    clear_cache()

    ctx = ctx_getter()
    queue = cl.CommandQueue(ctx)

    np.random.seed(17)

    res = 20
    nsources = 15

    out_kernels = [knl]

    extra_kwargs = {}
    if isinstance(knl, HelmholtzKernel):
        extra_kwargs["k"] = 0.05

    # Just to make sure things also work away from the origin
    origin = np.array([2, 1], np.float64)
    sources = (0.7*(-0.5+np.random.rand(knl.dim, nsources).astype(np.float64))
            + origin[:, np.newaxis])
    strengths = np.ones(nsources, dtype=np.float64) * (1/nsources)

    pconv_verifier_p2m2p = PConvergenceVerifier()
    pconv_verifier_p2m2m2p = PConvergenceVerifier()
    pconv_verifier_p2m2m2l2p = PConvergenceVerifier()
    pconv_verifier_full = PConvergenceVerifier()

    from sumpy.visualization import FieldPlotter

    eval_offset = np.array([5.5, 0.0])

    centers = (np.array(
            [
                # box 0: particles, first mpole here
                [0, 0],

                # box 1: second mpole here
                np.array([-0.2, 0.1], np.float64),

                # box 2: first local here
                eval_offset + np.array([0.3, -0.2], np.float64),

                # box 3: second local and eval here
                eval_offset
                ],
            dtype=np.float64) + origin).T.copy()

    del eval_offset

    from sumpy.expansion import VolumeTaylorExpansionBase

    if isinstance(knl, HelmholtzKernel) and \
           issubclass(local_expn_class, VolumeTaylorExpansionBase):
        # FIXME: Embarrassing--but we run out of memory for higher orders.
        orders = [2, 3]
    else:
        orders = [2, 3, 4]
    nboxes = centers.shape[-1]

    def eval_at(e2p, source_box_nr, rscale):
        e2p_target_boxes = np.array([source_box_nr], dtype=np.int32)

        # These are indexed by global box numbers.
        e2p_box_target_starts = np.array([0, 0, 0, 0], dtype=np.int32)
        e2p_box_target_counts_nonchild = np.array([0, 0, 0, 0],
                dtype=np.int32)
        e2p_box_target_counts_nonchild[source_box_nr] = ntargets

        evt, (pot,) = e2p(
                queue,

                src_expansions=mpoles,
                src_base_ibox=0,

                target_boxes=e2p_target_boxes,
                box_target_starts=e2p_box_target_starts,
                box_target_counts_nonchild=e2p_box_target_counts_nonchild,
                centers=centers,
                targets=targets,

                rscale=rscale,

                out_host=True, **extra_kwargs
                )

        return pot

    for order in orders:
        m_expn = mpole_expn_class(knl, order=order)
        l_expn = local_expn_class(knl, order=order)

        from sumpy import P2EFromSingleBox, E2PFromSingleBox, P2P, E2EFromCSR
        p2m = P2EFromSingleBox(ctx, m_expn)
        m2m = E2EFromCSR(ctx, m_expn, m_expn)
        m2p = E2PFromSingleBox(ctx, m_expn, out_kernels)
        m2l = E2EFromCSR(ctx, m_expn, l_expn)
        l2l = E2EFromCSR(ctx, l_expn, l_expn)
        l2p = E2PFromSingleBox(ctx, l_expn, out_kernels)
        p2p = P2P(ctx, out_kernels, exclude_self=False)

        fp = FieldPlotter(centers[:, -1], extent=0.3, npoints=res)
        targets = fp.points

        # {{{ compute (direct) reference solution

        evt, (pot_direct,) = p2p(
                queue,
                targets, sources, (strengths,),
                out_host=True, **extra_kwargs)

        # }}}

        m1_rscale = 0.5
        m2_rscale = 0.25
        l1_rscale = 0.5
        l2_rscale = 0.25

        # {{{ apply P2M

        p2m_source_boxes = np.array([0], dtype=np.int32)

        # These are indexed by global box numbers.
        p2m_box_source_starts = np.array([0, 0, 0, 0], dtype=np.int32)
        p2m_box_source_counts_nonchild = np.array([nsources, 0, 0, 0],
                dtype=np.int32)

        evt, (mpoles,) = p2m(queue,
                source_boxes=p2m_source_boxes,
                box_source_starts=p2m_box_source_starts,
                box_source_counts_nonchild=p2m_box_source_counts_nonchild,
                centers=centers,
                sources=sources,
                strengths=strengths,
                nboxes=nboxes,
                rscale=m1_rscale,

                tgt_base_ibox=0,

                #flags="print_hl_wrapper",
                out_host=True, **extra_kwargs)

        # }}}

        ntargets = targets.shape[-1]

        pot = eval_at(m2p, 0, m1_rscale)

        err = la.norm((pot - pot_direct)/res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_p2m2p.add_data_point(order, err)

        # {{{ apply M2M

        m2m_target_boxes = np.array([1], dtype=np.int32)
        m2m_src_box_starts = np.array([0, 1], dtype=np.int32)
        m2m_src_box_lists = np.array([0], dtype=np.int32)

        evt, (mpoles,) = m2m(queue,
                src_expansions=mpoles,
                src_base_ibox=0,
                tgt_base_ibox=0,
                ntgt_level_boxes=mpoles.shape[0],

                target_boxes=m2m_target_boxes,

                src_box_starts=m2m_src_box_starts,
                src_box_lists=m2m_src_box_lists,
                centers=centers,

                src_rscale=m1_rscale,
                tgt_rscale=m2_rscale,

                #flags="print_hl_cl",
                out_host=True, **extra_kwargs)

        # }}}

        pot = eval_at(m2p, 1, m2_rscale)

        err = la.norm((pot - pot_direct)/res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_p2m2m2p.add_data_point(order, err)

        # {{{ apply M2L

        m2l_target_boxes = np.array([2], dtype=np.int32)
        m2l_src_box_starts = np.array([0, 1], dtype=np.int32)
        m2l_src_box_lists = np.array([1], dtype=np.int32)

        evt, (mpoles,) = m2l(queue,
                src_expansions=mpoles,
                src_base_ibox=0,
                tgt_base_ibox=0,
                ntgt_level_boxes=mpoles.shape[0],

                target_boxes=m2l_target_boxes,
                src_box_starts=m2l_src_box_starts,
                src_box_lists=m2l_src_box_lists,
                centers=centers,

                src_rscale=m2_rscale,
                tgt_rscale=l1_rscale,

                #flags="print_hl_cl",
                out_host=True, **extra_kwargs)

        # }}}

        pot = eval_at(l2p, 2, l1_rscale)

        err = la.norm((pot - pot_direct)/res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_p2m2m2l2p.add_data_point(order, err)

        # {{{ apply L2L

        l2l_target_boxes = np.array([3], dtype=np.int32)
        l2l_src_box_starts = np.array([0, 1], dtype=np.int32)
        l2l_src_box_lists = np.array([2], dtype=np.int32)

        evt, (mpoles,) = l2l(queue,
                src_expansions=mpoles,
                src_base_ibox=0,
                tgt_base_ibox=0,
                ntgt_level_boxes=mpoles.shape[0],

                target_boxes=l2l_target_boxes,
                src_box_starts=l2l_src_box_starts,
                src_box_lists=l2l_src_box_lists,
                centers=centers,

                src_rscale=l1_rscale,
                tgt_rscale=l2_rscale,

                #flags="print_hl_wrapper",
                out_host=True, **extra_kwargs)

        # }}}

        pot = eval_at(l2p, 3, l2_rscale)

        err = la.norm((pot - pot_direct)/res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_full.add_data_point(order, err)

    for name, verifier in [
            ("p2m2p", pconv_verifier_p2m2p),
            ("p2m2m2p", pconv_verifier_p2m2m2p),
            ("p2m2m2l2p", pconv_verifier_p2m2m2l2p),
            ("full", pconv_verifier_full),
            ]:
        print(30*"-")
        print(name)
        print(30*"-")
        print(verifier)
        print(30*"-")
        verifier()