Ejemplo n.º 1
0
    def add_instrumentation(self, mgr, observer):
        Depositor.add_instrumentation(self, mgr, observer)

        # instrumentation
        from pytools.log import IntervalTimer, EventCounter
        self.element_activation_counter = EventCounter(
            "n_el_activations",
            "#Advective rec. elements activated this timestep")
        self.element_kill_counter = EventCounter(
            "n_el_kills", "#Advective rec. elements retired this timestep")
        self.advective_rhs_timer = IntervalTimer(
            "t_advective_rhs", "Time spent evaluating advective RHS")
        self.active_elements_log = ActiveAdvectiveElements(observer)

        mgr.add_quantity(self.element_activation_counter)
        mgr.add_quantity(self.element_kill_counter)
        mgr.add_quantity(self.advective_rhs_timer)
        mgr.add_quantity(self.active_elements_log)

        mgr.set_constant("el_activation_threshold", self.activation_threshold)
        mgr.set_constant("el_kill_threshold", self.kill_threshold)
        mgr.set_constant("adv_upwind_alpha", self.upwind_alpha)

        mgr.set_constant("filter_amp", self.filter_amp)
        mgr.set_constant("filter_amp", self.filter_order)
Ejemplo n.º 2
0
def main():
    logmgr = LogManager("mylog.dat", "w")  # , comm=...

    # set a run property
    logmgr.set_constant("myconst", uniform(0, 1))

    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)

    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    logmgr.add_quantity(Fifteen("fifteen"))
    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

    for istep in range(200):
        logmgr.tick_before()

        dt = uniform(0.01, 0.1)
        set_dt(logmgr, dt)
        sleep(dt)

        # Illustrate custom timers
        if istep % 10 == 0:
            with vis_timer.start_sub_timer():
                sleep(0.05)

        # Illustrate warnings capture
        if uniform(0, 1) < 0.05:
            warn("Oof. Something went awry.")

        logmgr.tick_after()

    logmgr.close()
Ejemplo n.º 3
0
    def add_instrumentation(self, mgr, observer):
        mgr.set_constant("depositor", self.__class__.__name__)

        for key, value in self.log_constants.iteritems():
            mgr.set_constant(key, value)

        from pytools.log import IntervalTimer, EventCounter,\
                time_and_count_function

        self.deposit_timer = IntervalTimer("t_deposit",
                                           "Time spent depositing")
        self.deposit_counter = EventCounter("n_deposit",
                                            "Number of depositions")

        self.deposit_densities = time_and_count_function(
            self.deposit_densites, self.deposit_timer, self.deposit_counter,
            1 + self.method.dimensions_velocity)

        self.deposit_j = time_and_count_function(
            self.deposit_j, self.deposit_timer, self.deposit_counter,
            self.method.dimensions_velocity)

        self.deposit_rho = time_and_count_function(self.deposit_rho,
                                                   self.deposit_timer,
                                                   self.deposit_counter)

        mgr.add_quantity(self.deposit_timer)
        mgr.add_quantity(self.deposit_counter)
Ejemplo n.º 4
0
    def __init__(self, method, maxwell_op):
        self.method = method
        self.maxwell_op = maxwell_op

        self.bound_maxwell_op = maxwell_op.bind(self.method.discretization)

        from pytools.log import IntervalTimer
        self.field_solve_timer = IntervalTimer("t_field",
                                               "Time spent in field solver")
Ejemplo n.º 5
0
    def __init__(self,
                 discr,
                 units,
                 depositor,
                 pusher,
                 dimensions_pos,
                 dimensions_velocity,
                 debug=set()):

        self.units = units
        self.discretization = discr
        self.debug = debug

        self.depositor = depositor
        self.pusher = pusher

        self.dimensions_mesh = discr.dimensions
        self.dimensions_pos = dimensions_pos
        self.dimensions_velocity = dimensions_velocity

        dims = (dimensions_pos, dimensions_velocity)

        self.mesh_data = _internal.MeshData(discr.dimensions)
        self.mesh_data.fill_from_hedge(discr)

        # subsystem init
        self.depositor.initialize(self)
        self.pusher.initialize(self)

        # instrumentation
        from pytools.log import IntervalTimer, EventCounter

        self.find_el_timer = IntervalTimer("t_find",
                                           "Time spent finding new elements")
        self.find_same_counter = EventCounter(
            "n_find_same", "#Particles found in same element")
        self.find_by_neighbor_counter = EventCounter(
            "n_find_neighbor", "#Particles found through neighbor")
        self.find_by_vertex_counter = EventCounter(
            "n_find_by_vertex", "#Particles found by vertex")
        self.find_global_counter = EventCounter(
            "n_find_global", "#Particles found by global search")
Ejemplo n.º 6
0
def main(write_output=True, allow_features=None):
    from grudge.timestep import RK4TimeStepper
    from grudge.mesh import make_ball_mesh, make_cylinder_mesh, make_box_mesh
    from grudge.visualization import \
            VtkVisualizer, \
            SiloVisualizer, \
            get_rank_partition
    from math import sqrt, pi

    from grudge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    dims = 3

    if rcon.is_head_rank:
        if dims == 2:
            from grudge.mesh import make_rect_mesh
            mesh = make_rect_mesh(a=(-10.5, -1.5), b=(10.5, 1.5), max_area=0.1)
        elif dims == 3:
            from grudge.mesh import make_box_mesh
            mesh = make_box_mesh(a=(-10.5, -1.5, -1.5),
                                 b=(10.5, 1.5, 1.5),
                                 max_volume=0.1)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    #for order in [1,2,3,4,5,6]:
    discr = rcon.make_discretization(mesh_data, order=3)

    if write_output:
        vis = VtkVisualizer(discr, rcon, "dipole")

    from analytic_solutions import DipoleFarField, SphericalFieldAdapter
    from grudge.data import ITimeDependentGivenFunction

    sph_dipole = DipoleFarField(
        q=1,  #C
        d=1 / 39,
        omega=2 * pi * 1e8,
        epsilon=epsilon0,
        mu=mu0,
    )
    cart_dipole = SphericalFieldAdapter(sph_dipole)

    class PointDipoleSource(ITimeDependentGivenFunction):
        def __init__(self):
            from pyrticle.tools import CInfinityShapeFunction
            sf = CInfinityShapeFunction(0.1 * sph_dipole.wavelength,
                                        discr.dimensions)
            self.num_sf = discr.interpolate_volume_function(
                lambda x, el: sf(x))
            self.vol_0 = discr.volume_zeros()

        def volume_interpolant(self, t, discr):
            from grudge.tools import make_obj_array
            return make_obj_array([
                self.vol_0, self.vol_0,
                sph_dipole.source_modulation(t) * self.num_sf
            ])

    from grudge.mesh import BTAG_ALL, BTAG_NONE
    if dims == 2:
        from grudge.models.em import TMMaxwellOperator as MaxwellOperator
    else:
        from grudge.models.em import MaxwellOperator

    op = MaxwellOperator(
        epsilon,
        mu,
        flux_type=1,
        pec_tag=BTAG_NONE,
        absorb_tag=BTAG_ALL,
        current=PointDipoleSource(),
    )

    fields = op.assemble_eh(discr=discr)

    if rcon.is_head_rank:
        print("#elements=", len(mesh.elements))

    stepper = RK4TimeStepper()

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "dipole.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from grudge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    from pytools.log import PushLogQuantity
    relerr_e_q = PushLogQuantity("relerr_e", "1",
                                 "Relative error in masked E-field")
    relerr_h_q = PushLogQuantity("relerr_h", "1",
                                 "Relative error in masked H-field")
    logmgr.add_quantity(relerr_e_q)
    logmgr.add_quantity(relerr_h_q)

    logmgr.add_watches([
        "step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max",
        "relerr_e", "relerr_h"
    ])

    if write_output:
        point_timeseries = [(open("b-x%d-vs-time.dat" % i,
                                  "w"), open("b-x%d-vs-time-true.dat" % i,
                                             "w"),
                             discr.get_point_evaluator(
                                 numpy.array([i, 0, 0][:dims],
                                             dtype=discr.default_scalar_type)))
                            for i in range(1, 5)]

    # timestep loop -------------------------------------------------------
    mask = discr.interpolate_volume_function(sph_dipole.far_field_mask)

    def apply_mask(field):
        from grudge.tools import log_shape
        ls = log_shape(field)
        result = discr.volume_empty(ls)
        from pytools import indices_in_shape
        for i in indices_in_shape(ls):
            result[i] = mask * field[i]

        return result

    rhs = op.bind(discr)

    t = 0
    try:
        from grudge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=1e-8,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if write_output and step % 10 == 0:
                sub_timer = vis_timer.start_sub_timer()
                e, h = op.split_eh(fields)
                sph_dipole.set_time(t)
                true_e, true_h = op.split_eh(
                    discr.interpolate_volume_function(cart_dipole))
                visf = vis.make_file("dipole-%04d" % step)

                mask_e = apply_mask(e)
                mask_h = apply_mask(h)
                mask_true_e = apply_mask(true_e)
                mask_true_h = apply_mask(true_h)

                from pyvisfile.silo import DB_VARTYPE_VECTOR
                vis.add_data(visf, [("e", e), ("h", h), ("true_e", true_e),
                                    ("true_h", true_h), ("mask_e", mask_e),
                                    ("mask_h", mask_h),
                                    ("mask_true_e", mask_true_e),
                                    ("mask_true_h", mask_true_h)],
                             time=t,
                             step=step)
                visf.close()
                sub_timer.stop().submit()

                from grudge.tools import relative_error
                relerr_e_q.push_value(
                    relative_error(discr.norm(mask_e - mask_true_e),
                                   discr.norm(mask_true_e)))
                relerr_h_q.push_value(
                    relative_error(discr.norm(mask_h - mask_true_h),
                                   discr.norm(mask_true_h)))

                if write_output:
                    for outf_num, outf_true, evaluator in point_timeseries:
                        for outf, ev_h in zip([outf_num, outf_true],
                                              [h, true_h]):
                            outf.write("%g\t%g\n" %
                                       (t, op.mu * evaluator(ev_h[1])))
                            outf.flush()

            fields = stepper(fields, t, dt, rhs)

    finally:
        if write_output:
            vis.close()

        logmgr.save()
        discr.close()
Ejemplo n.º 7
0
def main(write_output=True):
    from math import sqrt, pi, exp
    from os.path import join

    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    output_dir = "maxwell-2d"
    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)

    from grudge.mesh.generator import make_disk_mesh
    mesh = make_disk_mesh(r=0.5, max_area=1e-3)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class CurrentSource:
        shape = (3, )

        def __call__(self, x, el):
            return [0, 0, exp(-80 * la.norm(x))]

    order = 3
    final_time = 1e-8
    discr = rcon.make_discretization(mesh_data,
                                     order=order,
                                     debug=["cuda_no_plan"])

    from grudge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, join(output_dir, "em-%d" % order))

    if rcon.is_head_rank:
        print("order %d" % order)
        print("#elements=", len(mesh.elements))

    from grudge.mesh import BTAG_ALL, BTAG_NONE
    from grudge.models.em import TMMaxwellOperator
    from grudge.data import make_tdep_given, TimeIntervalGivenFunction
    op = TMMaxwellOperator(epsilon,
                           mu,
                           flux_type=1,
                           current=TimeIntervalGivenFunction(
                               make_tdep_given(CurrentSource()),
                               off_time=final_time / 10),
                           absorb_tag=BTAG_ALL,
                           pec_tag=BTAG_NONE)
    fields = op.assemble_eh(discr=discr)

    from grudge.timestep import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    from time import time
    last_tstep = time()
    t = 0

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = join(output_dir, "maxwell-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from grudge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
        ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    # timestep loop -------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from grudge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=final_time,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h = op.split_eh(fields)
                visf = vis.make_file(
                    join(output_dir, "em-%d-%04d" % (order, step)))
                vis.add_data(visf, [
                    ("e", discr.convert_volume(e, "numpy")),
                    ("h", discr.convert_volume(h, "numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 0.03
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Ejemplo n.º 8
0
 def make_timer(self, name, description=None):
     from pytools.log import IntervalTimer
     return IntervalTimer(name, description)
Ejemplo n.º 9
0
    def __init__(self):
        from pytools.log import IntervalTimer, EventCounter

        self.force_timer = IntervalTimer(
                "t_force",
                "Time spent calculating forces")
Ejemplo n.º 10
0
def main(write_output=True,
         dir_tag=TAG_NONE,
         neu_tag=TAG_NONE,
         rad_tag=TAG_ALL,
         flux_type_arg="upwind",
         dtype=np.float64,
         debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), max_area=0.008)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE  # noqa

    source_center = np.array([0.1, 0.22])
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    op = StrongWaveOperator(
        -1,
        dim,
        source_f=sym.CFunction("sin")(
            source_omega * sym.ScalarParameter("t")) * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist) /
                source_width**2),
        dirichlet_tag=dir_tag,
        neumann_tag=neu_tag,
        radiation_tag=rad_tag,
        flux_type=flux_type_arg)

    discr = rcon.make_discretization(mesh_data,
                                     order=4,
                                     debug=debug,
                                     default_scalar_type=dtype,
                                     tune_for=op.op_template())

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    from hedge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(dtype=dtype),
        [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf, [
                    ("u", discr.convert_volume(fields[0], kind="numpy")),
                    ("v", discr.convert_volume(fields[1:], kind="numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Ejemplo n.º 11
0
def main(write_output=True, allow_features=None, flux_type_arg=1,
        bdry_flux_type_arg=None, extra_discr_args={}):
    from math import sqrt, pi
    from hedge.models.em import TEMaxwellOperator

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12 # C**2 / (N m**2)
    mu0 = 4*pi*1e-7 # N/A**2.
    c = 1/sqrt(mu0*epsilon0)

    materials = {"vacuum" : (epsilon0, mu0),
                 "dielectric" : (2*epsilon0, mu0)}

    output_dir = "2d_cavity"

    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)

    # should no tag raise an error or default to free space?
    def eps_val(x, el):
        for key in materials.keys():
            if el in material_elements[key]:
                return materials[key][0]
        raise ValueError, "Element does not belong to any material"

    def mu_val(x, el):
        for key in materials.keys():
            if el in material_elements[key]:
                return materials[key][1]
        raise ValueError, "Element does not belong to any material"

    # geometry of cavity
    d = 100e-3
    a = 150e-3

    # analytical frequency and transverse wavenumbers of resonance
    f0 = 9.0335649907522321e8
    h = 2*pi*f0/c
    l = -h*sqrt(2)

    # substitute the following and change materials for a homogeneous cavity
    #h = pi/a
    #l =-h

    def initial_val(discr):
        # the initial solution for the TE_10-like mode
        def initial_Hz(x, el):
            from math import cos, sin
            if el in material_elements["vacuum"]:
                return h*cos(h*x[0])
            else:
                return -l*sin(h*d)/sin(l*(a-d))*cos(l*(a-x[0]))

        from hedge.tools import make_obj_array
        result_zero = discr.volume_zeros(kind="numpy", dtype=numpy.float64)
        H_z = make_tdep_given(initial_Hz).volume_interpolant(0, discr)
        return make_obj_array([result_zero, result_zero, H_z])

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(CAVITY_GEOMETRY, 2, force_dimension=2)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    # Work out which elements belong to each material
    material_elements = {}
    for key in materials.keys():
        material_elements[key] = set(mesh_data.tag_to_elements[key])

    order = 3
    #extra_discr_args.setdefault("debug", []).append("cuda_no_plan")
    #extra_discr_args.setdefault("debug", []).append("dump_optemplate_stages")

    from hedge.data import make_tdep_given
    from hedge.mesh import TAG_ALL

    op = TEMaxwellOperator(epsilon=make_tdep_given(eps_val), mu=make_tdep_given(mu_val), \
            flux_type=flux_type_arg, \
            bdry_flux_type=bdry_flux_type_arg, dimensions=2, pec_tag=TAG_ALL)
    # op = TEMaxwellOperator(epsilon=epsilon0, mu=mu0,
            # flux_type=flux_type_arg, \
            # bdry_flux_type=bdry_flux_type_arg, dimensions=2, pec_tag=TAG_ALL)

    discr = rcon.make_discretization(mesh_data, order=order,
            tune_for=op.op_template(),
            **extra_discr_args)

    # create the initial solution
    fields = initial_val(discr)

    from hedge.visualization import VtkVisualizer
    if write_output:
        from os.path import join
        vis = VtkVisualizer(discr, rcon, join(output_dir, "cav-%d" % order))

    # monitor the solution at a point to find the resonant frequency
    try:
        point_getter = discr.get_point_evaluator(numpy.array([75e-3, 25e-3, 0])) #[0.25, 0.25, 0.25]))
    except RuntimeError:
        point_getter = None

    if rcon.is_head_rank:
        print "---------------------------------------------"
        print "order %d" % order
        print "---------------------------------------------"
        print "#elements=", len(mesh.elements)

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
    #from hedge.timestep.dumka3 import Dumka3TimeStepper
    #stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        from os.path import join
        log_file_name = join(output_dir, "cavity-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)

    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    #from hedge.log import EMFieldGetter, add_em_quantities
    #field_getter = EMFieldGetter(discr, op, lambda: fields)
    #add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
            ["step.max", "t_sim.max",
                #("W_field", "W_el+W_mag"),
                "t_step.max"]
            )

    # timestep loop -------------------------------------------------------
    rhs = op.bind(discr)
    final_time = 10e-9

    if point_getter is not None:
        from os.path import join
        pointfile = open(join(output_dir, "point.txt"), "wt")
        done_dt = False
    try:
        from hedge.timestep import times_and_steps
        from os.path import join
        step_it = times_and_steps(
                final_time=final_time, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                sub_timer = vis_timer.start_sub_timer()
                e, h = op.split_eh(fields)
                visf = vis.make_file(join(output_dir, "cav-%d-%04d") % (order, step))
                vis.add_data(visf,
                        [
                            ("e",
                                discr.convert_volume(e, kind="numpy")),
                            ("h",
                                discr.convert_volume(h, kind="numpy")),],
                        time=t, step=step
                        )
                visf.close()
                sub_timer.stop().submit()

            fields = stepper(fields, t, dt, rhs)
            if point_getter is not None:
                val = point_getter(fields)
                #print val
                if not done_dt:
                    pointfile.write("#%g\n" % dt)
                    done_dt = True
                pointfile.write("%g\n" %val[0])

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()

        if point_getter is not None:
            pointfile.close()
Ejemplo n.º 12
0
def simple_wave_entrypoint(dim=2,
                           num_elems=256,
                           order=4,
                           num_steps=30,
                           log_filename="grudge.dat"):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    num_parts = comm.Get_size()
    n = int(num_elems**(1. / dim))

    from meshmode.distributed import MPIMeshDistributor
    mesh_dist = MPIMeshDistributor(comm)

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          n=(n, ) * dim)

        from pymetis import part_graph
        _, p = part_graph(num_parts,
                          xadj=mesh.nodal_adjacency.neighbors_starts.tolist(),
                          adjncy=mesh.nodal_adjacency.neighbors.tolist())
        part_per_element = np.array(p)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DGDiscretizationWithBoundaries(cl_ctx,
                                               local_mesh,
                                               order=order,
                                               mpi_communicator=comm)

    source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(local_mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import StrongWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = StrongWaveOperator(
        -0.1,
        vol_discr.dim,
        source_f=(
            sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2)),
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind")

    from pytools.obj_array import join_fields
    fields = join_fields(
        vol_discr.zeros(queue),
        [vol_discr.zeros(queue) for i in range(vol_discr.dim)])

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_run_info, \
            IntervalTimer, EventCounter
    # NOTE: LogManager hangs when using a file on a shared directory.
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    log_quantities =\
        {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer",
                        "Time spent evaluating RankDataSwapAssign"),
        "rank_data_swap_counter": EventCounter("rank_data_swap_counter",
                        "Number of RankDataSwapAssign instructions evaluated"),
        "exec_timer": IntervalTimer("exec_timer",
                        "Total time spent executing instructions"),
        "insn_eval_timer": IntervalTimer("insn_eval_timer",
                        "Time spend evaluating instructions"),
        "future_eval_timer": IntervalTimer("future_eval_timer",
                        "Time spent evaluating futures"),
        "busy_wait_timer": IntervalTimer("busy_wait_timer",
                        "Time wasted doing busy wait")}
    for quantity in log_quantities.values():
        logmgr.add_quantity(quantity)

    bound_op = bind(vol_discr, op.sym_operator())

    def rhs(t, w):
        val, rhs.profile_data = bound_op(queue,
                                         profile_data=rhs.profile_data,
                                         log_quantities=log_quantities,
                                         t=t,
                                         w=w)
        return val

    rhs.profile_data = {}

    dt = 0.04
    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=dt * num_steps):
        if isinstance(event, dt_stepper.StateComputed):
            logmgr.tick_after()
            logmgr.tick_before()
    logmgr.tick_after()

    def print_profile_data(data):
        print("""execute() for rank %d:
            \tInstruction Evaluation: %f%%
            \tFuture Evaluation: %f%%
            \tBusy Wait: %f%%
            \tTotal: %f seconds""" %
              (comm.Get_rank(), data['insn_eval_time'] / data['total_time'] *
               100, data['future_eval_time'] / data['total_time'] * 100,
               data['busy_wait_time'] / data['total_time'] * 100,
               data['total_time']))

    print_profile_data(rhs.profile_data)
    logmgr.close()
Ejemplo n.º 13
0
    def add_instrumentation(self, logmgr):
        from pytools.log import \
                add_simulation_quantities, \
                add_general_quantities, \
                add_run_info, ETA
        from pyrticle.log import add_particle_quantities, add_field_quantities, \
                add_beam_quantities, add_currents

        setup = self.setup

        from pyrticle.log import StateObserver
        self.observer = StateObserver(self.method, self.maxwell_op)
        self.observer.set_fields_and_state(self.fields, self.state)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        add_particle_quantities(logmgr, self.observer)
        add_field_quantities(logmgr, self.observer)

        if setup.beam_axis is not None and setup.beam_diag_axis is not None:
            add_beam_quantities(logmgr,
                                self.observer,
                                axis=setup.beam_diag_axis,
                                beam_axis=setup.beam_axis)

        if setup.tube_length is not None:
            from hedge.tools import unit_vector
            add_currents(
                logmgr, self.observer,
                unit_vector(self.method.dimensions_velocity, setup.beam_axis),
                setup.tube_length)

        self.method.add_instrumentation(logmgr, self.observer)

        self.f_rhs_calculator.add_instrumentation(logmgr)

        if hasattr(self.stepper, "add_instrumentation"):
            self.stepper.add_instrumentation(logmgr)

        mean_beta = self.method.mean_beta(self.state)
        gamma = self.method.units.gamma_from_beta(mean_beta)

        logmgr.set_constant("dt", self.dt)
        logmgr.set_constant("beta", mean_beta)
        logmgr.set_constant("gamma", gamma)
        logmgr.set_constant("v", mean_beta * self.units.VACUUM_LIGHT_SPEED())
        logmgr.set_constant("Q0", self.total_charge)
        logmgr.set_constant("n_part_0", setup.nparticles)
        logmgr.set_constant("pmass", setup.distribution.mean()[3][0])
        logmgr.set_constant("chi", setup.chi)
        logmgr.set_constant("phi_decay", setup.phi_decay)
        logmgr.set_constant("shape_radius_setup", setup.shape_bandwidth)
        logmgr.set_constant("shape_radius",
                            self.method.depositor.shape_function.radius)
        logmgr.set_constant("shape_exponent",
                            self.method.depositor.shape_function.exponent)

        from pytools.log import IntervalTimer
        self.vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(self.vis_timer)

        logmgr.add_quantity(ETA(self.nsteps))

        logmgr.add_watches(setup.watch_vars)
Ejemplo n.º 14
0
def mpi_communication_entrypoint():
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    i_local_rank = comm.Get_rank()
    num_parts = comm.Get_size()

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    mesh_dist = MPIMeshDistributor(comm)

    dim = 2
    dt = 0.04
    order = 4

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          n=(16, ) * dim)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DGDiscretizationWithBoundaries(cl_ctx,
                                               local_mesh,
                                               order=order,
                                               mpi_communicator=comm)

    source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(local_mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import StrongWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = StrongWaveOperator(
        -0.1,
        vol_discr.dim,
        source_f=(
            sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2)),
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind")

    from pytools.obj_array import join_fields
    fields = join_fields(
        vol_discr.zeros(queue),
        [vol_discr.zeros(queue) for i in range(vol_discr.dim)])

    # FIXME
    # dt = op.estimate_rk4_timestep(vol_discr, fields=fields)

    # FIXME: Should meshmode consider BTAG_PARTITION to be a boundary?
    #           Fails because: "found faces without boundary conditions"
    # op.check_bc_coverage(local_mesh)

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_run_info, \
            IntervalTimer, EventCounter
    log_filename = None
    # NOTE: LogManager hangs when using a file on a shared directory.
    # log_filename = 'grudge_log.dat'
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    log_quantities =\
        {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer",
        "Time spent evaluating RankDataSwapAssign"),
        "rank_data_swap_counter": EventCounter("rank_data_swap_counter",
        "Number of RankDataSwapAssign instructions evaluated"),
        "exec_timer": IntervalTimer("exec_timer",
        "Total time spent executing instructions"),
        "insn_eval_timer": IntervalTimer("insn_eval_timer",
        "Time spend evaluating instructions"),
        "future_eval_timer": IntervalTimer("future_eval_timer",
        "Time spent evaluating futures"),
        "busy_wait_timer": IntervalTimer("busy_wait_timer",
        "Time wasted doing busy wait")}
    for quantity in log_quantities.values():
        logmgr.add_quantity(quantity)

    # print(sym.pretty(op.sym_operator()))
    bound_op = bind(vol_discr, op.sym_operator())

    # print(bound_op)
    # 1/0

    def rhs(t, w):
        val, rhs.profile_data = bound_op(queue,
                                         profile_data=rhs.profile_data,
                                         log_quantities=log_quantities,
                                         t=t,
                                         w=w)
        return val

    rhs.profile_data = {}

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 4
    nsteps = int(final_t / dt)
    print("rank=%d dt=%g nsteps=%d" % (i_local_rank, dt, nsteps))

    # from grudge.shortcuts import make_visualizer
    # vis = make_visualizer(vol_discr, vis_order=order)

    step = 0

    norm = bind(vol_discr, sym.norm(2, sym.var("u")))

    from time import time
    t_last_step = time()

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1
            print(step, event.t, norm(queue, u=event.state_component[0]),
                  time() - t_last_step)

            # if step % 10 == 0:
            #     vis.write_vtk_file("rank%d-fld-%04d.vtu" % (i_local_rank, step),
            #                        [("u", event.state_component[0]),
            #                         ("v", event.state_component[1:])])
            t_last_step = time()
            logmgr.tick_after()
            logmgr.tick_before()
    logmgr.tick_after()

    def print_profile_data(data):
        print("""execute() for rank %d:
            \tInstruction Evaluation: %f%%
            \tFuture Evaluation: %f%%
            \tBusy Wait: %f%%
            \tTotal: %f seconds""" %
              (i_local_rank, data['insn_eval_time'] / data['total_time'] * 100,
               data['future_eval_time'] / data['total_time'] * 100,
               data['busy_wait_time'] / data['total_time'] * 100,
               data['total_time']))

    print_profile_data(rhs.profile_data)
    logmgr.close()
    logger.debug("Rank %d exiting", i_local_rank)
Ejemplo n.º 15
0
def main(write_output=True,
         dir_tag=TAG_NONE,
         neu_tag=TAG_NONE,
         rad_tag=TAG_ALL,
         flux_type_arg="upwind"):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-1, -1), b=(1, 1), max_area=0.003)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4)

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = np.array([0.7, 0.4])
    source_width = 1 / 16
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import VariableVelocityStrongWaveOperator
    op = VariableVelocityStrongWaveOperator(
        c=sym.If(sym.Comparison(np.dot(sym_x, sym_x), "<", 0.4**2), 1, 0.5),
        dimensions=discr.dimensions,
        source=sym.CFunction("sin")(source_omega * sym.ScalarParameter("t")) *
        sym.CFunction("exp")(
            -np.dot(sym_source_center_dist, sym_source_center_dist) /
            source_width**2),
        dirichlet_tag=dir_tag,
        neumann_tag=neu_tag,
        radiation_tag=rad_tag,
        flux_type=flux_type_arg)

    from hedge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(),
        [discr.volume_zeros() for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep.stability import \
                approximate_rk4_relative_imag_stability_region
        max_dt = (1 / discr.compile(op.max_eigenvalue_expr())() *
                  discr.dt_non_geometric_factor() *
                  discr.dt_geometric_factor() *
                  approximate_rk4_relative_imag_stability_region(stepper))
        if flux_type_arg == "central":
            max_dt *= 0.25

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=3,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: max_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf, [
                    ("u", fields[0]),
                    ("v", fields[1:]),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
Ejemplo n.º 16
0
def main(write_output=True):
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    from math import sqrt, pi, exp

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    c = 1 / sqrt(mu * epsilon)

    pml_width = 0.5
    #mesh = make_mesh(a=np.array((-1,-1,-1)), b=np.array((1,1,1)),
    #mesh = make_mesh(a=np.array((-3,-3)), b=np.array((3,3)),
    mesh = make_mesh(
        a=np.array((-1, -1)),
        b=np.array((1, 1)),
        #mesh = make_mesh(a=np.array((-2,-2)), b=np.array((2,2)),
        pml_width=pml_width,
        max_volume=0.01)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class Current:
        def volume_interpolant(self, t, discr):
            from hedge.tools import make_obj_array

            result = discr.volume_zeros(kind="numpy", dtype=np.float64)

            omega = 6 * c
            if omega * t > 2 * pi:
                return make_obj_array([result, result, result])

            x = make_obj_array(discr.nodes.T)
            r = np.sqrt(np.dot(x, x))

            idx = r < 0.3
            result[idx] = (1+np.cos(pi*r/0.3))[idx] \
                    *np.sin(omega*t)**3

            result = discr.convert_volume(result,
                                          kind=discr.compute_kind,
                                          dtype=discr.default_scalar_type)
            return make_obj_array([-result, result, result])

    order = 3
    discr = rcon.make_discretization(mesh_data,
                                     order=order,
                                     debug=["cuda_no_plan"])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "em-%d" % order)

    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.data import GivenFunction, TimeHarmonicGivenFunction, TimeIntervalGivenFunction
    from hedge.models.em import MaxwellOperator
    from hedge.models.pml import \
            AbarbanelGottliebPMLMaxwellOperator, \
            AbarbanelGottliebPMLTMMaxwellOperator, \
            AbarbanelGottliebPMLTEMaxwellOperator

    op = AbarbanelGottliebPMLTEMaxwellOperator(epsilon,
                                               mu,
                                               flux_type=1,
                                               current=Current(),
                                               pec_tag=TAG_ALL,
                                               absorb_tag=TAG_NONE,
                                               add_decay=True)

    fields = op.assemble_ehpq(discr=discr)

    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "maxwell-%d.dat" % order
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
        ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    from hedge.log import LpNorm

    class FieldIdxGetter:
        def __init__(self, whole_getter, idx):
            self.whole_getter = whole_getter
            self.idx = idx

        def __call__(self):
            return self.whole_getter()[self.idx]

    # timestep loop -------------------------------------------------------

    t = 0
    pml_coeff = op.coefficients_from_width(discr, width=pml_width)
    rhs = op.bind(discr, pml_coeff)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4 / c,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h, p, q = op.split_ehpq(fields)
                visf = vis.make_file("em-%d-%04d" % (order, step))
                #pml_rhs_e, pml_rhs_h, pml_rhs_p, pml_rhs_q = \
                #op.split_ehpq(rhs(t, fields))
                j = Current().volume_interpolant(t, discr)
                vis.add_data(
                    visf,
                    [
                        ("e", discr.convert_volume(e, "numpy")),
                        ("h", discr.convert_volume(h, "numpy")),
                        ("p", discr.convert_volume(p, "numpy")),
                        ("q", discr.convert_volume(q, "numpy")),
                        ("j", discr.convert_volume(j, "numpy")),
                        #("pml_rhs_e", pml_rhs_e),
                        #("pml_rhs_h", pml_rhs_h),
                        #("pml_rhs_p", pml_rhs_p),
                        #("pml_rhs_q", pml_rhs_q),
                        #("max_rhs_e", max_rhs_e),
                        #("max_rhs_h", max_rhs_h),
                        #("max_rhs_p", max_rhs_p),
                        #("max_rhs_q", max_rhs_q),
                    ],
                    time=t,
                    step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        _, _, energies_data = logmgr.get_expr_dataset("W_el+W_mag")
        energies = [value for tick_nbr, value in energies_data]

        assert energies[-1] < max(energies) * 1e-2

    finally:
        logmgr.close()

        if write_output:
            vis.close()
Ejemplo n.º 17
0
def main(write_output=True,
         allow_features=None,
         flux_type_arg=1,
         bdry_flux_type_arg=None,
         extra_discr_args={}):
    from hedge.mesh.generator import make_cylinder_mesh, make_box_mesh
    from hedge.tools import EOCRecorder, to_obj_array
    from math import sqrt, pi  # noqa
    from analytic_solutions import (  # noqa
        RealPartAdapter, SplitComplexAdapter, CylindricalFieldAdapter,
        CylindricalCavityMode, RectangularWaveguideMode, RectangularCavityMode)
    from hedge.models.em import MaxwellOperator

    logging.basicConfig(level=logging.DEBUG)

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    eoc_rec = EOCRecorder()

    cylindrical = False
    periodic = False

    if cylindrical:
        R = 1
        d = 2
        mode = CylindricalCavityMode(m=1,
                                     n=1,
                                     p=1,
                                     radius=R,
                                     height=d,
                                     epsilon=epsilon,
                                     mu=mu)
        # r_sol = CylindricalFieldAdapter(RealPartAdapter(mode))
        # c_sol = SplitComplexAdapter(CylindricalFieldAdapter(mode))

        if rcon.is_head_rank:
            mesh = make_cylinder_mesh(radius=R, height=d, max_volume=0.01)
    else:
        if periodic:
            mode = RectangularWaveguideMode(epsilon, mu, (3, 2, 1))
            periodicity = (False, False, True)
        else:
            periodicity = None
        mode = RectangularCavityMode(epsilon, mu, (1, 2, 2))

        if rcon.is_head_rank:
            mesh = make_box_mesh(max_volume=0.001, periodicity=periodicity)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4, 5, 6]:
        #for order in [1,2,3,4,5,6]:
        extra_discr_args.setdefault("debug", []).extend(
            ["cuda_no_plan", "cuda_dump_kernels"])

        op = MaxwellOperator(epsilon,
                             mu,
                             flux_type=flux_type_arg,
                             bdry_flux_type=bdry_flux_type_arg)

        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         tune_for=op.op_template(),
                                         **extra_discr_args)

        from hedge.visualization import VtkVisualizer
        if write_output:
            vis = VtkVisualizer(discr, rcon, "em-%d" % order)

        mode.set_time(0)

        def get_true_field():
            return discr.convert_volume(to_obj_array(
                mode(discr).real.astype(discr.default_scalar_type).copy()),
                                        kind=discr.compute_kind)

        fields = get_true_field()

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep.runge_kutta import LSRK4TimeStepper
        stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
        #from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

        # {{{ diagnostics setup

        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "maxwell-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import IntervalTimer
        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        from hedge.log import EMFieldGetter, add_em_quantities
        field_getter = EMFieldGetter(discr, op, lambda: fields)
        add_em_quantities(logmgr, op, field_getter)

        logmgr.add_watches(
            ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

        # }}}

        # {{{ timestep loop

        rhs = op.bind(discr)
        final_time = 0.5e-9

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, fields=fields))

            for step, t, dt in step_it:
                if step % 50 == 0 and write_output:
                    sub_timer = vis_timer.start_sub_timer()
                    e, h = op.split_eh(fields)
                    visf = vis.make_file("em-%d-%04d" % (order, step))
                    vis.add_data(visf, [
                        ("e", discr.convert_volume(e, kind="numpy")),
                        ("h", discr.convert_volume(h, kind="numpy")),
                    ],
                                 time=t,
                                 step=step)
                    visf.close()
                    sub_timer.stop().submit()

                fields = stepper(fields, t, dt, rhs)

            mode.set_time(final_time)

            eoc_rec.add_data_point(order,
                                   discr.norm(fields - get_true_field()))

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

        if rcon.is_head_rank:
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

        # }}}

    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6