Ejemplo n.º 1
0
    def test_unscaled(self):
        D = 5
        P = 1000
        B, C, H, W = 2, 3, D, D
        densities = torch.zeros(B, 1, D, H, W)
        features = torch.zeros(B, C, D, H, W)
        volumes = Volumes(densities=densities, features=features)
        points = torch.rand(B, 1000, 3) * (D - 1) - ((D - 1) * 0.5)
        point_features = torch.rand(B, 1000, C)
        pointclouds = Pointclouds(points=points, features=point_features)

        volumes2 = add_pointclouds_to_volumes(pointclouds,
                                              volumes,
                                              rescale_features=False)
        self.assertConstant(volumes2.densities().sum([2, 3, 4]) / P,
                            1,
                            atol=1e-5)
        self.assertConstant(volumes2.features().sum([2, 3, 4]) / P,
                            0.5,
                            atol=0.03)
Ejemplo n.º 2
0
    def test_from_point_cloud(self, interp_mode="trilinear"):
        """
        Generates a volume from a random point cloud sampled from faces
        of a 3D cube. Since each side of the cube is homogenously colored with
        a different color, this should result in a volume with a
        predefined homogenous color of the cells along its borders
        and black interior. The test is run for both cube and non-cube shaped
        volumes.
        """

        # batch_size = 4 sides of the cube
        batch_size = 4

        for volume_size in ([25, 25, 25], [30, 25, 15]):

            for interp_mode in ("trilinear", "nearest"):

                (pointclouds, initial_volumes) = init_volume_boundary_pointcloud(
                    volume_size=volume_size,
                    n_points=int(1e5),
                    interp_mode=interp_mode,
                    batch_size=batch_size,
                    require_grad=True,
                )

                volumes = add_pointclouds_to_volumes(
                    pointclouds, initial_volumes, mode=interp_mode
                )

                V_color, V_density = volumes.features(), volumes.densities()

                # expected colors of different cube sides
                clr_sides = torch.tensor(
                    [
                        [[1.0, 1.0, 1.0], [1.0, 0.0, 1.0]],
                        [[1.0, 0.0, 0.0], [1.0, 1.0, 0.0]],
                        [[1.0, 0.0, 1.0], [1.0, 1.0, 1.0]],
                        [[1.0, 1.0, 0.0], [1.0, 0.0, 0.0]],
                    ],
                    dtype=V_color.dtype,
                    device=V_color.device,
                )
                clr_ambient = torch.tensor(
                    [0.0, 0.0, 0.0], dtype=V_color.dtype, device=V_color.device
                )
                clr_top_bot = torch.tensor(
                    [[0.0, 1.0, 0.0], [0.0, 1.0, 1.0]],
                    dtype=V_color.dtype,
                    device=V_color.device,
                )

                if DEBUG:
                    outdir = tempfile.gettempdir() + "/test_points_to_volumes"
                    os.makedirs(outdir, exist_ok=True)

                    for slice_dim in (1, 2):
                        for vidx in range(V_color.shape[0]):
                            vim = V_color.detach()[vidx].split(1, dim=slice_dim)
                            vim = torch.stack([v.squeeze() for v in vim])
                            vim = TestPointsToVolumes.stack_4d_tensor_to_3d(vim.cpu())
                            im = Image.fromarray(
                                (vim.numpy() * 255.0)
                                .astype(np.uint8)
                                .transpose(1, 2, 0)
                            )
                            outfile = (
                                outdir
                                + f"/rgb_{interp_mode}"
                                + f"_{str(volume_size).replace(' ','')}"
                                + f"_{vidx:003d}_sldim{slice_dim}.png"
                            )
                            im.save(outfile)
                            print("exported %s" % outfile)

                # check the density V_density
                # first binarize the density
                V_density_bin = (V_density > 1e-4).type_as(V_density)
                d_one = V_density.new_ones(1)
                d_zero = V_density.new_zeros(1)
                for vidx in range(V_color.shape[0]):
                    # the first/last depth-wise slice has to be filled with 1.0
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 1, interp_mode, d_one, "first"
                    )
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 1, interp_mode, d_one, "last"
                    )
                    # the middle depth-wise slices have to be empty
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 1, interp_mode, d_zero, "middle"
                    )
                    # the top/bottom slices have to be filled with 1.0
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 2, interp_mode, d_one, "first"
                    )
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 2, interp_mode, d_one, "last"
                    )

                # check the colors
                for vidx in range(V_color.shape[0]):
                    self._check_volume_slice_color_density(
                        V_color[vidx], 1, interp_mode, clr_sides[vidx][0], "first"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 1, interp_mode, clr_sides[vidx][1], "last"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 1, interp_mode, clr_ambient, "middle"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 2, interp_mode, clr_top_bot[0], "first"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 2, interp_mode, clr_top_bot[1], "last"
                    )

                # check differentiability
                loss = V_color.mean() + V_density.mean()
                loss.backward()
                rgb = pointclouds.features_padded()
                xyz = pointclouds.points_padded()
                for field in (xyz, rgb):
                    if interp_mode == "nearest" and (field is xyz):
                        # this does not produce grads w.r.t. xyz
                        self.assertIsNone(field.grad)
                    else:
                        self.assertTrue(field.grad.data.isfinite().all())
Ejemplo n.º 3
0
 def _add_points_to_volumes():
     add_pointclouds_to_volumes(pointclouds, initial_volumes, mode=interp_mode)
Ejemplo n.º 4
0
 def _add_points_to_volumes():
     add_pointclouds_to_volumes(pointclouds,
                                initial_volumes,
                                mode=interp_mode)
     torch.cuda.synchronize()