Ejemplo n.º 1
0
    def forward(self, pts, features):
        # Make sure pts and features are equal
        assert pts.size(2) == 3
        assert pts.size(1) == features.size(1)

        pts[:, :, 0] = -pts[:, :, 0]
        pts[:, :, 1] = -pts[:, :, 1]

        radius = float(self.radius) / float(self.img_size) * 2.0
        params = compositing.CompositeParams(radius=radius)

        pointcloud = Pointclouds(points=pts, features=features)
        points_idx, _, dist = rasterize_points(pointcloud, self.img_size,
                                               radius, self.points_per_pixel)

        dist = dist / pow(radius, 2)

        alphas = (1 - dist.clamp(max=1, min=1e-3).pow(0.5).pow(
            self.gamma).permute(0, 3, 1, 2))

        transformed_feature_alphas = compositing.alpha_composite(
            points_idx.permute(0, 3, 1, 2).long(), alphas,
            pointcloud.features_packed().permute(1, 0), params)

        return transformed_feature_alphas
Ejemplo n.º 2
0
    def forward(self, pts3D, src):
        bs = src.size(0)
        if len(src.size()) > 3:
            bs, c, w, _ = src.size()
            image_size = w

            pts3D = pts3D.permute(0, 2, 1)
            src = src.unsqueeze(2).repeat(1, 1, w, 1, 1).view(bs, c, -1)
        else:
            bs = src.size(0)
            image_size = self.size

        # Make sure these have been arranged in the same way
        assert pts3D.size(2) == 3
        assert pts3D.size(1) == src.size(2)

        pts3D[:, :, 1] = -pts3D[:, :, 1]
        pts3D[:, :, 0] = -pts3D[:, :, 0]

        # Add on the default feature to the end of the src
        # src = torch.cat((src, self.default_feature.repeat(bs, 1, 1)), 2)

        radius = float(self.radius) / float(image_size) * 2.0

        pts3D = Pointclouds(points=pts3D, features=src.permute(0, 2, 1))
        points_idx, _, dist = rasterize_points(pts3D, image_size, radius,
                                               self.points_per_pixel)

        if os.environ["DEBUG"]:
            print("Max dist: ", dist.max(), pow(radius, self.opts.rad_pow))

        dist = dist / pow(radius, self.opts.rad_pow)

        if os.environ["DEBUG"]:
            print("Max dist: ", dist.max())

        alphas = ((1 - dist.clamp(max=1, min=1e-3).pow(0.5)).pow(
            self.opts.tau).permute(0, 3, 1, 2))

        if self.opts.accumulation == 'alphacomposite':
            transformed_src_alphas = compositing.alpha_composite(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
            )
        elif self.opts.accumulation == 'wsum':
            transformed_src_alphas = compositing.weighted_sum(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
            )
        elif self.opts.accumulation == 'wsumnorm':
            transformed_src_alphas = compositing.weighted_sum_norm(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
            )

        return transformed_src_alphas
Ejemplo n.º 3
0
    def forward(self, points, features) -> torch.Tensor:
        """
            points      FloatTensor     B x N x 3
            features    FloatTensor     B x N x F
        """
        # Rasterize points -- bins set heurisically
        pointcloud = pytorch3d.structures.Pointclouds(points, features=features)
        idx, zbuf, dist_xy = rasterize_points(pointcloud, self.S, self.r, self.K)

        # Calculate PC coverage
        valid_pts = (idx >= 0).float()
        valid_ray = valid_pts[:, :, :, 0]

        # Calculate composite weights -- dist_xy is squared distance!!
        # Clamp weights to avoid 0 gradients or errors
        weights = self.calculate_weights(dist_xy, self.r)
        weights = weights.clamp(min=0.0, max=0.99)

        # Composite the raster for feats and depth
        idx = idx.long().permute(0, 3, 1, 2).contiguous()
        feats = pointcloud.features_packed().permute(1, 0)
        feats = self.compositor(idx, weights, feats)

        # == Rasterize depth ==
        # zero out weights -- currently applies norm_weighted sum
        w_normed = weights * (idx >= 0).float()
        w_normed = w_normed / w_normed.sum(dim=1, keepdim=True).clamp(min=1e-9)
        z_weighted = zbuf.permute(0, 3, 1, 2).contiguous() * w_normed.contiguous()
        z_weighted = z_weighted.sum(dim=1, keepdim=True)

        return {
            "raster_output": {
                "idx": idx,
                "zbuf": zbuf,
                "dist_xy": dist_xy,
                "alphas": weights,
                "points": points,
                "feats": features,
            },
            "feats": feats,
            "depth": z_weighted,
            "mask": valid_ray,
            "valid_rays": valid_ray.mean(dim=(1, 2)),
            "valid_pts": valid_pts.mean(dim=(1, 2, 3)),
        }
    def forward(self, pts3D, src):
        bs = src.size(0)
        if len(src.size()) > 3:
            bs, c, w, _ = src.size()
            image_size = w

            pts3D = pts3D.permute(0, 2, 1)
            src = src.unsqueeze(2).repeat(1, 1, w, 1, 1).view(bs, c, -1)
        else:
            bs = src.size(0)
            image_size = self.size

        # Make sure these have been arranged in the same way
        assert pts3D.size(2) == 3
        assert pts3D.size(1) == src.size(2)

        # pts3D.shape = (bs, w*h, 3) --> (x,y,z) coordinate for ever element in the image raster
        # Because we have done re-projection, the i-th coordinate in the image raster must no longer be identical to (x,y)!
        # src.shape = (bs, c, w*h) --> c features for every element in the image raster (w*h)

        #print("Features: {}".format(src.shape))
        #print("3D Pointcloud: {}".format(pts3D.shape))

        # flips the x and y coordinate
        pts3D[:, :, 1] = -pts3D[:, :, 1]
        pts3D[:, :, 0] = -pts3D[:, :, 0]

        # Add on the default feature to the end of the src
        #src = torch.cat((src, self.default_feature.repeat(bs, 1, 1)), 2)

        radius = float(self.radius) / float(
            image_size
        ) * 2.0  # convert radius to fit the [-1,1] NDC ?? Or is this just arbitrary scaling s.t. radius as meaningful size?
        params = compositing.CompositeParams(radius=radius)

        #print("Radius - before: {}, converted: {}".format(self.radius, radius))

        pts3D = Pointclouds(points=pts3D, features=src.permute(0, 2, 1))
        points_idx, _, dist = rasterize_points(
            pts3D, image_size, radius, self.points_per_pixel
        )  # see method signature for meaning of these output values

        #print("points_idx: {}".format(points_idx.shape))
        #print("dist: {}".format(points_idx.shape))

        #print("Max dist: ", dist.max(), pow(radius, self.rad_pow))

        dist = dist / pow(
            radius, self.rad_pow
        )  # equation 1 from the paper (3.2): this calculates N(p_i, l_mn) from the d2 dist

        #print("Max dist: ", dist.max())

        alphas = (
            (1 - dist.clamp(max=1, min=1e-3).pow(0.5)).pow(
                self.accumulation_tau).permute(0, 3, 1, 2)
        )  # equation 2 from the paper (3.2): prepares alpha values for composition of the feature vectors

        #print("alphas: ", alphas.shape)
        #print("pointclouds object: {}".format(pts3D.features_packed().shape))
        #print("alphas: ", alphas)

        if self.accumulation == 'alphacomposite':
            transformed_src_alphas = compositing.alpha_composite(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(
                    1, 0
                ),  # pts3D also contains features here, because this is now a Pointclouds object
                params,
            )
        elif self.accumulation == 'wsum':
            transformed_src_alphas = compositing.weighted_sum(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
                params,
            )
        elif self.accumulation == 'wsumnorm':
            transformed_src_alphas = compositing.weighted_sum_norm(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
                params,
            )
        else:
            raise NotImplementedError('Unsupported accumulation type: ' +
                                      self.accumulation)

        return transformed_src_alphas
Ejemplo n.º 5
0
def generate_video(im_name, normalise):
    # Load in the correspondences and images
    im1 = Image.open(os.environ['BASE_PATH'] + '/imL/%s.jpg' % im_name)
    im2 = Image.open(os.environ['BASE_PATH'] + '/imR/%s.jpg' % im_name)

    if normalise:
        np_tempwarp = np.load(os.environ['BASE_PATH'] +
                              '/warps/temp_sampler%s_2_grad_norm.npz' %
                              im_name)
        H = np_tempwarp['H']
        np_tempwarp = np_tempwarp['sampler']
    else:
        np_tempwarp = np.load(os.environ['BASE_PATH'] +
                              '/warps/temp_sampler%s_2_grad_coarse.npz.npy' %
                              im_name)

    if normalise:
        im1_arr = np.array(im1)
        im2_arr = np.array(im2)

        K1 = np.eye(3)
        K1[0, 0] = 2 / im1_arr.shape[1]
        K1[1, 1] = 2 / im1_arr.shape[0]
        K1[0:2, 2] = -1
        K2 = np.eye(3)
        K2[0, 0] = 2 / im2_arr.shape[1]
        K2[1, 1] = 2 / im2_arr.shape[0]
        K2[0:2, 2] = -1

        aff_mat = (np.linalg.inv(K2) @ H @ K1)

        # Now transform the image and return
        warp_im1 = cv2.warpAffine(im1_arr, aff_mat[0:2],
                                  (im2_arr.shape[1], im2_arr.shape[0]))

        im1 = warp_im1
        im1 = Image.fromarray(im1)

    warp = torch.Tensor(np_tempwarp).unsqueeze(0)

    im1_torch = tr.ToTensor()(im1).unsqueeze(0)
    im2_torch = tr.ToTensor()(im2).unsqueeze(0)

    gen_img = F.grid_sample(im1_torch, warp)

    sampler = F.upsample(warp.permute(0, 3, 1, 2),
                         size=(im2_torch.size(2), im2_torch.size(3)))
    gen_imglarge = F.grid_sample(im1_torch, sampler.permute(0, 2, 3, 1))

    W1, W2, _ = np_tempwarp.shape
    orig_warp = torch.meshgrid(torch.linspace(-1, 1, W1),
                               torch.linspace(-1, 1, W2))
    orig_warp = torch.cat(
        (orig_warp[1].unsqueeze(2), orig_warp[0].unsqueeze(2)), 2)

    orig_warp = orig_warp.unsqueeze(0)
    warp = torch.Tensor(np_tempwarp).unsqueeze(0)

    new_imgs = []

    if not os.path.exists('./temp%s/%s' % (im_name, im_name)):
        os.makedirs('./temp%s/%s' % (im_name, im_name))

    radius = 2 * 2 / 1024.

    for i in tqdm(range(-10, 30)):
        resample = (orig_warp * float(i) / 20. + warp * float(20 - i) / 20.)
        pts3D = resample.view(1, -1, 2)

        pts_mask = (warp.view(-1, 2)[:, 0] > -1) & (warp.view(-1, 2)[:, 0] < 1)

        pts3D = pts3D[:, pts_mask, :]
        pts3D = -pts3D
        pts3D = torch.cat((pts3D.cuda(), torch.ones(
            (1, pts3D.size(1), 1)).cuda()), 2)

        rgb = F.grid_sample(im2_torch,
                            orig_warp).permute(0, 2, 3, 1).view(1, -1,
                                                                3)[:,
                                                                   pts_mask, :]
        mask = torch.ones((1, rgb.size(1), 1)).cuda()

        pts3DRGB = Pointclouds(points=pts3D, features=rgb)
        points_idx, _, dist = rasterize_points(pts3DRGB, 1024, radius, 1)
        gen_img = pts3DRGB.features_packed()[
            points_idx.permute(0, 3, 1, 2).long()[0], :].permute(
                0, 3, 1, 2).mean(dim=0, keepdim=True)
        new_imgs += [gen_img.squeeze().permute(1, 2, 0)]

        torchvision.utils.save_image(
            gen_img, './temp%s/%s/im-%03d.png' % (im_name, im_name, i + 10))

        mask = (points_idx.permute(0, 3, 1, 2) < 0).float()

        torchvision.utils.save_image(
            mask, './temp%s/%s/mask-%03d.png' % (im_name, im_name, i + 10))