Ejemplo n.º 1
0
def test_grad():
    """
    Grad calculated first with tensorflow

    :return:
    """

    c = ComplexTensor([[1, 3, 5], [7, 9, 11], [2, 4, 6], [8, 10, 12]])
    c.requires_grad = True

    # simulate some ops
    out = c + 4
    out = out.mm(c.t())

    # calc grad
    out = out.sum()
    out.backward()

    # d_out/dc
    g = c.grad.view(-1).data.numpy()

    # solution (as provided by running same ops in tensorflow)
    """
    tf_c2 = tf.constant([[1+2j, 3+4j, 5+6j], [7+8j,9+10j,11+12j]], dtype=tf.complex64)
    
    with tf.GradientTape() as t:
    t.watch(tf_c2)
    tf_out = tf_c2 + 4
    tf_out = tf.matmul(tf_out, tf.transpose(tf_c2, perm=[1,0]))
    
    tf_y = tf.reduce_sum(tf_out)
    dy_dc2 = t.gradient(tf_y, tf_c2)
    
    # solution
    print(dy_dc2)
    """
    #
    sol = np.asarray([24, 32, 40, 24, 32, 40, -20, -28, -36, -20, -28, -36])
    assert np.array_equal(g, sol)
Ejemplo n.º 2
0
from pytorch_complex_tensor import ComplexTensor

C = ComplexTensor([[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4]])
C.requires_grad = True
print(C)
result_sin = C.sin()

result_cos = C.cos()
result_tan = C.tan()

print('Sin:')
print(result_sin)

print('Cos:')
print(result_cos)

print('tan:')
print(result_tan)